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Ultrafast coherent control of a hole spin qubit in a
germanium quantum dot
Ke Wang 1,2,8, Gang Xu1,2,8, Fei Gao3, He Liu1,2, Rong-Long Ma1,2, Xin Zhang1,2, Zhanning Wang4, Gang Cao1,2,

Ting Wang 3, Jian-Jun Zhang 3✉, Dimitrie Culcer 4, Xuedong Hu5, Hong-Wen Jiang6, Hai-Ou Li 1,2✉,

Guang-Can Guo1,2 & Guo-Ping Guo 1,2,7✉

Operation speed and coherence time are two core measures for the viability of a qubit. Strong

spin-orbit interaction (SOI) and relatively weak hyperfine interaction make holes in germa-

nium (Ge) intriguing candidates for spin qubits with rapid, all-electrical coherent control.

Here we report ultrafast single-spin manipulation in a hole-based double quantum dot in a

germanium hut wire (GHW). Mediated by the strong SOI, a Rabi frequency exceeding

540MHz is observed at a magnetic field of 100 mT, setting a record for ultrafast spin qubit

control in semiconductor systems. We demonstrate that the strong SOI of heavy holes (HHs)

in our GHW, characterized by a very short spin-orbit length of 1.5 nm, enables the rapid gate

operations we accomplish. Our results demonstrate the potential of ultrafast coherent control

of hole spin qubits to meet the requirement of DiVincenzo’s criteria for a scalable quantum

information processor.
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Perfecting the quality of qubits hinges on high fidelity and
fast single- and two-qubit gates. Electron spin qubits in
Silicon (Si) quantum dots (QD) are considered promising

building blocks for scalable quantum information processing1–5,
with long coherence times and high gate fidelities already
demonstrated6–14. The conventional approach of using magnetic
fields to operate single-qubit gates results in relatively low Rabi
frequencies12, spurring the development of electrically driven
spin resonance based on the spin–orbit interaction15 as an
alternative. This all-electrical approach promises faster Rabi
rotations and reduced power consumption, as well as paving the
way towards scalability since electric fields are much easier to
apply and localize than magnetic fields. In a Si QD, with relatively
weak intrinsic SOI, a synthetic SOI has been introduced to pro-
vide fast and high-fidelity gates: a Rabi frequency above 10MHz
and gate fidelity of 99.9% have been reported in an isotopically
enriched dot6. However, the magnetic field gradient enabling the
synthetic SOI also exposes the system to charge-noise-induced
spin dephasing6,16, posing a formidable technical challenge. As
such, the search for a high-quality spin qubit with fast manip-
ulation and slow decoherence remains open17.

Hole spins provide an intriguing alternative for encoding
qubits as compared to conduction electrons18–21, in particular in
group IV materials such as Si and Ge22–34. Thanks to their
underlying atomic P orbitals, which carry a finite angular
momentum and have odd parity, holes experience an inherently
strong SOI and weak hyperfine interaction35,36. The strong spin-
orbital hybridization of hole states opens the door to fast all-
electrical spin control. To date, several works on hole spin qubits
have been reported in a multitude of systems, such as Si metal-
oxide-semiconductor (MOS)37, undoped strained Ge quantum
well38,39 and GHW40 structures, with Rabi frequencies in the
range of 70–140MHz. A recent experiment in Ge/Si core/shell
nanowire has reached a very fast Rabi frequency of 435MHz,
with a short spin-orbit length of 3 nm41.

Here we advance the ultrafast control of hole spin qubits by
performing faster spin rotations than any reported to date. By
applying microwave bursts to one gate of a GHW hole double
quantum dot (DQD)31 and utilizing Pauli spin blockade (PSB)
for spin-to-charge conversion and measurement, we observe
multiple electric dipole spin resonance (EDSR) signals in the
DQD. At one of these resonances, we achieve a Rabi frequency
exceeding 540 MHz, with a dephasing time of 84 ns and a
quality factor of ~ 45. This ultrafast driving is enabled by a very
strong SOI, with an equivalent hole spin–orbit length of 1.5 nm.
The driving speed is a strong function of the EDSR peaks we
study, hence even higher quality factors are likely as qubit
encoding is optimized.

