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Abstract: Despite being vaccine-preventable, hepatitis B virus (HBV) infection remains the seventh
leading cause of mortality in the world. In South Africa (SA), over 1.9 million people are chronically
infected with HBV, and 70% of all Black chronic carriers are infected with HBV subgenotype A1. The
virus remains a significant burden on public health in SA despite the introduction of an infant immu-
nization program implemented in 1995 and the availability of effective treatment for chronic HBV
infection. In addition, the high prevalence of HIV infection amplifies HBV replication, predisposes
patients to chronicity, and complicates management of the infection. HBV research has made signifi-
cant progress leading to better understanding of HBV epidemiology and management challenges in
the SA context. This has led to recent revision of the national HBV infection management guidelines.
Research on developing new vaccines and therapies is underway and progress has been made with
designing potentially curative gene therapies against HBV. This review summarizes research carried
out in SA on HBV molecular biology, epidemiology, treatment, and vaccination strategies.
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1. Introduction

In 2019, an estimated 296 million people were living with chronic hepatitis B virus
(HBV) infection (CHB), and the virus was responsible for approximately 1.5 million new
infections and 887,000 deaths world-wide [1,2]. The prevalence of HBV infection is par-
ticularly high in sub-Saharan Africa, with about 60 million people chronically infected.
Owing to inadequate screening and disease surveillance, HBV infection incidences in SA
are underestimated and CHB remains neglected. HBV is endemic in SA with the highest
rates in adults, especially those who are co-infected with HIV [3]. It is estimated that about
7.4% of the world’s population infected with HIV is also chronically infected with HBV.
More than 70% of these HBV/HIV co-infected individuals reside in sub-Saharan Africa. SA
has the largest number of HIV infections in the world with over 7.5 million people living
with the virus [4].

The HBV genome comprise the polymerase, surface, core, and X overlapping open
reading frames (ORFs) encoding structural, enzymatic, and regulatory proteins. The partly
double stranded relaxed circular DNA (rcDNA) minus strand comprises 3200 nucleotides,
and the shorter plus strand is of variable length. Regulatory elements include four promoter
sequences (pS1, pS2, pC, pX) and two enhancer elements (Enh1 and Enh2) [5]. At the start
of infection, glycosaminoglycans mediate clustering of viral particles on the surface of
hepatocytes. The sodium taurocholate co-transporting polypeptide (NTCP) receptor on
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the surface of hepatocytes initiates entry of the virus into host cells [6]. With the help of
the epidermal growth factor receptor, the virion enters the cell using a poorly understood
mechanism. After entering hepatocytes, the nucleocapsid is directed to the nucleus where
the rcDNA is released and undergoes ‘DNA repair’ to form covalently closed circular
DNA (cccDNA). This stable construct, also referred to as the HBV minichromosome, allows
the virus to persist in infected cells. cccDNA serves as the template for transcription of
the pre-genomic RNA (pgRNA) as well as other major viral mRNAs. Transcripts are
exported to the cytoplasm where they are translated into viral proteins, including hepatitis
B surface antigen (HBsAg), hepatitis B core antigen (HBcAg), hepatitis B e antigen (HBeAg),
DNA polymerase (pol), and the hepatitis B X protein (HBx). HBsAg can also be produced
following transcription of viral DNA that has been integrated into the host genome. Viral
capsids are made up of HBcAg proteins that are assembled into icosahedrons containing
pgRNA and viral polymerase. Within the nucleocapsid, pol mediates rcDNA synthesis by
reverse transcribing pgRNA to form the minus DNA strand, which serves as a template
for plus strand synthesis. HBV capsids undergo maturation and are coated with HBsAg
embedded envelope before they are released from hepatocytes. rcDNA-containing capsids
may also be recycled to the nucleus to maintain cccDNA pools [5].

HBV is classified into nine genotypes, A–I [7–10], based on an intergroup divergence
of >7.5% across the complete genomes [8,10]. A putative 10th genotype, “J”, has been
isolated from a single case in Japan [11]. Genotypes A–D, F, H, and I are classified further
into at least 35 subgenotypes. This is based on intergroup nucleotide divergence of between
4% and 8% across complete genomes [7,8,10]. The genotypes, and in some cases, the
subgenotypes, have distinct global and local geographical distributions [8,10]. It was
first recognized that HBV genotypes can be divided into subgenotypes, when the pre-
S2/S region of South African isolates was sequenced [12]. Existence of subgenotypes was
subsequently confirmed by further sequencing of pre-S1/pre-S2/S and complete genomes,
leading to identification of subgenotype A1 [13,14]. In addition to distinctive sequence
characteristics, subgenotype A1 differs from other (sub)genotypes in epidemiological and
clinical features [15]. Subgenotype A1 is found in 70% of Black South African carriers of
HBV and is also found in southeastern Africa [16,17] whereas subgenotype A2 circulates
mainly outside Africa [13].

In SA, the hepatitis B vaccine was introduced into the Expanded Programme on
Immunisation (EPI) in 1995. The vaccination regimen involves administration of the
HBsAg-based vaccine at 6, 10, and 14 weeks post-natally, then a booster at 18 months of age,
all as part of a multivalent vaccine dose [18]. Limitations of the program are that it excludes
those born before 1995 and there is no birth dose. The latter allows significant numbers of
HBV infections in SA to occur perinatally following transmission to infants from viremic
HBV-infected mothers. Nevertheless, introduction of the HBV vaccine as part of childhood
immunization has significantly decreased infection rates in some parts of SA [19,20]. Recent
recommendations of the South African Viral Hepatitis Guidelines are for the introduction
of a catch-up vaccination program, maternal HBV screening, and HBV mother-to-child
prevention with vaccination at birth [18]. However, these recommendations are yet to be
implemented. Novel HBV prevention strategies that are being explored include mRNA
and viral vector-based vaccines.

