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Exome-wide rare variant analyses 
of two bone mineral density 
phenotypes: the challenges of 
analyzing rare genetic variation
Jianping Sun1,2, Karim Oualkacha3, Vincenzo Forgetta   2, Hou-Feng Zheng4,5, J. Brent 
Richards   1,2,6, Daniel S. Evans7, Eric Orwoll8 & Celia M. T. Greenwood   1,2,6,9

Performance of a recently developed test for association between multivariate phenotypes and 
sets of genetic variants (MURAT) is demonstrated using measures of bone mineral density (BMD). 
By combining individual-level whole genome sequenced data from the UK10K study, and imputed 
genome-wide genetic data on individuals from the Study of Osteoporotic Fractures (SOF) and the 
Osteoporotic Fractures in Men Study (MrOS), a data set of 8810 individuals was assembled; tests of 
association were performed between autosomal gene-sets of genetic variants and BMD measured 
at lumbar spine and femoral neck. Distributions of p-values obtained from analyses of a single BMD 
phenotype are compared to those from the multivariate tests, across several region definitions and 
variant weightings. There is evidence of increased power with the multivariate test, although no new 
loci for BMD were identified. Among 17 genes highlighted either because there were significant p-
values in region-based association tests or because they were in well-known BMD genes, 4 windows in 
2 genes as well as 6 single SNPs in one of these genes showed association at genome-wide significant 
thresholds with the multivariate phenotype test but not with the single-phenotype test, Sequence 
Kernel Association Test (SKAT).

The massive advances and cost decreases in sequencing technologies have led to identification of millions of 
rare minor alleles (defined here as those minor allele frequency (MAF) less than 0.05). However, power to detect 
associations between complex traits and such genetic variants is low, due to the small number of individuals who 
carry such variants. Set-based tests have been proposed to try and improve power by jointly testing association 
with multiple rare variants in a pre-defined set. In set-based analyses, SNPs are assigned to SNP sets by forming 
linkage disequilibrium (LD) blocks, using sliding windows or on the basis of some meaningful biological criteria 
(genomic features); e.g., genes or pathways1. Many different set-based methods have been proposed, such as 
burden tests2,3, variance component score test4, the combination of these two types of tests5,6, and many others7.

Despite the potential for improved power of set-based methods, statistical power is often limited due to the 
complex way that genotypes map to the phenotypes, to the complex networking among factors that influence 
the etiology of diseases8,9, and also because picking the genomic set for the test is quite challenging since it is 
usually unclear which variants should be included. The best way to improve power is, of course, to enlarge sample 
sizes, and for feasibility reasons, this is often achieved by combining participants from different studies together, 
either directly or through the use of meta-analysis10. Improvements in power can also be achieved through using 
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imputation: ungenotyped variants can often be accurately estimated when the genotyped variants are used as a 
skeleton framework for imputation against a large panel of individuals who have been sequenced11.

Most currently used rare-variant tests analyze one phenotype—that is, they focus on the association between 
a set of rare variants and a single phenotype. However, multiple correlated phenotypes are often collected. 
Therefore, there is also potential for increasing power by capturing phenotypic correlations and their relation-
ships to associated genetic variants. Recently, several multivariate rare-variant association tests have been devel-
oped12–14, and these authors have shown that multivariate tests are generally more powerful than the univariate 
ones by accounting for existing pleiotropic effects15 as well as the correlations among multiple phenotypes.

In this paper, we use a well-studied phenotype, bone mineral density (BMD)16,17, to investigate the potential 
benefits associated with a multivariate-phenotype analysis of correlated BMD phenotypes and associations with 
genetic variation using set-based methods. To create a data set with reasonable power for rare-variant analyses, a 
single data set was created by combining individual-level data from three large cohorts: whole-genome sequenc-
ing data from a subset of the UK10K project18 (http://www.uk10k.org/ and www.gefos.org), and genome-wide 
genotyping data that had undergone imputation from the Study of Osteoporotic Fractures (SOF)19 (http://sof.
ucsf.edu/interface/) and Osteoporotic Fractures in Men (MrOS) Study20,21. Tests of association between genetic 
variation in the genetic regions and BMD are performed with a recently developed multivariate rare-variant 
set-based association test (MURAT)12 that is built on a mixed effect model, and the well-known single phenotype 
Sequence Kernel Association Test (SKAT) test4, which is derived similarly from a mixed effect model. We first 
perform an exome-wide gene-based analysis, and then study more intensively some selected candidate genes.