Results
Measurement techniques and EDSR spectrum. A scanning
electron microscope (SEM) image of the DQD device is shown in
Fig. 1a (Supplementary Fig. 1a shows a schematic of the device).
The device consists of an insulating layer and five electrodes above a
GHW grown using the Stranski-Krastanow (S-K) method42,43. The
charge stability diagram of the DQD is mapped out and given in
Supplementary Fig. 1b, with a zoom-in to one particular triple point
given in Fig. 1b. Charge occupations of the DQD are about 5 holes
in the left dot and 10 holes in the right dot. When measuring the
current through the DQD at a d.c. bias of 3 mV (Fig. 1b and
Supplementary Fig. 1c) and−3mV (Supplementary Fig. 1d), a clear
signature of PSB is observed: The zero-detuning current drops to
1 pA in the forward biased (Vsd= 3mV), blocked configuration
(dash base line of the triangle), compared to 30 pA (Vsd= 3mV) in
the reversed biased, non-spin-blocked regime. While PSB44 is

usually detected in the (0,2) or (2,0) to (1,1) charge configurations,
it has been observed in other charge configurations as well45. With
this in mind, we conjecture that the transition we observe occurs
near the (n+ 1, m+ 1) to (n, m+ 2) charge transition, which can
be equivalently described in terms of two-hole states near the (1,1)
to (0,2) transition.

In the PSB regime, with a magnetic field B perpendicular to the
substrate, we generate EDSR by applying a microwave pulse to
gate R. The a.c. electric field displaces the hole wave function
around its equilibrium position periodically, leading to spin
rotation mediated by the strong SOI (Fig. 1d). When the
microwave frequency matches the resonant frequency of the spin
states and causes spin flips, PSB is lifted and an increase in the
transport current is observed (a pure orbital transition without
spin flip cannot lift the PSB and cannot affect the current). By
mapping out the current as a function of B and microwave
frequency f, we find multiple spin resonances, as shown in Fig. 1c
and Supplementary Fig. 2.

The major observed resonances in Fig. 1c are well described by a
two-hole model built upon a single singlet in the (0,2) charge
configuration (S02) and two-spin states |↓↑〉, |↑↓〉), |↑↑〉 and |↓↓〉
in the (1,1) charge configuration (Supplementary Note 2), as
evidenced by Fig. 1e, f. The large number of resonances and
different slopes in Fig. 1c are clear hints of different g-factors for the
two dots. Indeed, to generate the theoretical spectrum in Fig. 1f, we
use g-factors of 7 and 3.95 for the two dots. With such different
g-factors30,31,46, the two-spin states in the (1,1) regime should be
spin product states for any magnetic field above 0.1 T. In the
following, we focus on two of these resonances, denoted as mode A
and mode B in Fig. 1c. Within our model, the corresponding
transitions involve single-spin-flip in the left (A, between |↓↓〉 and
|↑↓〉) and the right (B, between |↓↓〉 and |↓↑〉) dot.

Rabi oscillations. To demonstrate coherent control of a hole spin
qubit, we apply a three-step pulse sequence on gate R (Fig. 2a) to
generate Rabi oscillations for mode A at B=100 mT. The prob-
ability of a parallel spin state (spin blocked) or anti-parallel state
(unblocked) is measured by the averaged current through the DQD
as a function of the microwave burst duration τburst and microwave
frequency f (Fig. 2b). We can resolve up to seven oscillations within
180 ns, and the standard chevron pattern helps us to pinpoint the
qubit Larmor frequency at 7.92GHz. To investigate how fast the
qubit can be driven coherently, we vary the microwave power P of
the driving field from 0 dBm to 9 dBm and measure the Rabi fre-
quency of mode A (Fig. 2d). Rabi oscillations at f= 7.92GHz with a
fit to A � cosð2πf Rabiτburst þ φÞ � expð�ðτburst=TR

2 Þ
2Þ þ I0 (An offset

of 0.5 pA is set between two oscillations for clarity) are shown in
Fig. 2c at three different microwave power P=−5, 0, 6 dBm. At the
strongest driving with P= 9 dBm (Fig. 4b), we achieve a Rabi fre-
quency of fRabi= 542 ± 2MHz for mode A and 291 ± 1MHz for
mode B.