The gold standard for HBV infection diagnosis is the detection of HBsAg in serum
or plasma using enzyme-linked immunosorbent assays (ELISAs) or chemiluminescence
immunoassays [21]. Acute HBV infection is characterized by presence of HBsAg for
less than six months, and CHB is defined as the persistence of HBsAg for at least six
months. The earliest serological markers to appear following HBV exposure are the HBsAg
and antibodies to HBcAg (anti-HBc) [22]. Although poorly understood and commonly
defined as another phase of CHB, occult HBV infection (OBI) is characterized by a lack of
HBsAg positivity but presence of HBV DNA in the liver, with or without HBV DNA in
the serum [23,24]. In SA, OBI prevalence ranges between 5.4% and 23%, depending on the
study population [25–27].
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Management of acute HBV infection is mainly supportive because more than 95%
of immunocompetent individuals recover from the infection. First line treatment for
CHB includes PEGylated interferon and nucleoside/nucleotide analogs such as tenofovir,
entecavir, and lamivudine. The end goals of treating CHB are to prevent progression
to cirrhosis; hepatic decompensation and hepatocellular carcinoma (HCC) in cirrhotic
patients; and improvement of synthetic function in those with decompensated liver disease
secondary to CHB. The loss of HBsAg coupled with seroconversion to anti-HBs is also a
desired goal of treating CHB. Tenofovir in the form of tenofovir disoproxil fumarate (TDF)
is most used as first line for treatment of CHB in South Africa. Treatment using TDF is long
term and is frequently given indefinitely because of the risk of reactivation infection when
therapy is withdrawn or terminated [18]. Although treatment regimens including these
drugs may achieve a functional cure, they rarely eliminate the cccDNA from the infected
hepatocytes. Functional cure from CHB is characterized by loss of HBsAg with reduced risk
of hepatocellular carcinoma (HCC), cirrhosis, and liver failure. However, failure to eliminate
cccDNA typically results in relapse following discontinuation of therapy. Treatment with
lamivudine may result in emergence of viral escape mutants. Studies using samples
from lamivudine-treated or -naïve SA patients with CHB reported reverse transcriptase
gene mutations in 75.6% of isolates from patients receiving lamivudine, and 38% of cases
were associated with drug resistance and treatment failure [28]. Interestingly, lamivudine
resistance mutations were also detected in 37% of lamivudine-naïve patients [28,29] and in
HIV/HBV co-infected individuals [30,31]. The resistance-associated mutations detected
from lamivudine-naïve patients were likely to be polymorphisms of the wild-type viral
sequence [32]. Hence, development of resistance to nucleoside/nucleotide analogs with a
low genetic barrier to resistance such as lamivudine poses a challenge to anti-HBV therapy.
New strategies to treat HBV infection include gene therapy approaches [33–37]. This
review focuses on South African research that is aimed at understanding the biology and
epidemiology of HBV, HBV/HIV coinfection, OBI, and new strategies to improve the
prevention and treatment of HBV infection.

2. Molecular and Functional Characterization of HBV Subgenotype A1: The Viral
Strain Prevailing in South Africa

Sequencing of many A1 isolates led to the conclusion that this subgenotype is endemic
to Africa and has a long evolutionary history on the continent [13,38]. Outside of Africa, A1 is
confined to areas where there has been a history of recent migration from Africa [39–41]. A
case-control study showed that Africans infected with subgenotype A1 have a 4.5 times higher
risk of developing liver cancer than those infected with other (sub)genotypes and these
patients develop cancer at an earlier age [42]. The high hepatocarcinogenic potential may
be a result of the subgenotype’s distinctive sequence characteristics, which are responsible
for high HBeAg-negativity [15,43,44] and low HBV DNA levels in carriers [15]. Research
within the Hepatitis Diversity Research Unit, Johannesburg, has extensively characterized
A1 variants at the molecular and functional level.

Using extensive bioinformatic analyses, variations in the basic core promoter (BCP)
and precore (pre-C) region positively associated with subgenotype A1 were identified
(Table 1) [45]. Nucleotide 1888A can interfere with initiation at the downstream 1901
core AUG, thereby decreasing core protein translation [46]. On the other hand, mutations
in the BCP/Pre-C can affect HBeAg expression at the transcriptional (A1762T/G1764A),
translational (GCAC to TCAT at 1809–1812 from the EcoRI site) and post-translational
levels (G1862T) [47,48]. Although not unique to subgenotype A1, A1762T/G1764A is
frequently found in subgenotype A1 HBV isolated from patients with HCC [49–51]. This
mutant results in decreased HBeAg expression [49] and has been shown to be a risk
factor for development of HCC [52]. TCAT at 1809–1812, found in the Kozak sequence, is
characteristic of subgenotype A1 and causes leaky ribosomal scanning to affect translation
of HBeAg [53].
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Table 1. Molecular and functional characterization of HBV subgenotype A1 variants.

Target Mutation Major Findings References

BCP/Pre-Core

G1888A Interfere with initiation at the core AUG and decrease core
protein translation. [46]

A1762T/G1764A

Results in decreased HBeAg transcription.
Risk factor for hepatocellular carcinoma

(HCC) development.
Occurs more frequently in HBV/HIV co-infected patients.

[47–52,54]

GCAC to TCAT at
1809-1812

Affects translation of HBeAg by a leaky ribosomal
scanning mechanism. [48,53,55]

G1862T

Affects HBeAg expression at the post-translational level.
Frequent in HBeAg-negative South African carriers and in

HCC tumorous liver tissue.
Interferes with the maturation of the precursor to HBeAg.

Reduces HBeAg secretion.
Leads to the accumulation of the HBeAg precursor protein

in the endoplasmic reticulum (ER) and endoplasmic
reticulum Golgi intermediate compartment (ERGIC),

leading to increased ER stress.

[45,47,48,56–60]

Pre-S Pre-S2 deletion Occurmore frequently in patients with HCC.
Mediate immune escape.