Results
Genome-wide analysis.  To assess the impact on power in a genome-wide analysis, we applied region-
based tests of association for all genes using SKAT, for the BMD phenotypes at two positions: lumbar spine (LS) 
and femoral neck (FN), separately, as well as using MURAT for a joint analysis of both phenotypes. Analysis 
was performed on 19,052 genes, but since some genes were extremely large (greater than 150 kb), we divided the 
large genes into smaller pieces (called gene pieces), leading to a total of 24,333 regions for analysis (Supplemental 
Table 1). The number of genetic variants in these gene pieces varied substantially from only 1 up to 2898 variants 
(Supplemental Figure 1).

Figure 1a shows QQ-plots of p-values for these primary results with equal weights applied to all genetic 
variants. The distributions of p-values from univariate and multivariate analyses demonstrate fairly substantial 

Figure 1.  Q-Q plots for genome-wide gene piece analysis with three different variant weights, where the 
expected quantiles (after -log10 transformation) are shown on the horizontal axes and the -log10 p-values on 
the vertical axis. (a) Identical weights. (b) Weights based on a Beta (1,25) distribution. (c) Weights based on a 
Beta (0.5, 0.5) distribution. SKAT-FN denotes using SKAT to test the femoral neck BMD; SKAT-LS represents 
SKAT analysis results for lumbar spine BMD.

http://www.uk10k.org/
http://www.gefos.org
http://sof.ucsf.edu/interface/
http://sof.ucsf.edu/interface/
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deviations from the line of expectation at the left of Fig. 1, suggesting either that there could be a large number 
of regions each contributing a small amount to BMD, which is similar to a QTL infinitesimal model22, or that 
there is some population stratification for which we have not fully adjusted. All analyses included, among the 
covariates, the first 5 principal components derived from the genetic data to account for potential confounding 
by population substructure. A scree plot of the variance explained by the principal components shows that the 
first 5 components capture more variability than the remainder (Supplemental Figure 2). Although we recognize 
that additional components may have improved the QQ-plot fits, our focus here was to compare multivariate 
and univariate analyses, and we do not feel that the comparisons would be altered by adding additional principal 
components because both analyses used the same principal components set.

To assess whether the result was sensitive to the weighting of variants within a region, we repeated the 
genome-wide analysis with two additional weighting schemes. Firstly, variants were weighted following the 
default choice in SKAT where the weights are assigned based on the probability density of a Beta (1, 25) distri-
bution of the MAF (Fig. 1b), i.e. the square root of the weight for the jth variant equals beta(MAFj,1,25)), where 
MAFj is the MAF for the jth variant, and beta(x, α, β) is the probability density function for a random variable, x, 
coming from beta distribution with parameters α and β. Then a third weight was defined by assuming the MAF 
follows a Beta (0.5, 0.5) distribution (Fig. 1c), where Beta (0.5, 0.5) is defined similarly to Beta (1, 25). The degree 
of deviation of the QQ plots from the line of expectation varies with the choice of weighting function, with the 
largest test statistics appearing in the analysis with identical weights, and the smallest deviations seen with Beta 
(1,25) weights. It has been previously shown that rare variants are under different selection pressure, and hence 
may be differentially affected by population structure23,24. In fact, larger population differences are expected for 
rare variants. However, it is also true that power is much better for common variants, and the identical weight 
analysis gives the most weight to such SNPs. Therefore, the larger deviation seen in the identical weight analysis 
suggests that the QQ plot deviations may be largely driven by BMD associations rather than population structure.

Near the top of Fig. 1a, the QQ plot for MURAT shows a small increased deviation from the line of null expec-
tation, when compared to the SKAT results, and this suggests potential increases in power for some genes. This 
finding is attenuated with the other weighting schemes (Fig. 1b and c). It is worth noting that the most significant 
gene pieces in the analysis with identical weights, at the very top of Fig. 1a, are identified by the multivariate 
approach with the MURAT test.

To properly interpret the statistical significance of the SKAT results relative to MURAT, the p-values 
from SKAT need to be adjusted for the fact that two phenotypes were analyzed separately. However, the two 
single-phenotype test results can be expected to be correlated since the two phenotypes in the combined data set 
are quite correlated (r = 0.64). We performed permutation analysis of the phenotypes versus the genotypes and 
repeated the region-based analyses on chromosome 9 with different weightings. Using the extrapolation method 
in Xu et al.25, we estimated the genome-wide significance threshold at 7.51 × 10−7 for MURAT and 1.12 × 10−7 
for the minimum of the two SKAT tests across all three weights (See Supplemental Text for details). However, the 
estimated SKAT threshold is, in fact, smaller than a Bonferroni threshold (0.05/(3 weights by 2 phenotypes by 
24,333 genes) = 3.42 × 10−7. Since we would expect an estimated threshold that takes correlation into account to 
be less stringent than Bonferroni, we propose to use the Bonferroni threshold to establish significance for SKAT.