Free evolution and decoherence. Decoherence determines the
quality of the hole spin qubit. To evaluate the dephasing time T*

2 for
mode A, we perform a Ramsey fringe experiment6,7,37–40, with the
pulse sequence shown in the top panel of Fig. 3f. A pattern of
Ramsey fringes is shown in Fig. 3a when we vary the waiting time τ
and microwave frequency detuning Δf= f− f0 (f0= 7.92 GHz is the
Larmor frequency). The fringes remain visible up to τ ~ 60 ns, giving
a qualitative indication of the dephasing time. We perform a Fast
Fourier Transformation (FFT) of the Ramsey pattern in Fig. 3b,
where the Ramsey oscillation frequency (fRamsey) equals Δf. Alter-
natively, two-axis control can be achieved by varying the relative
phase Δφ of the microwave modulation between the two pulses6,15,37.
The results of relative phase (Δφ) in cycles identify the control of the
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rotation axis in addition to Δf (Fig. 3c). From the Ramsey experiment
of mode A, dephasing times of T*

2 ¼ 84 ± 9 ns and T*
2 ¼ 42 ± 4 ns

are extracted at P=−10 dBm (Fig. 3d) and P= 9 dBm (Fig. 3e),
respectively. The former is a better representation of hole spin
dephasing, while the latter reflects coherence degradation from the
onset of microwave-induced heating. The measured coherence times
can be extended by performing a Hahn echo pulse sequence. For
instance, the coherence time is extracted to be T*

2 ¼ 66 ± 6 ns in
mode B at P= 0 dBm (Fig. 3f), while an enhanced coherence time of
523 ns is obtained using Hahn echo (Fig. 3g).

Spin–orbit coupling strength. Unlike z-rotation speed, which is
simply determined by the control microwave, i.e., frequency
detuning, the x-rotation speed for the hole spins is determined by
SOI strength together with the strength of the driving electric
field22. With a three dimensional confinement (with z-direction
confinement much stronger than the other two dimensions,
Ly= 40 nm >> Lx >> Lz) and an out-of-plane magnetic field, the
lowest states in the subspace spanned by the spin-3/2 hole states
can be calculated, yielding states that are 95% HH (Supplemen-
tary Note 9). With the relatively small number of holes per dot
(5–10), we attribute the manipulated spin states to be HH
throughout the manuscript. The EDSR signals we observe are
thus mediated by the strong SOI of 2D heavy-holes.

The leading SOI for a 2D HH gas is the Rashba term47

Hso ¼ iα2ðk3þσ� � k3�σþÞ ð1Þ
where σ±= (σx± iσy)/2, k±= kx± iky and the Rashba constant α2
arises from the spherical component of the Luttinger

Hamiltonian48. We have determined that the cubic-symmetry
term ∝ α3 is negligible in a nanowire, being an order of
magnitude smaller (Supplementary Note 9). We have performed
a single-hole model calculation with in-plane confinement of an
asymmetric harmonic potential Vðx; yÞ ¼ 1

2mω2
xx

2 þ 1
2mω2

yy
2. By

projecting Hso onto the eigenstates of the 2D harmonic oscillator
we obtain the transition matrix element for Rabi oscillations:

hf Rabi ¼ gμBB � ax
lso

� eEacax
_ωy

ð2Þ

where ax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_=ðm*ωxÞ
p

is the transverse QD size, g the Lande
g-factor for a single spin, μB the Bohr magneton, B the static
magnetic field, m* the Ge HH effective mass, Eac the effective
electric field at the QD generated by the microwave pulses applied
to gate R, and lso∝ 1/α2 the spin-orbit length defined in the
Supplementary Note 10.