Occur more frequently in HBV/HIV co-infected patients. [50,54,61,62]
Pre-S2 initiation codon

mutation

ps2F22L

Almost exclusive to subgenotype A1 [45,47], G1862T is more frequent in HBV from
HBeAg-negative than in HBeAg-positive South African carriers [56,57]. The sequence
is also often found in HBV from HCC tumors, but not in adjacent non-tumorous liver
tissue [57]. The 1862 G to T transversion causes a valine to phenylalanine substitution at
the -3 position relative to the signal peptide cleavage site of the precursor protein. The
aromatic ring of the phenylalanine interferes with the signal peptide function and processes
necessary for the maturation of the precursor to HBeAg [58]. After introducing the G1862T
mutation into wild-type genotype D sequences, a 54% reduction in secretion of HBeAg
was observed [59]. Following transfection with a replication-competent subgenotype A1
clone, G1862T also diminished HBeAg expression, albeit to a lower degree (22%) [60].
HBeAg precursor protein accumulated in the endoplasmic reticulum (ER) and endoplasmic
reticulum Golgi intermediate compartment (ERGIC) [60]. This accumulation triggered
an earlier activation of the three unfolded protein response (UPR) pathways, leading to
increased ER stress without increasing apoptosis [60]. HBeAg is immunomodulatory
and reduced concentrations redirect the immune response to HBV-infected hepatocytes.
Together with increased ER stress, this can cause liver damage and contribute to the higher
hepatocarcinogenic potential of subgenotype A1 [47]. These BCP/Pre-C mutations either
individually or in combination result in diminished circulating HBeAg.

When HBV sequences isolated from SA with and without HCC were compared,
the previously reported 1762T/1762A substitution was observed together with cancer-
associated mutations in the viral pre-S region. This includes pre-S2 deletion, mutations
in the pre-S2 initiation codon, and pre-S2F22L, which may be associated with viral im-
mune escape (Table 1) [50]. Similar observations were made in HBV strains isolated from
Indian [40] and Kenyan [17] HCC patients infected with subgenotype A1. A link between
these mutants and the pathogenesis of HCC has been shown in experimental and clinical
studies [61,62]. Pre-S deletion mutants, identical to those isolated from HCC patients, also
occur in subgenotype A1 isolates from HIV-infected individuals [30]. The A1762T/G1764A
and pre-S deletions occurred more frequently in HBV/HIV co-infected subjects than in
HBV mono-infected individuals [54].
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To characterize subgenotype A1 further, replication-competent plasmids of HBV
subgenotypes A1, A2, and D3, with authentic endogenous promoters were analyzed [63].
Replication of the three subgenotypes was compared after transfection. Subgenotype A1
expressed the lowest levels of precore/core precursor [44]. HBeAg, core expression, and
replicative activity were lowest both in vitro and in vivo [48,64]. There was increased
retention of viral proteins in the secretory pathway, increased ER stress, and earlier and
prolonged activation of UPR in cells transfected with subgenotype A1 [44]. When liver
cells were transfected with replication competent plasmids of subgenotype A1, precore
protein expression was affected by absence of core, which also influenced HBsAg expres-
sion, suggesting an interrelationship between precore proteins, HBcAg, and HBsAg [65].
Incorporating greater-than-genome-length subgenotype A1 sequences into recombinant
adeno-associated viruses (AAVs), HBV replication was demonstrated in vitro in hepatoma
cells and in mice [66]. These infection experiments resulted in lower HBV gene expression
of subgenotype A1 compared to D3, mirroring observations in patients and results from
transfection of hepatoma cells with replication-competent plasmid clones [15,43,44]. The
modulatory role of HBeAg and its precursors, as well as the lower replicative activity of
subgenotype A1, may be important for immune escape and viral persistence and ultimately
contribute to development of HCC.

3. HBV/HIV Co-Infection and Treatment

The high numbers of HIV and HBV infections in SA have led to the country being
described as having a syndemic of HIV and HBV [67]. The prevalence of HBV infection
is generally similar in HIV-infected and HIV-uninfected adults because most infections of
hepatitis B are acquired in early childhood, before the acquisition of HIV in adulthood [68].
HBV/HIV co-infection is known to increase HBV replication rates, delay HBeAg antigen
seroconversion and increase likelihood of developing CHB [69].

With implementation of antiretroviral therapy (ART) for HIV, the incidence of HBV-
related liver disease and mortality has also increased [70]. This is because HBV and
HIV-coinfected persons are now living longer and dying from HBV-related cirrhosis and
hepatocellular carcinoma [70,71]. Furthermore, data suggest that HIV hastens the progres-
sion of CHB to HCC, with Africa-based studies reporting that HCC develops a decade
earlier in HIV/HBV co-infected patients than in people carrying only HBV [72,73]. In
addition, survival following HCC diagnosis in HIV/HBV co-infected patients appears
worse compared to individuals carrying HBV alone [72]. Median survival for co-infected
individuals with HCC was 81 days compared to 181 days for patients infected with only
HBV. Unfortunately, these studies are limited by low sample numbers, and the impact of
HIV ART on progression to HCC is not yet conclusive. Since 2017, SA has implemented a
test-and-treat policy for HIV infection. This ensures that HIV-infected patients are promptly
treated without a need for measurement of CD4 cell counts [74]. The benefits of ART in
those who are HIV-infected are clear. There are reductions in mortality and morbidity from
HIV-related conditions and improvement in life expectancy [75]. In contrast, treatment of
HBV is not a straightforward process because of the complex clinical staging and treatment
eligibility guidelines [76]. Treatment in those infected with HBV alone is only indicated
for patients with any of the following: advanced fibrosis or cirrhosis, acute liver failure
to prevent further hepatocyte death, or those receiving chemotherapy, rituximab, or im-
munosuppressive agents [18]. The benefits of HIV treatment accrue to those patients with
HIV/HBV co-infection because the current first-line ART in SA includes the drugs TDF
and lamivudine or emtricitabine, which are also active against HBV [77]. For HIV/HBV
co-infected patients, these drugs are provided as a fixed drug combination for adults, ado-
lescents, and children more than 3 years of age [78]. The use of TDF is particularly desirable
because of the high barrier against drug-resistant HBV when compared to the previous
regimens that contained lamivudine as the only HBV-active drug [77,79]. Studies on SA
patients have shown a clinical advantage in co-infected patients on ART compared to HBV
mono-infected patients who do not always get antiviral therapy even when it may be clini-
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cally indicated. These treated HIV/HBV co-infected patients have improved liver fibrosis
scores and lower hepatitis B viral loads, although they still have higher serum prevalence
of HBeAg compared to individuals infected with HBV alone [80,81]. Furthermore, in Euro-
pean cohorts, treatment of non-cirrhotic HIV/HBV co-infected patients led to decreased
incidence of HCC [82]. Such studies need to be undertaken in sub-Saharan Africa.