Therefore, using these thresholds, we identified three gene pieces as showing significance with MURAT 
and two genes with SKAT. We assumed these thresholds would apply, approximatively, for the other weight-
ing schemes, and therefore Table 1 shows all gene pieces having significant associations with this genome-wide 
region-based analysis. All these identified genes were analyzed in their entirety as a single region (i.e. none of 
these genes needed to be separated into gene pieces); also, all these genes have been previously reported by Zheng 
et al.16 as associated with BMD.

From Table 1, we can see that SKAT only identified two significant genes under identical weight, both of which 
were also significant under MURAT with identical weight, and no genes are significant under the Beta (1,25) 
weight.

For comparison, we also applied Maity’s approach14 with identical weights to the three significant genes listed 
in Table 1, however, no evidence of significant association was found with that method. After further investi-
gation, we believe the reason for this result is that MURAT also considers possible correlation between vari-
ant effects, unlike Maity’s method, which only considers the correlation among multiple traits. Consequently, 
MURAT has the ability to capture pleiotropic effects and thereby improve power. In fact, Maity’s approach is a 
special case of MURAT when the assumed common correlation between variant effects, ρ, is zero. Table 2 shows 

Chr Gene
Start 
Position

End 
Position #SNP

Percent 
of rare 
variants

p-value

adj.SKAT MURAT

Identical Weight

1 WLS 68559219 68703602 939 59.5% 8.91 × 10−8 4.74 × 10−7

8 TNFRSF11B 119930833 119969157 375 68.5% 5.72 × 10−7 1.36 × 10−7

8 COLEC10 120002915 120123590 852 67.0% 1.92 × 10−8 1.51 × 10−8

Beta(0.5,0.5) Weight

8 TNFRSF11B 119930833 119969157 375 68.5% 2.66 × 10−6 2.07 × 10−7

Table 1.  Significant gene pieces identified by MURAT or SKAT under three different choices of weights. The 
significance thresholds used are 7.51 × 10−7 for MURAT and 3.42 × 10−7 for SKAT. The adjusted p-value for 
SKAT is defined as the minimum of two p-values obtained by testing LS and FN individually.
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that if we apply MURAT with identical weights but with ρ = 0 to these three genes, the resulting MURAT p-values 
are similar to those obtained from Maity’s method. However, since in MURAT we make a grid search across ρ 
from 0 to 1, we can see that MURAT obtains much smaller p-values at other values for ρ, and finds a non-zero 
optimal ρ (Table 2).

This region-based analysis of gene pieces did not identify many of the genes well-known to contain variants 
influencing bone mineral density17. This is a common consequence of set-based analyses that group together 
a probably-small number of associated variants with many variants of no effect, and such attenuations of 
power have also been examined through simulation studies in Li and Leal2 and Ladouceur et al.26. Therefore, 
in Supplemental Table 2, we also report our p-values at 14 other well-replicated bone-density-associated genes, 
and for some of these genes, suggestive p-values (p-values < 0.01) are seen at RUNX2, ESR1, WNT16, DKK1, 
SOX6, LRP5, SP7, TNFSF11 and SOST for at least one gene piece and weighting scheme. Certainly, however, their 
p-values would not stand out in a genome-wide analysis.

Nevertheless, our gene pieces contain as many as 2800 variants, and the effects of a small number of causal 
variants could be overwhelmed in such regions. Therefore, we undertook a second set of analyses of candidate 
genes using smaller windows containing a maximum of 30 variants, to further compare multivariate and univar-
iate region-based test performance.

Small window sensitivity analyses.  To investigate MURAT’s performance in more depth at known BMD 
genes, we selected 17 genes for analysis with smaller non-overlapping windows containing no more than 30 var-
iants. This list contains the 3 genes in Table 1, as well as 14 additional genes with known contributions to BMD 
(Supplemental Table 3). In total, there were 659 small genomic segments included in this sensitivity analysis.

If we retain 3.42 × 10−7 and 7.51 × 10−7 as the SKAT and MURAT thresholds for statistical significance (see 
Supplemental Text), there are 21 and 7 variant segments detected by either SKAT or MURAT under the identical 
weight and Beta (0.5, 0.5) weight, respectively (Table 3). No significant variant segments are identified under 
Beta (1,25) weight at these thresholds. All of these significant segments belong to the genes that we identified via 
the genome-wide analysis. However, the p-values obtained from these small segments tend to be smaller than 
the corresponding p-value from the larger gene piece analysis. Furthermore, the weight that gives the smallest 
p-value for a large genomic segment is not necessarily the best weight choice for a smaller segment. For exam-
ple, although gene, COLEC10, was not significant under the Beta (0.5, 0.5) weight, some of the small segments 
in its gene did show significance with this weight. Finally, we note that for most of the significant segments, the 
MURAT p-values are smaller than the minimum of two SKAT p-values obtained by testing LS and FN separately, 
no matter which weights are chosen.