We can obtain the spin–orbit coupling strength according to
Eq. (2) from observations of Rabi oscillations of both mode B
(Fig. 4a and Supplementary Fig. 7.1) and mode A (Fig. 4a and
Supplementary Fig. 6) in the range of P ≤ 9 dBm. In mode A, nine
oscillation periods are observed within 16 ns at P= 9 dBm
(Fig. 4b), with a Rabi frequency of fRabi= 542 ± 2MHz at
f= 7.92 GHz. When the microwave power is further increased
(Supplementary Fig. 6b, c), photon-assisted tunneling (PAT)
limits the detection of coherent control at higher Rabi
frequencies6,7,15,19,20. Replacing Eac (Supplementary Fig. 8) with
P in Eq. (2), spin-orbit lengths of 1.5 nm and 1.4 nm are obtained
by fitting the linear dependence of fRabi on Eac in mode A and B,
respectively, corresponding to a strong spin-orbit coupling
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Fig. 1 Experimental setup and EDSR spectrum. a Scanning electron microscope image of the DQD device. Magentas metals are ohmic contacts while
gates used to tune different potentials of DQDs are highlighted with yellow (L, M, and R). Gate L (R) produces the confinement potential for the left (right)
dot. The tunnel coupling between the two dots is controlled by gate M. Microwave pulses are applied via gate R. b A conductance triangle of the DQD at
Vsd= 3mV. Due to the weak signal of the small current, we mark the transitions of the triangle by blue dashed lines while the arrow indicates the position
of the detuning ε= 0 (the energy difference between the left dot and the right dot) at the base line of the triangle. A suppressed current of ~1 pA is
observed, which can be lifted by spin resonance. Points R, I, and M mark the readout, initialization and manipulation positions respectively. Inset: a line
trace at VL= 0.215 V. c EDSR spectrum, measured by applying a continuous microwave with a power of −15 dBm at the point R/I. The circle and square
symbols show the working points for subsequent experiments, corresponding to a Larmor frequency ~8 GHz. d Schematic of spin-orbit-coupling-mediated
spin flip: the microwave electric field generated by the gate creates oscillatory displacements of the hole wave function (Δr) and its energy. As described in
our model, Δr makes contribution to the energy shift mediated by the spin-orbit coupling Δso. Such orbital dynamics lead to spin flip with the help of SOI.
e Other related resonances are colored in grey in f (see details in Supplementary Note 2, EDSR spectrum). f Calculated EDSR spectrum from our effective
two-hole model with g-factors of left and right dot of gL= 7 and gR= 3.95. The two highlighted resonances (purple, yellow) correspond to spin-flips
between |↓↓〉 and |↓↑〉/|↑↓〉, indicated by the arrows in the energy level diagram e.
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strength of α2 ~ 680 meV·nm3. Due to the smaller a.c. the field in
the right dot compared to the left dot (Supplementary Note 6)
and the absence of a low-energy intermediate state (Supplemen-
tary Note 2), mode B shows a slower speed of Rabi rotation
compared to mode A at the same microwave power even though
the spin–orbit coupling strengths are similar. Notice that while
spin–orbit length is a concept more appropriate for free carriers,
it is nonetheless useful for comparing different systems. For
example, for strongly spin-orbit coupled conduction electrons
confined in InAs quantum dots of similar size to our dots, typical
spin-orbit length ranges from 100 to 200 nm49. In comparison,
our hole system has, inherently, a much stronger spin-orbit
coupling (thus a much smaller lso), which is the determining
factor for the ultrafast operation of our qubit.

Discussion
Ultrafast control of hole spins has also been achieved in a Ge/Si
core/shell nanowire41, though that hole system is quite different
from ours. The key difference stems from the respective geome-
tries. Our GHW has a confinement potential that is much
stronger in one direction, akin to a quantum well, for which
theory predicts a spin-3/2 (i.e. ‘heavy hole’) ground state. Ge/Si
core/shell nanowires have cylindrical symmetry, where theory
predicts a spin-1/2 (‘light-hole’) ground state5. Due to possible
mass reversal, the magnitude of the effective mass is not a reliable
indicator of spin character. On the other hand, the two systems

do share the feature of a strong spin–orbit coupling, which
enables fast control.

The large Rabi frequencies in our system are achieved with a
small driving electrical field ~104 V/m, compared to ~106 V/m
static electrical field used for QD confinement (Supplementary
Fig. 8). We thus attribute the large Rabi frequencies of both mode
A and B to a large value of α2. The particularly large Rabi fre-
quency in mode A may have been enhanced by the low-energy
excited state included in our model (Supplementary Note 2 and
10), a fact that has previously been exploited to enhance spin-
electric-field coupling50,51. To obtain a deeper understanding of
such strong spin–orbit coupling, anisotropy spectroscopy would
be a viable method to reveal the underlying mechanisms46,52.
Even though the Rabi frequency of 540MHz is limited by
unwanted PAT and heating effects at high microwave power, we
believe it is still not the upper bound for the Rabi frequency of a
GHW hole spin qubit. For instance, faster operation is possible if
another branch of EDSR with a larger Larmor frequency can be
identified in the DQD. A particular example is the transition
between |↓↓〉 and |↑↑〉, which can be observed in our system
(brown in Supplementary Fig. 2a). This spin-flip transition cor-
responds to a larger energy splitting compared to mode A and
mode B at the same magnetic field and could result in a larger
Rabi frequency as EDSR frequency is proportional to Zeeman
splitting. Moreover, faster Rabi oscillation can be achieved by
changing the manipulation position. Our test results show that
Rabi frequency can be increased from 63MHz to 111MHz by
switching the manipulation position from M2 to M1 (Supple-
mentary Fig. 4). We are thus optimistic that even faster Rabi
operation is achievable after optimization.