The treatment of HBV in HBV/HIV co-infected patients provides a unique opportunity
to study the emergence of variants that are resistant to currently available antivirals,
particularly to TDF. There are emerging data from SA showing that not all the patients
that are on ART achieve HBV suppression despite adherence to regimens that contain
TDF [83,84]. Mutations that can explain this non-suppression of HBV, which frequently
occurs in a background of suppressed HIV replication, have not yet been defined, but
non-adherence is excluded as the cause of persistent circulating HBV DNA.

4. Occult HBV Infection

Patients with OBI usually have low levels of circulating HBV DNA with antibodies
to HBcAg as the only serological marker of infection [23,85]. In some cases, anti-HBsAg
may be present as has been reported in Mozambican patients [86]. Although highly
viremic (>350 copies/mL) patients have been identified where anti-HBc was the only
marker of HBV infection, OBI is generally characterized by HBV DNA concentrations of
less than 200 copies/mL [23,87]. Treatment is not recommended for patients with OBI
in SA, however, patients should be monitored for reactivation of infection. In HIV/HBV
co-infected individuals, where OBI is frequent, higher viral loads have been detected in
individuals infected with subgenotype A1 [30,88]. Although it was previously assumed
that HBsAg-negative individuals were not infectious, reports show that blood and organ
recipients were infected with HBV from donors who had no detectable HBsAg and low-
level viremia [87,89]. A blood donation with as little as 32 subgenotype A1 HBV DNA
copies per mL of plasma has been shown to be infectious [90].

Several studies have shown the high prevalence of OBI in HIV-infected SA adults
when compared to uninfected individuals [26,91,92]. The prevalence of OBI in SA varies
between study populations. One study among healthcare workers in SA reported 6.7%
prevalence [25], while studies on HIV-positive patients reported 5.4% and 23% preva-
lence [26,27]. In a retrospective study conducted in SA, HIV-infected individuals on ART
were found to be at high risk for reactivation of HBV because of OBI [93]. Several mech-
anisms may explain the OBI phenomenon, and these have been investigated using cell
culture models and analysis of patients’ isolates [94–97]. Numerous southern African
studies have focused on the contribution of HBV S gene mutations [93,98,99]. Several
mutations, mainly within the immunogenic major hydrophilic region of the S gene, were
identified. Some of these mutations are common across HBV genotypes A-H [97] and may
enable HBsAg to escape detection.

5. Novel HBV Prevention and Treatment Strategies

The challenges to treatment and vaccination strategies highlighted above make it clear
that novel vaccine and therapeutic approaches are required. Gene-based vaccines and
therapies against viral infections have shown great promise in pre-clinical and clinical
studies. Research in the Antiviral Gene Therapy Research Unit (AGTRU), South Africa, has
put extensive efforts into designing nucleic acid-based therapies and vaccines to counter
HBV infection (Table 2). From these studies several promising candidates have been
identified (described below).
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Table 2. Key areas of HBV research in South Africa.

Research Group/s Research Area Research Field Key References

Hepatitis Diversity Research Unit,
Department of Internal Medicine,

School of Clinical Medicine, Faculty
of Health Sciences, University of the

Witwatersrand, Johannesburg

- Epidemiology of HBV
Clinical [71,100]

- Molecular and functional
characterization of HBV

Clinical [46,50,54,60,101,102]

- HBV/HIV co-infection
Clinical [31,103]

- Occult HBV infection
Clinical [104]

Division of Medical Virology,
Faculty of Medicine and Health

Sciences, Stellenbosch University,
Cape Town

- HBV and HBV/HIV
infection epidemiology

Clinical [105–109]

- HBV and HBV/HIV
infection management

Clinical [72,80,83,110]

HIV and Hepatitis Research Unit,
Department of Virology, Sefako

Makgatho Health Sciences
University, Pretoria

- HBV and HBV/HIV
infection epidemiology

Clinical [26]

- HBV and HBV/HIV
infection management

Clinical [29,111,112]

- Occult HBV infection
Clinical [91]

Wits/SAMRC Antiviral Gene
Therapy Research Unit, IDORI,

Faculty of Health Sciences,
University of the Witwatersrand,

Johannesburg

- Anti-HBV vaccine development
Pre-clinical Not published

- Anti-HBV gene
therapy development

Pre-clinical [33–35,113–115]

- Non-viral vector anti-HBV
gene delivery

Pre-clinical [116,117]

- Viral vector anti-HBV
gene delivery

Pre-clinical [36,37,118,119]

5.1. HBV Vaccines

Discovery of the Australia antigen, now known as the HBsAg, in 1965 [120,121] was
particularly valuable for advancement of vaccines that comprise HBsAg or derivatives
of this antigen. Abundance of the envelope protein in serum of HBV chronic carriers
prompted initial investigation into use of extracts from individuals infected with the virus
as vaccines [122,123]. Earliest vaccines, purified from plasma of HBV-infected people, were
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licensed in 1982 and consisted of 22 nm subviral particles made up of HBsAg [124]. These
plasma-derived vaccines were successfully used to immunize hundreds of millions of
people throughout the world, including SA. However, although found to be safe, the risk
of transmitting pathogens and prions was a concern. This prompted production of recom-
binant HBsAg to use in vaccinations. To ensure appropriate eukaryotic post-translational
modification with optimal epitope configuration of recombinant HBsAg, eukaryotic yeast
cells (Saccharomyces cerevisiae) were used to produce the vaccine antigen [125,126]. These
recombinant vaccines were first licensed in the late 1980s; in SA and other parts of the
world, they rapidly replaced plasma-derived vaccines. Yeast-derived HBsAg remains the
most widely used antigen in vaccines against HBV and safely induces very good protection.
More than 95% of healthy infants, children, and young adults are protected from HBV
infection following immunization [127,128]. Viral vaccine escape mutants are rare because
of the compact HBV genome that has restricted sequence plasticity.