Single variant analysis.  We also ran a series of single variant analyses for these 17 selected genes (the 3 
candidate genes and the additional 14 known BMD-associated genes). In total, 19,325 SNPs are contained in these 
17 genes, but at some SNPs, only a few individuals carry the minor allele among the 8810 subjects. Considering 
the robustness of single variant analysis, we removed SNPs where the minor allele was carried by less than 4 
individuals, leaving 19,071 variants for analysis (Supplemental Table 3). Since each test only involves one SNP, no 
weight choice is required.

There are no significant SNPs if we use 1.2 × 10−8, the genome-wide significant threshold used in Zheng et 
al.16, as the thresholds for both SKAT and MURAT. However, if we relax the threshold a little to 2 × 10−8, then 6 
variants in gene COLEC10 (Table 4) are significant and detected by MURAT or SKAT. Analysis either with linear 
regression or with SKAT gives almost identical results (Supplemental Figure 3) as expected since the score test 
and the Wald test are asymptotically equivalent.

Similar to results from the small window analysis, in our single variant analyses, the significant SNPs usually 
show smaller p-values than the corresponding ones obtained via set-based analysis. Furthermore, the MURAT 
p-values are much smaller than the adjusted SKAT p-values. Hence, the correlation between the phenotypes can 
be successfully leveraged to gain power through MURAT.

Discussion
In this paper, by combining individual level phenotype and genotype data from three cohort studies, the Study 
of Osteoporotic Fractures (SOF), Osteoporotic Fractures in Men (MrOS) Study, and the UK10K project, we 
investigated the performance of a newly proposed multivariate rare-variant association test (MURAT) through 
analyses of bone mineral density (BMD). In our investigations, we compared the multivariate test, MURAT, 
with single-phenotype test, SKAT, by testing BMD at femoral neck (FN) and lumbar spine (LS) jointly and sep-
arately for each gene-based variant set. In addition, genes identified via our gene-based analysis and reported 

Chr Gene Maity

MURAT

ρ = 0 Optimal ρ

1 WLS 1.33 × 10−2 1.39 × 10−2 2.50 × 10−7

8 TNFRSF11B 1.30 × 10−3 8.87 × 10−4 7.80 × 10−8

8 COLEC10 1.50 × 10−3 1.39 × 10−3 6.64 × 10−9

Table 2.  The p-values for three significant genes listed in Table 1 when Maity’s approach with identical weight 
is applied. The last two columns are p-values obtained via MURAT with identical weight at ρ = 0 and at the 
optimal ρ, where optimal ρ is defined as the one that gives the smallest p-value within a grid of ρ from 0 to 1 by 
0.1. The optimal ρ’s for these genes are 0.9, 0.7, and 0.7, respectively.
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from previous literature were further examined by small window and single variant analyses. We also compared 
performance of three different MAF-based weighting schemes in both MURAT and SKAT with sets of SNPs. 
Although there is an increasingly large literature on how to best prioritize genetic variants for analysis using 
external annotation information, particularly in the context of region based tests8,9, since our motivation here was 
to compare single-phenotype approaches with multiple-phenotype approaches, we have not incorporated such 
external annotations in any of these results.

Despite the potential for improved power associated with multivariate phenotype analysis, all of the genes that 
we identified as associated with BMD had been previously reported. Indeed, the recent meta-analyses includ-
ing over 50,000 individuals has identified genetic variants in more than 20 genes as associated with BMD16,17. 
MURAT provides a modest increase in power which cannot compete with the power gain associated with an over 