A high-quality qubit requires both fast manipulation and slow
decoherence. We have thus investigated dephasing for both modes
A and B (Supplementary Fig. 6d and Fig. 3f). The dephasing
rate appears approximately uniform across the two modes, so that
the qubit quality factor Q ¼ 2f RabiT

Rabi
2 is roughly determined by

the Rabi frequency of the different modes. We thus obtain a lower
bound estimate of the quality factor ~ 45 using fRabi= 542 MHz and
T*
2 ¼ 42 ns at P= 9 dBm. This value predicts a fidelity of the π gate

to be e−1/Q= 97.8%. A benchmark for Rabi frequency of QD spin
qubits is set in Supplementary Fig. 10. Our hole spin qubit has one
of the fastest Rabi frequency, with a quality factor around 45 that we
believe can be further improved.

In conclusion, we have achieved ultrafast spin manipulation in
a Ge HW. We report a Rabi frequency of up to 540MHz at a
small magnetic field of 100 mT, and obtain a dephasing time of
84 ns from a Ramsey fringe experiment. A hole spin qubit with a
quality-factor of 45 is thus realized in our experiment. As
dephasing appears to change little across different modes, higher-
quality qubits could be achievable for state combinations with
stronger spin–orbit coupling. We report a small spin-orbit length
in a smaller Ge double quantum dot compared to existing work
on GHW in the literature40 with narrower electrodes. We attri-
bute the ultrafast control of a hole spin qubit that we have
observed to an overall strong spin-orbit coupling, possibly assis-
ted by a nearby excited state, even though the relative smaller
longitude dot size (along y) may have reduced the Rabi frequency.
In other words, our results demonstrate that hole spins in GHW
QDs are intriguing candidates for semiconductor quantum
computing, providing the ability of all-electrical ultrafast control
without the need for a micromagnet13 or a co-planar stripline14.

Methods
Device fabrication. Our hut wire was grown on Si (001) by means of a catalyst-
free method based on molecular beam epitaxy. A Ge layer (1.5 nm) was deposited
by S-K growth mode on a Si buffer layer (100 nm). A 3.5-nm-thick Si cap was then
grown on top of the Ge layer to protect the nanowire with a width of 20 nm
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Fig. 2 Ultrafast coherent spin control of mode A. a Schematic
representation of the spin manipulation cycle and corresponding gate-
voltage (VR) modulation pattern. The spin state is first initialized at point I
in the PSB regime (Fig. 1b). A pulse then detunes the state to point M in the
Coulomb blockade regime for spin manipulation. During this step, a
microwave burst with a duration of τburst is applied to generate spin rotation
via EDSR. Afterwards, the system is shifted from Coulomb blockade regime
back to spin blockade regime at point R for readout. b At an external
magnetic field of B= 100mT, spin oscillation is observed by sweeping the
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Each data point is averaged over 20 repetitions. c Rabi oscillations at
f= 7.92 GHz with a fit to A � cosð2πfRabiτburst þ φÞ � expð�ðτburst=TR

2Þ
2Þ þ I0

(An offset of 0.5 pA is set between two oscillations for clarity). Rabi
frequencies are 112 ± 2, 202 ± 2 and 393 ± 2 MHz from bottom to top. We
correct the data by removing the background current I0. Similar results for
mode B are shown in Supplementary Fig. 7.1. To mitigate the effects of
charge noise, we average the current over 100 repeated cycles for each
data point (Supplementary Fig. 5). d Rabi oscillations under different
microwave power P.
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(Details in Supplementary Fig. 1a). The dot size along x direction of ax= 5 nm is
obtained based on the ground state calculation. The length of our wire can be
longer than 1 μm, although a 500 nm wire is sufficient for our DQD device. On
both ends of the wire, two 30-nm-thick palladium electrodes were defined as the
ohmic contacts. A layer of aluminum oxide (25 nm) was then deposited on top of
the nanowire and ohmic contacts as an insulator. Three 30-nm-wide Ti/Pd elec-
trodes are deposited to generate the DQD potential in the wire.

Experimental setup. The experiments were performed in an Oxford Triton
dilution refrigerator at a base temperature of 10 mK. The sinusoidal waves from the
output of the arbitrary waveform generator Keysight M8190A are inputted to I/Q
ports of the vector source Keysight E8267D in order to generate the modulated
sequences for spin control. Combined with pulses from M8190A, these sequences
are then transmitted by a semi-rigid coaxial line connecting to gate R, where the
total attenuation is 36 dB. As shown in Fig. 2a, we apply two-stage pulses to gate R
for spin initialization, control and readout. The length of one cycle is fixed at 640 ns
and 320 ns of it is for spin control. The average transport current is measured by a
digital multimeter after a low-noise current preamplifier SR570.

Data availability
All the data that support the findings of this study are available from the corresponding
author upon reasonable request.
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