Vaccination programs were initially targeted to groups who were at high risk of HBV
infection [124]. However, it became clear that targeting high risk individuals had little
impact on the global burden of HBV-related disease. As a result, in 1991, the WHO rec-
ommended that HBV vaccination be globally included in the immunization programs of
all countries by 1997 [129]. After adopting this recommendation, together with the signifi-
cant support of the Global Alliance for Vaccination and Immunization (GAVI), significant
inroads have been made into limiting the spread of HBV infection [124]. GAVI provided
essential support to enable vaccination programs to be efficiently implemented in the poor-
est of countries. Impressively, by 2019, HBV vaccination was included in immunization
programs of 97% of the world’s countries. The best documented example of the effective-
ness of HBV vaccination was in Taiwan. In this country, the number of HBsAg-positive
individuals younger than 20 years decreased from 9.8% in 1984 to 0.6% in 2004, and there
has been an associated drop in HBV-related complications [130].

Typically, HBV vaccines are administered as a three-dose schedule [124,131]. Two
priming doses, given one month apart, are followed by a booster six months after the initial
dose. The WHO recommendation is that the first dose to be given within 12 hours of birth
to diminish mother-to-child transmission. This mode of spread was initially thought to
be unimportant in sub-Saharan Africa, but significant in east and southeast Asia and the
western Pacific islands. Although horizontal transmission among toddlers and children
is more significant, recent evidence indicates that perinatal spread during childbirth is
important in Africa [132]. Although the WHO recommends the HBV birth dose vaccine,
there has been slow implementation of HBV birth dose vaccination in SA and most of the
other African countries. In addition to epidemiological considerations logistical difficulties
with getting the vaccine to all newborns, especially when babies are not delivered at medical
facilities [133], limit implementation of HBV vaccination at birth.

Although implementing recommendations of the WHO has resulted in impressive
global HBV immunization [124], HBV infection continues to be a major global health
problem [134]. Improving prophylaxis and addressing shortcomings of existing vaccines
are a priority. Examples of limitations of current vaccines are diminished protection in
individuals who have other diseases, such as chronic renal insufficiency and HIV-1 infection,
and when vaccines are administered to individuals over 40 years of age [124,128]. The
requirement for 3 doses of the vaccine is also a problem because it imposes a logistical
burden, which may be particularly important in resource-constrained areas. Availability of
vaccines that require only one dose would simplify compliance and make implementation
of vaccination programs easier, especially in Africa. Administration of such vaccines at
birth would also contribute significantly to better prevention of HBV infections.

Given that most HBV chronic carriers mount poor immune responses to the virus,
and that currently licensed therapies rarely cure CHB, therapeutic vaccination is another
interesting line of investigation. With the emergence of the COVID-19 pandemic, con-
siderable effort has gone into developing new vaccine technologies. Important advances
have been made, which may have relevance to vaccination against HBV. These include use
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of mRNA-containing vaccines and recombinant adenoviral vectors expressing the Spike
protein of SARS-CoV-2 [135]. Efficient induction of humoral and T-cell human immune
responses provide prophylaxis against COVID-19. Current research in the AGTRU is aimed
at harnessing similar technology to prevent HBV infection. mRNAs encoding HBV antigens
are being formulated in lipid nanoparticles for use as vaccines. Moreover, recombinant
adenoviral vectors expressing proteins of HBV are being investigated as vaccines. Preclin-
ical evaluation is currently in progress to assess usefulness of single vaccine doses and
durability of immunity. Therapeutic enhancement of anti-HBV T-cell immune responses in
chronic carriers, without toxic hepatocyte killing, is another potential benefit of these new
approaches to vaccination.

5.2. Anti-HBV Gene Therapy
5.2.1. Gene Silencing

Discovery of the RNA interference (RNAi) pathway heralded a new paradigm in
programmable gene silencing [136]. The ease of repurposing the pathway, coupled with the
impressive potency of gene knockdown, has led to silencing being lauded as a promising
tool of gene therapy. The endogenous pathway is triggered by double-stranded RNA
intermediates, viz. primary microRNAs (pri-miRNAs), precursor miRNAs (pre-miRNAs),
and miRNA duplexes, to silence mRNA sharing complementary bases to these activators.
Naturally, pri-miRNAs are processed by the RNAi machinery to pre-miRNAs, which in
turn are processed to form the mature miRNA duplex. A guide strand is selected from
the miRNA duplex after entering the RNA-induced silencing complex (RISC). This guide
then directs the complex to partly complementary mRNA for silencing. By introducing
mimics of these intermediates into the pathway, it is possible to reprogram RISC to silence
any gene of interest. The potential for exploiting the pathway as a therapeutic modality
was immediately obvious and a concerted effort was undertaken to evaluate RNAi for
the inhibition of pathology-causing genes. HBV was no exception and researchers across
the world [137–143] and from SA [114,144] explored silencing HBV gene expression using
various RNAi activators (Figure 1). The AGTRU led the efforts on the continent to develop
RNAi-based therapies.

Because CHB is a life-long affliction, it was logical to pursue a therapeutic strategy that
allowed for long-term suppression of viral replication. Expression of RNAi activators from
DNA cassettes allows sustainable expression of the therapeutic sequence and fulfils the
requirement for long-term viral suppression. Initially developed gene silencing cassettes
entailed expression of short hairpin RNA (shRNA) sequences [145], which comprise a
double-stranded stem sequence joined with a single-stranded loop. As shRNAs are struc-
turally similar to pre-miRNAs, they mimic these RNAi intermediates and are processed
accordingly. Expressing anti-HBV shRNA sequences from DNA cassettes proved excep-
tionally efficacious as demonstrated by the AGTRU [114]. The authors targeted shRNAs to
the HBx ORF of the HBV genome, reasoning that the presence of this sequence at the 3′

end of all viral transcripts would allow their simultaneous silencing with a single RNAi
activator. This study was also one of the first to show expression of anti-HBV shRNA from
a recombinant adenoviral (AdV) vector in a clinically relevant murine model of HBV repli-
cation. In vivo delivery of the shRNA-expressing DNA cassettes to the livers of transgenic
mice effected 80–100% knockdown of viral gene expression, and inhibition was sustained
for up to 28 days after administration of a single dose of the AdVs.
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Figure 1. Gene therapy tools used for targeted disruption of HBV replication in South Africa.
(A) RNAi activators such as short hairpin RNAs (shRNAs), artificial primary microRNAs (apri-
miRNAs), and short interfering RNAs (siRNAs) targeting hepatitis B x (HBx) sequence were designed
and delivered using adenoviral vectors (AdVs), AdVs/lentiviral vectors (LVs)/adeno-associated viral
vectors (AAVs) and liposomes, respectively. (B) Transcription activator-like effector endonucleases
(TALENS) targeting Core or Surface and Transcription activator-like repressors (rTALEs) targeting
Surface were generated and delivered as naked plasmid DNA. Clustered Regularly Interspaced Short
Palindromic Repeats (CRISPR) with CRISPR-associated (Cas) RNA-guided nucleases (CRISPR/c as)
targeting Surface were designed and delivered using AAVs (Created with biorender.com).