Chr Gene Start Position End Position

p-value Identified 
byadj.SKAT MURAT

Identical Weight

1 WLS 68657154 68661149 2.88 × 10−7 2.62 × 10−6 SKAT

8 TNFRSF11B 119946373 119949029 1.64 × 10−7 8.19 × 10−8 Both

8 TNFRSF11B 119955510 119958424 3.31 × 10−7 1.66 × 10−8 Both

8 TNFRSF11B 119959204 119961438 1.75 × 10−7 1.07 × 10−7 Both

8 TNFRSF11B 119967247 119969154 1.94 × 10−7 2.79 × 10−8 Both

8 COLEC10 120002915 120006286 4.55 × 10−7 1.66 × 10−7 MURAT

8 COLEC10 120006386 120010261 4.22 × 10−8 1.11 × 10−8 MURAT

8 COLEC10 120010329 120015307 4.42 × 10−8 1.92 × 10−8 Both

8 COLEC10 120015537 120018127 3.01 × 10−8 1.13 × 10−8 Both

8 COLEC10 120018159 120021133 3.28 × 10−8 1.39 × 10−8 Both

8 COLEC10 120021237 120024383 1.97 × 10−8 8.22 × 10−9 Both

8 COLEC10 120024466 120028106 3.77 × 10−8 2.36 × 10−8 Both

8 COLEC10 120028696 120031077 2.45 × 10−8 8.97 × 10−9 Both

8 COLEC10 120031162 120034048 1.84 × 10−8 1.16 × 10−8 Both

8 COLEC10 120034105 120038678 1.06 × 10−8 6.31 × 10−9 Both

8 COLEC10 120038959 120040988 1.70 × 10−8 8.38 × 10−9 Both

8 COLEC10 120041061 120043493 1.89 × 10−8 7.56 × 10−9 Both

8 COLEC10 120043632 120045339 1.66 × 10−8 7.47 × 10−9 Both

8 COLEC10 120045484 120048305 3.19 × 10−8 1.02 × 10−8 Both

8 COLEC10 120048320 120053420 2.26 × 10−8 1.29 × 10−8 Both

8 COLEC10 120053421 120060026 1.29 × 10−8 9.58 × 10−9 Both

Beta(05,05) Weight

8 TNFRSF11B 119946373 119949029 5.13 × 10−8 5.50 × 10−8 Both

8 TNFRSF11B 119959204 119961438 2.52 × 10−6 4.74 × 10−7 MURAT

8 COLEC10 120006386 120010261 3.22 × 10−8 1.18 × 10−8 Both

8 COLEC10 120010329 120015307 2.83 × 10−8 1.68 × 10−8 Both

8 COLEC10 120015537 120018127 1.34 × 10−8 1.08 × 10−8 Both

8 COLEC10 120028696 120031077 1.09 × 10−6 7.32 × 10−7 MURAT

8 COLEC10 120045484 120048305 9.63 × 10−8 3.22 × 10−8 Both

Table 3.  Results of analysis of 17 candidate genes using windows of 30 variants. Significant gene segments 
identified by MURAT or SKAT are shown under different weighting schemes. The significance thresholds for 
SKAT is 3.42 × 10−7, and is 7.51 × 10−7 for MURAT. In the table, the adjusted p-values for SKAT are defined as 
the minimum of two p-values obtained by testing LS and FN individually.

Chr Gene rsID Position

p-values

adj.SKAT MURAT

8 COLEC10 rs7842942 120008587 3.14 × 10−8 1.89 × 10−8

8 COLEC10 rs1485285 120036138 1.79 × 10−8 1.53 × 10−8

8 COLEC10 rs7004539 120040499 2.00 × 10−8 1.54 × 10−8

8 COLEC10 rs6469803 120040538 1.68 × 10−8 1.41 × 10−8

8 COLEC10 rs12056346 120042191 2.34 × 10−8 1.65 × 10−8

8 COLEC10 rs4495458 120042780 2.46 × 10−8 1.93 × 10−8

Table 4.  Variants identified via single variant analysis with p-values less than 2 × 10−8. The adjusted p-values for 
SKAT are  defined as the minimum of two p-values obtained by testing LS and FN individually.
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6-fold increase in sample size. To identify new genes where rare genetic variation is associated with BMD, includ-
ing subjects with more extreme bone phenotypes could be useful. However, MURAT may be of assistance for 
increasing power for studies involving other phenotypes where it is more challenging to increase the sample size.

Currently, individual level data are required for the calculations in MURAT. Assembling extremely large 
sample sizes for single variant analysis is sometimes feasible through meta-analysis, where only summary level 
statistics need to be shared; an extension of SKAT has also been developed that requires only sharing of a set 
of summary statistics27. However, not all analyses can be achieved by sharing only summary statistics; in this 
collaboration, we were able to create a data set containing individual phenotypes and genotypes for 8810 people, 
thereby increasing our power as much as is often reasonably possible simply through increased sample sizes for 
individual-level data. However, since the genetic signals can be very subtle, potential additional power improve-
ments through multivariate analysis are of great interest.

However, it must be acknowledged that a single analysis of all the individual-level data from three studies may 
be susceptible to bias from confounding arising from different BMD distributions across the cohorts, in conjunc-
tion with subtle genetic variation. For example, Table 5 shows that LS and FN were both slightly lower in the SOF 
study, as would be expected given their female sex and older age. To protect as much as possible against potential 
confounding, all our analyses were adjusted for sex as well as the top principal components of ancestry, calculated 
from a subset of analyzed variants with large MAF in the combined dataset. Although, it would probably be better 
to calculate the PCs from variants not involved in the MURAT tests, i.e. to use variants from non-exonic regions 
when calculating our PCs, we doubt that this alteration would influence our conclusions comparing test statistics. 
Furthermore, it could be a worthwhile future endeavor to adapt the MURAT calculations so that they could be 
performed in a meta-analytic fashion.