Advances in the field of RNAi led to development of improved gene silencers, which
were based on structures of naturally occurring miRNA sequences. Artificial miRNAs,
as these sequences came to be called, represented the next generation of expressed RNAi
activators and exhibited improvements over expressed shRNAs. Artificial miRNAs are
designed to resemble natural miRNAs, which comprise imperfectly matched hairpin
structures, more closely. The AGTRU explored use of anti-HBV artificial pri-miRNAs
(apri-miRNAs) based on the structures of naturally occurring pri-miR-31 and pri-miR-
122 [113,146]. Anti-HBV shRNA sequences previously described by this group [114] were
redesigned to mimic the secondary structure of pri-miR-31 and pri-miR-122. Furthermore,
approximately 50 nucleotide sequences flanking natural pri-miR-31 and pri-miR-122 were
included in the apri-miRNA. The result was highly efficient RNAi activators that achieved
>80% knockdown of viral replication in cultured mammalian cells. As these activators
mimicked pri-miRNA, which are typically transcribed by RNA polymerase (Pol) II, they
could also be expressed from Pol II promoters. apri-miRNA cassettes are thus more versatile
than their shRNA counterparts, which are limited to expression from Pol III promoters.
The apri-miRNAs produced were processed efficiently and transcribed at much lower
levels than shRNAs, which limits potentially toxic interference with the endogenous RNAi
pathway. Saturation of the endogenous pathway from shRNA expression causes significant
toxicity and death in mice [147]. To enable efficient delivery to hepatocytes in vivo, anti-HBV
apri-miRNA-encoding cassettes were incorporated into AdVs and AAVs [36,37,119,148].
Delivery of the gene silencers with these vectors achieved potent (80–90%) and sustained
(up to 8 weeks) gene silencing in mouse models of HBV replication.

In addition to employing DNA expression cassettes to produce RNAi activators,
chemically synthesized short interfering RNAs (siRNAs) have also been explored by the
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AGTRU. Synthetic small interfering RNAs (siRNAs) typically contain ~21 perfectly matched
base pair double strands with 2 nucleotide 3′ overhangs that mimic miRNA duplexes. After
entering cells, siRNAs activate cytoplasmic RISC to reprogram the pathway. In contrast to
expressed RNAi activators, siRNAs are functional over a short period. Although siRNAs
have a short window period of silencing, this may still be useful for HBV therapy. The high
viral antigenemia common in CHB is thought to suppress the immune response to the virus,
allowing tolerance to the virus to build. By suppressing viral antigenemia, it is possible
to restore the immune response and eliminate tolerance to the virus [149]. This concept
has renewed interest in anti-HBV therapeutics that suppress viral antigenemia, even for a
short period of time. To achieve such an effect with chemically synthesized siRNAs, it is
imperative that the efficacy, safety, and stability of these molecules be optimized. In the
case of synthetic siRNAs, this is invariably achieved through use of chemical modifications.
The AGTRU in collaboration with research partners from the School of Chemistry at
their host institute as well as the Rega Institute for Medical Research at the Katholieke
Universiteit Leuven, Belgium described novel altritol-modified siRNAs targeted against
HBV [117]. Altritol-modified nucleosides contain a 6-carbon sugar moiety as opposed to
the naturally occurring 5-carbon ribose present in nucleosides. Altritol modification of the
3′ ends of the siRNAs was well tolerated and conferred favorable properties by reducing
immunostimulation while maintaining silencing efficacy. In collaboration with German and
French partners, the AGTRU also explored guanidinopropyl modification of chemically
synthesized siRNA [115,116]. Addition of the guanidinopropyl group to the 2′-O of the
ribose yielded modified siRNAs with increased stability, improved immune evasion, and
reduced off-target effects. Importantly improvements in physicochemical properties of
altritol- and guanidinopropyl-modified siRNA observed in cultured mammalian cells were
also observed to observed in transgenic HBV mice.

RNAi remains an important tool for gene silencing and work in SA, using expressed
and synthetic activators, demonstrates the potential of the technology for effectively treating
chronic HBV infection.

5.2.2. Gene Editing and Gene Modifiers

Drugs designed to disable or eliminate the episomal cccDNA could improve the
likelihood of achieving a CHB cure. Current therapies focus on decreasing hepatitis B
viremia by preventing new virion formation and secretion, or by blocking viral entry into
hepatocytes. However, these approaches do not target the source of viral replication and
persistence. Maintenance of the cccDNA as a minichromosome-like structure in long-lived
hepatocytes can lead to HBV reactivation, stressing the importance of developing gene
therapies that act directly on the cccDNA.

In SA, researchers have been exploring methods of disrupting, degrading, or silencing
cccDNA using gene editing tools, such as designer nucleases and epigenetic modifiers.
Transcription Activator-Like Effector Nucleases (TALENs) and Clustered Regularly Inter-
spaced Short Palindromic Repeats (CRISPR) with CRISPR associated (Cas) RNA-guided
nucleases have been used to cleave both integrated viral DNA and episomal cccDNA
(Figure 1) [33–35,150]. TALENs are engineered nucleases created by fusing a TALE DNA
binding domain to an endonuclease, typically derived from the catalytic region of the FokI
enzyme. To achieve targeted cleavage, TALENs are designed in pairs. Binding of a pair
of TALENs to the pre-defined DNA sequence aligns the endonuclease domains to enable
specific target cleavage and formation of a double-strand break (DSB). In the absence of
a homologous donor sequence, these DSBs are repaired by error-prone non-homologous
end joining (NHEJ) to result in insertions and deletions (indels). This approach can be
used to disrupt the HBV genome permanently and reduce viral fitness [33]. CRISPR/Cas
RNA-guided nucleases occur naturally in bacteria and archaea and serve as an adaptive
immune system of these organisms. Type II CRISPR/Cas systems have been tailored to
expedite gene editing strategies and are predominantly favored because of their simple
design concept. A guide RNA with sequence complementarity to the target site binds and
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subsequently recruits the Cas endonuclease to this site. Action of the endonuclease leads to
formation of a DSB. As with TALENs, errors introduced during NHEJ-mediated repair of
the DSB disrupt the viral genome [34].