Our analysis results clearly show that p-values obtained via MURAT are generally smaller than the ones cal-
culated from adjusted SKAT (Supplemental Figures 4–6) no matter which weight matrix is applied, which implies 
that this multivariate test has the ability to improve power compared with a univariate test in rare-variant associ-
ation studies. This trend is more clear when we focus on the significant results identified with different analyses. 
For example, in gene-based analysis, 3 out of 4 significant gene pieces demonstrate smaller MURAT p-values 
(Table 1). Similarly, in small window and single variant analyses, there are 26 out of 28 identified gene segments, 
and all 6 detected single SNPs where MURAT p-values are smaller than the ones obtained via adjusted SKAT, 
respectively. For gene and small window analyses (Tables 1 and 3), the MURAT p-values are generally 30% to 70% 
less than adjusted SKAT p-values, and for single variant analysis (Table 4), the MURAT p-values can be 15% to 
40% less than adjusted SKAT p-values.

To further investigate the relationship between p-values and number of variants contained in the regions, we 
categorized all 24,333 gene pieces into 4 groups based on the number of variants in the gene piece. Specifically, 
group 1 includes 1360 pieces that contain less than 100 variants; group 2 contains 11720 pieces that have 100 to 
500 variants; group 3 has 8670 pieces which contain 500 to 1000 variants; and the remaining 2583 pieces belong 
to group 4, since they all have more than 1000 SNPs. By applying the F-test from an analysis of variance, we 
then compared the p-values obtained via MURAT with identical weight between these groups, and obtained 
evidence of strongly-different p-value distributions (p-value = 2 × 10−16). Tukey’s test for multiple comparisons 
showed that groups having more variants generally had larger p-values. The box plots for p-values within each 
group, and plots of 95% family-wise confidence levels for Tukey’s multiple comparison procedure are shown in 
Supplemental Figures 7 and 8. This result demonstrates that a properly defined set plays an important role in 
set-based testing methods. Therefore, in addition to genome-wide gene-based analysis of the entire genic regions, 
we also performed small window and single variant analyses for some well-replicated BMD-associated genes to 
avoid the situation when limited number of associated variants exist in large region the set-based methods cannot 
distinguish signal from noise.

Mean (standard deviation) Range

MrOS SOF UK10K MrOS SOF UK10K

FN 0.78 (0.13) 0.65 (0.11) 0.79 (0.13) 0.27–1.60 0.28 –1.21 0.47–1.18

LS 1.17 (0.25) 0.86 (0.17) 0.99 (0.15) 0.57–2.72 0.44–1.84 0.57–1.84

log FN −0.11(0.07) −0.19(0.07) −0.11(0.07) −0.56–0.20 −0.56– −0.35 −0.33–0.07

log LS 0.06 (0.09) −0.07(0.08) −0.01(0.07) −0.24–0.43 0.08–0.26 −0.24–0.27

Age 73.9 (5.95) 73.5 (5.26) 52.4 (11.2) 65–100 67–98 17–82

Weight 83.5 (13.0) 67.2 (12.4) 68.1 (12.5) 50.8–136.4 36–132.2 37.9–128.3

Skewness Correlation

MrOS SOF UK10K MrOS SOF UK10K

FN 0.60 0.61 0.21
0.52 0.60 0.69

LS 1.12 0.66 0.24

log FN −0.04 0.01 −0.25
0.53 0.60 0.70

log LS 0.38 0.04 −0.31

Table 5.  Descriptive statistics, mean (standard deviation), range, skewness, and correlations for BMD 
phenotypes (before and after log transformation) and covariates in each of the three studies that were combined. 
The statistics are calculated based on 1004 women in UK10K project, 3256 women in SOF study, and 4550 men 
in MrOS study.
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In all of our analyses, we directly combined individual level data from the three studies. Since there are some 
differences across studies in ascertainment strategies, covariate measurements and platforms for sequencing/
genotyping, it could be argued that “study” itself may play as an important covariate and needs to be adjusted for 
in the association tests. Hence, for the 17 selected genes listed in Supplemental Table 3, we repeated our analyses 
with MURAT and SKAT including study indicator variables, with the three different weights. As can be seen in 
Supplemental Table 4, inclusion of study indicators results in very little change in results, and the same genes 
would be called significant. Moreover, the p-values obtained via two models, with or without study covariates, are 
almost the same (Supplemental Figure 9). Hence, we infer that if we had added a study indicator to all analyses, 
our final results would have been almost identical.