Heterodimeric TALENs targeting the HBV surface, core, and polymerase genes were
first described by researchers at AGTRU in 2013 [33]. Surface- and core-targeting TALENs
demonstrated the highest antiviral efficiency as both achieved targeted mutation of HBV
DNA in vivo in a murine model of HBV replication. This effect was associated with signifi-
cant reductions in viral replication markers, including >90% loss of circulating HBsAg and
a three-fold decrease in intrahepatic HBcAg. Importantly, in vitro disruption of cccDNA
was achieved with surface-TALENs at frequencies of up to 35%. Recently, second and third
generation TALENs, which act as obligate heterodimers, have been described [35]. By
incorporating pre-defined mutations in the FokI endonuclease domains, heterodimeric but
not homodimeric TALEN pairs can interact and cleave their cognates. This effectively
reduces the likelihood of unintended off-target cleavage. Second-generation TALENs
targeting HBV surface and core demonstrated similar in vitro and in vivo antiviral effica-
cies when compared to their first-generation heterodimeric counterparts. Importantly the
second-generation gene editors demonstrated better specificity. Next-generation sequenc-
ing revealed a potential off target cleavage site in the intronic region of the phenylalanine
hydroxylase gene when using the core TALENs. The percentage disruption at this unintended
target was reduced when using the second-generation obligate heterodimers.

Anti-HBV CRISPR/Cas gene editing strategies using the Staphylococcus aureus Cas9
endonuclease (saCas9) have been shown to target, disrupt, and degrade integrated viral
DNA and cccDNA. A single guide RNA targeting the surface ORF (sgRNA-8) inhibited
viral replication across multiple HBV genomes (A1, A2 and D3). By using the smaller
saCas9 endonuclease, Scott and colleagues were able to package the sgRNA-8 and saCas9
into a single stranded AAV (ssAAV) vector. Delivery of the ssAAV-SaCas9-sgRNA-8 to
HBV-infected hNTCP-HepG2 cells caused a 55% reduction in secreted HBsAg levels and
a 60% decrease in viral particle equivalents (VPEs), with accompanying decreases (up
to 80%) of intracellular cccDNA and a four-fold loss of other HBV DNA forms. Interest-
ingly episomal cccDNA was eradicated in this model of infection, suggesting complete
degradation of the viral DNA. In HepG2.2.15 cells, which constitutively replicate HBV
from integrated greater-than-genome length sequences, similar reductions in markers of
viral replication were observed. Disabling indels were also observed in integrated HBV
DNA [34]. Importantly, this gene therapy approach highlights usefulness of the strategy to
inactivate viral replication at the source.

Targeted epigenetic engineering approaches have also demonstrated anti-HBV efficacy
and could be used to silence the cccDNA permanently [151]. Because viral and endogenous
gene transcription is similarly regulated by host–cell pathways, the minichromosome-like
structure of the cccDNA is amenable to epigenetic regulation. To test whether targeted
epigenetic modifications could impede viral replication, repressor TALEs (rTALEs) com-
prising a TALE DNA binding domain and Krüppel-associated box (KRAB) repression
domain were designed to bind to the surface open reading frame of HBV [152]. Reductions
in HBsAg (80–95%), viral mRNA (50–90%), and circulating VPEs (50–75%) were observed
in a murine model of HBV replication. These reductions correlated with a 50% increase in
methylation at the naturally occurring CpG island II of the HBV genome, specifically at
CpG position 38. In a clinical setting, methylation of HBV cccDNA at CpG island II was
associated with HBeAg-negative patients, suggesting increased methylation may inhibit
viral replication [153,154].

5.2.3. Gene Delivery

Research aimed at designing nucleic acid-based anti-HBV therapies has progressed
and promising candidates have been identified. However, challenges of delivering these
nucleic acids efficiently to target cells in vivo hampers progression to clinical evaluation.
Liver-targeted delivery systems in the form of non-viral vectors (NVVs) and viral vectors



Viruses 2022, 14, 1939 13 of 22

(VVs) have been developed and serve as valuable tools for gene therapy against HBV
(Figure 1). Cationic lipids and polymers are the most widely used NVVs. However, lack of
tissue specificity and the ability to form aggregates with serum proteins reduce transfection
efficiencies. Ease of functionalization overcomes some of these challenges. Studies showing
that NVV lipids or polymers can be targeted to the liver when linked to asialoglycoprotein
receptor (ASG-R, abundant on hepatocyte surface) ligands has given momentum to the
development of liver specific NVVs. Research in the Department of Biochemistry, Non-Viral
Gene Delivery Laboratory at the University of KwaZulu-Natal, has designed and tested sev-
eral ASG-R-targeted, highly stable, and safe NVVs. These include functionalized liposomes
and gold/selenium nanoparticles [155–158]. Recently designed lactobionic acid (ASG-R
ligand) gold/selenium nanoparticles resulted in improved transgene expression, high DNA
stability, and lower toxicity in liver-derived cell lines [158–160]. The demonstration that
synthetic nucleic acids, such as siRNAs, can be delivered with these ASG-R-targeting lipo-
somes is of significance to anti-HBV siRNA-based gene therapy [161]. Most important is the
demonstration by collaborating SA teams that cationic lipids conjugated to galactose and
stabilizing polyethylene glycol (PEG) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine
(DOPE) as a helper lipid efficiently deliver HBV targeting siRNAs to liver-derived cell lines.
The formulations also effectively inhibited HBV gene expression in vivo without obvious
adverse effects [162–164].