Additional information, such SNPs annotation, can be used for refining subsets/windows28. However, the 
choice of an optimal size of the window to be analyzed remains a considerable issue. For instance, loss of power 
can be significantly affected by noise-to-signal ratio of a SNPs set. Thus, some studies have shown that the opti-
mal size depends on the test statistic chosen and the proportion of causal variants8, and others have proposed to 
optimize the window size29. Alternatively, one can attribute weights for different class of variants by up-weighting 
functionally damaging variants. The bioinformatics algorithms30–32 can produce inaccurate predictions, how-
ever, they should be considered as just one possible choice for refining windows; there is a need to develop 
high-throughput functional characterization methods.

Our analyses clearly show that the multivariate method has significant potential to improve power in rare var-
iant association studies for both set-based and single variant analyses. Since in many large-scale sequencing stud-
ies, multiple measurements of related traits are available for investigation, a multivariate method is well-worth 
considering to boost power, especially when there are pleiotropic effects or strongly-correlated phenotypes (for 
example ρ >0.6).

In our analyses, we used three different weights, and the identical weight showed better results. The choice 
of weighting scheme is critical to improve test power. Although there are a few publications that have evaluated 
multiple weights in different study designs through simulation33,34, there is no strong consensus on ideal weight 
choice, and of course it will depend on the true genetic architecture at the locus. It may be worth additional 
investigation to understand which weights retain the most power even when the true genetic model is incor-
rectly modelled. In addition, similar to other set-based association studies, here we have only provided an overall 
p-value for the association between a group of variants and the phenotypes. We note also that a nonparametric 
multiple-trait set-based test has recently been developed based on generalized similarity U-statistics35, and it 
would be worth comparing its performance with MURAT.

Once a new association is found, it becomes interesting to ask which individual variants drive the association 
and to estimate corresponding genetic parameters. Careful fine-mapping36 and follow-up replication studies8 
are usually needed to achieve these goals. Nevertheless, a few methods for variable selection or adaptive combi-
nations of p-values have been proposed to fill the gap between SNP set analysis and fine mapping of individual 
variants37–39. Investigations of how such techniques perform for a multivariate test such as MURAT would be 
worthwhile.

Methods
Data and quality control methods.  In the analyses, we combined individual level autosomal data from 
three studies.

The Study of Osteoporotic Fractures (SOF)19 (http://sof.ucsf.edu/interface/) is a prospective multicentre study 
that enrolled 9704 women over age 6540–42, and the Osteoporotic Fractures in Men study (MrOS) is a multicentre 
study of musculoskeletal health in men 65 and older20,21 that enrolled 5,994 participants. In both studies, partici-
pants were required to be able to walk without assistance at study entry. Written informed consents were obtained 
for both studies, and Institutional Review Boards at each enrollment site approved these studies. Genotyping for 
both SOF and MrOS samples was performed with the Illumina HumanOmni1_Quad_v1-0 H array. Samples 
with call rate under 97% were excluded, as were samples with evidence for non-European global ancestry or 
showing unusual heterozygosity or relatedness16. Genotypes with MAF < 0.01 or Hardy-Weinberg disequilib-
rium (at p < 1e-4) were excluded, and the remaining genotypes were subsequently imputed against the combined 
UK10K/1000Genomes reference panel. Singletons were excluded from the reference panels prior to merging, 
and variants missing from one reference were imputed into the other before creating the combined reference. 
Genotypes were pre-phased without using the reference panel, and then variants from the reference were imputed 
into the best-guess haplotypes. Variants with INFO score less than 0.4 were excluded. Full details of the imputa-
tion pipeline can be found in16.

There were 3,781 individuals who underwent whole genome sequencing in the UK10K study18 (http://www.
uk10k.org/ and www.gefos.org). These individuals were selected from participants in the TwinsUK study (http://
www.twinsuk.ac.uk/) or the ALSPAC study (http://www.bristol.ac.uk/alspac/) and had previously been assessed 
for BMD43–45. Whole genome sequencing was performed with the Illumina HiSeq platform with an average read 
depth of 6.7. Identified variants were quality filtered with a VQSLOD score of −0.6804, Hardy-Weinberg equilib-
rium p-value < 1e-6, or evidence of batch effects16. Imputation was performed against a combined reference panel 
formed by merging the 1000 Genome haplotypes with UK10K haplotypes, removing singletons, and imputing 
missing variants from each of the two studies into the other16. Data were pre-phased without a reference panel, 
and then imputed with IMPUTE2 using an info score of 0.4 to remove poorly imputed variants16,18.