Unlike siRNAs, cassettes encoding nucleic acid therapeutics, such as shRNA, apri-
miRs, TALENs, and CRISPR/Cas sequences, should provide a sustained therapeutic effect
and are compatible with delivery using VVs. The high efficiency of gene transfer and
persistence for prolonged periods confer advantages on these genetically modified viruses
for nucleic acid-based therapy of CHB. HBV research has benefitted extensively from
the development of AdVs, lentiviral vectors (LVs), and AAVs. The application of AdVs,
LVs, and AAVs to deliver anti-HBV gene therapeutics has been extensively studied in
the AGTRU. The initial study engineered first generation AdVs, which still bear most of
the viral genes, to express HBV-targeting shRNAs or apri-miRs. These studies showed
profound liver-specific gene expression and reduction of HBV replication markers, albeit
with a strong AdV-induced immunity with short-term therapeutic effects [114]. Modifi-
cation of these AdVs with PEG reduced the inflammatory response, adaptive immune
response, toxicity, and prolonged therapeutic effects after a second dose [118]. To further
reduce the immune response activated by viral gene expression, later studies used gutless
or helper-dependent adenoviral vectors (HdAdVs) to express shRNAs or apri-miRs. These
studies demonstrated diminished immune stimulation by the vectors and prolonged ther-
apeutic effects [37,119]. Feasibility of using LVs for HBV-targeted gene therapy has also
been demonstrated [165]. Significant knockdown of HBV gene expression without obvious
adverse effects was observed after administering antiviral LVs to neonatal HBV transgenic
mice. The diminished HBV replication markers were demonstrated for the study period of
one year, which is approximately the normal lifespan of a mouse.

As a result of their favorable biosafety profile, AAVs are popular VVs and are well-
suited for HBV gene therapy [166]. The first studies using AAVs in the AGTRU delivered
apri-miR or CRISPR/Cas sequences to cultured cells and/or mice. An AAV8 vector
expressing apri-miR suppressed HBV gene expression in vitro and in vivo. In vivo efficacy
lasted for about ten months without obvious toxicity [36]. AAV2 vectors expressing Cas9
and an HBV-specific guide RNA resulted in reduction of HBV gene expression by up
to 95%. Importantly, 61% of on-target indels and only 0.05% of off-target indels were
detected [34]. Current studies using a synthetic ancestral AAV (Anc80) to deliver anti-HBV
apri-miR-encoding cassettes show similar efficacy to that observed with AAV8 [167].

6. Discussion

Subgenotype A1, the predominant strain circulating in SA, has been extensively charac-
terized and shown to have unique molecular characteristics with a high hepatocarcinogenic
potential. As we progress towards meeting the targets of HBV elimination, it is important
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that there is an awareness of the uniqueness of subgenotype A1. This is essential to diagnose
infection and design appropriate treatment strategies. Mutations identified in HBV from
HCC patients may provide cost-effective biomarkers for prioritizing HBV-infected patients
for treatment. This is important in sub-Saharan Africa, where there are both resource and
capacity limitations. Moreover, it is imperative that individuals infected with subgenotype
A1 are well represented in clinical trials aimed at evaluating new antiviral modalities.

Increased HBV replication in HBV/HIV co-infected mothers is likely to increase
perinatal HBV transmission. Studies have shown that HIV co-infection increases carriage
of HBeAg and increases HBV replication in pregnant women [105,106]. This poses an
increased risk of perinatal transmission of HBV from infected mothers, which is especially
problematic when diagnosis of HIV is not timeous, and ART not provided [168]. This
risk can be mitigated by antenatal testing for both HIV and HBV infection. Antenatal
screening of HIV is already performed in the public sector and analysis has been performed
showing that the same can be done cost-effectively for HBV [169]. Furthermore, a study
from the Western Cape province of SA showed that pregnant women are amenable to
HBV screening [170]. Testing could be enhanced by using combination rapid tests for
simultaneous diagnosis of both HBV and HIV infections. Such combination rapid tests are
already available, although not yet pre-approved by the WHO [171]. Through screening
and identifying HBV-infected pregnant women, TDF-based therapy can be used to decrease
the likelihood of perinatal transmission.

SA has not yet implemented a birth dose vaccine against HBV, despite recommen-
dations of the National Guidelines for the Management of Viral Hepatitis published in
2019 [78]. The rationale behind the old but currently used schedule is that the first dose
of vaccine administered at six weeks protects the neonate by preventing subsequent hori-
zontal HBV transmission in infancy which historically has been the usual route of infant
transmission in SA. Risk of perinatal mother to child transmission of HBV during the first
six weeks of life is low if HBV replication is low in the infected mother. It is also thought
that passively transferred maternal antibodies protect infants before making their own anti-
bodies in response to HBV immunization [172]. Strategies using viral vectors and mRNA
technology to develop anti-viral vaccines have shown promise [173–175]. Developments in
these novel technologies may well influence vaccination strategies in SA and other parts of
the world.

Failure of the current therapies to eliminate cccDNA calls for novel strategies to clear
HBV infection. Newly designed gene editors, such as TALENs and CRISPR/Cas, may
eradicate cccDNA and offer a potential for sterilizing cure. However, progress of these
therapies to clinical testing has been delayed. Finding safe and efficient delivery methods
are essential for clinical application of the technology. Considerable research efforts are
going into optimizing liver-targeted NVVs and VVs, which augurs well for achieving
the goal of eradicating HBV infection. Such efforts should be supported, initiated, and
implemented in sub-Saharan Africa, where the need is greatest, to ensure human and
infrastructural capacity development, independence, and sustainability.

Research in HBV and HBV/HIV infection epidemiology has made significant progress
and is well poised to contribute to SA’s guidelines and improve hepatitis B management.
Although results from using gene therapy against HBV are very encouraging, a few hurdles
need to be overcome before clinical testing (Table 2). Access to physiologically relevant
HBV infection models such as the chimpanzee model is made difficult by ethical concerns
and/or high cost. Transgenic mice and murine hydrodynamic injection models may be
used to simulate HBV replication in vivo. However, all stages of the infection cycle, notably
entry of the virus into hepatocytes and formation of cccDNA, are not reproduced. Viral
vector-mediated prolonged expression of gene editors in the host may also be associated
with off-target effects and toxicities in a clinical setting. Hence, current efforts are focusing
on developing HBV models that will resemble the entire HBV replication cycle and NVVs
to deliver gene editor-encoding mRNA.
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