BMD and covariate measurements.  In the MrOS study, BMD at the femoral neck and lumbar spine 
was measured using dual-energy X-ray absorptiometry (DXA) with Hologic QDR‐4500 W scanners (Hologic, 
Inc., Bedford, MA, USA) at the baseline clinic visit. A central quality‐control laboratory, certification of DXA 
technicians, and standardized procedures for scanning were implemented to ensure reproducibility of DXA 

http://sof.ucsf.edu/interface/
http://www.uk10k.org/
http://www.uk10k.org/
http://www.gefos.org
http://www.twinsuk.ac.uk/
http://www.twinsuk.ac.uk/
http://www.bristol.ac.uk/alspac/
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measurements. At baseline, a hip phantom was circulated and scanned at the six clinical centers. Cross‐calibra-
tion studies indicated no linear differences across scanners, and the interscanner coefficient of variation (CV) 
was 0.9%. Height was measured using a Harpenden stadiometer, and weight was measured by a standard balance 
beam or an electric scale. Two consecutive height measurements were taken, and the average of these measure-
ments was used in the analysis. If the two height measurements differed by >5 mm, a third measurement was 
performed, and the average of the two values with the smallest difference was used in the analysis.

In the SOF, BMD of the proximal femur and spine was measured using DXA (QDR‐1000, Hologic) during a 
follow up visit between 1989 and 1990. Densitometry quality control methods have been previously published41,42. 
Briefly, paired initial and follow up hip scans were analyzed using the automated “compare” feature of the Hologic 
software. Quality control center technicians reviewed a random sample. In addition, all scans identified by the 
technicians for certain problems such as changes in positioning between the initial and follow up scans or dif-
ficulty defining bone edges were reviewed at the quality control center. An anthropometric spine phantom was 
scanned daily, and a hip phantom was scanned once per week at each clinic to assess longitudinal performance 
of the scanners. Weight was measured using a standard balance beam scale, and height was measured using a 
Harpenden stadiometer.

In the UK10K study, lumbar spine and femoral neck BMD measurements were obtained from the available 
measurements taken in the ALSPAC and Twins UK studies. Specifically, BMD was measured using DXA with 
Hologic QDR 4500 W for TwinsUK participants, and in ALSPAC, TB-DXA scans were performed on all partic-
ipants, using a Lunar Prodigy scanner (Lunar Radiation Corp, Madison, WI) with paediatric scanning software 
(GE Healthcare Bio-Sciences Corp., Piscataway, NJ). In ALSPAC, all DXA scans were subsequently reviewed by 
a trained researcher, and re-analysed as necessary, to ensure that borders between adjacent ROI’s were placed 
correctly by the automated software. Data were standardized within the two source studies prior to combining. 
Both TwinsUK and ALSPAC use Harpenden stadiometer to measure height.

For 3256 women in SOF and 4550 men from MrOS with imputed genotype data, and 1004 sequenced women 
from the UK10K study, BMD measures were also available. With these 3 cohorts together, there are 8810 subjects 
included in our analyses.

We considered two correlated bone density phenotypes, BMD at femoral neck (FN) and lumbar spine (LS). A 
log transformation was applied to these two phenotypes before the analyses so that they have bell-shaped distri-
butions, and after the log transformation the correlation between the phenotypes in combined data set is 0.6775. 
In all analyses, variables age, age2, gender, and weight were used as covariates. In addition, the first five principal 
components (PCs), obtained using a subset of genotype data that were randomly selected from our analyzed var-
iants with large MAF (>0.48) and low LD (r2 < 0.1) based on all 8810 subjects, were also included as covariates 
to adjust for population structure.

Descriptive statistics for BMD and covariate measurements are listed in Table 5, separately for the three stud-
ies. The expected lower BMD in females can be seen for the SOF study relative to MrOS; this is not only due 
to sex, but also because they are older than the men in MrOs. Mean values of BMD from the UK10K study are 
similar to the MrOS study despite the fact that we used only sequencing data from women; however, the average 
participant age was younger in UK10K.

Definition of gene pieces.  Many previous studies related with BMD association have focused on common 
variants (MAF >0.05), and have insufficiently assessed the role of low frequency (MAF 0.01–0.05) and rare (MAF 
<0.01) genetic variation (Zheng et al.16). Hence, we used only the rare variants in or near genes on the autosomes 
(excluding chromosomes X and Y) analyzed in Zheng et al.16, where rare variants were defined as SNPs with MAF 
<0.05, and the MAFs were estimated based on the 21 cohorts used in their paper. However, since only three out of 
the 21 cohorts are being analyzed here, some of the variants we used may have larger MAF than 0.05. The majority 
of analyzed variants are still rare: 76.67% have MAF <0.05 and 81.58% have estimated MAF <0.10.

Variants were included in a gene region if they fell within a window defined by the maximal extent of all iso-
forms of a gene, with an additional 5 kb on either end of the maximal extent of all isoforms. In addition, for genes 
that span a distance greater than 150 kb, the segments were subdivided into multiple non-overlapping smaller 
pieces of at most 100 kb and at least 50 kb. We refer to these genomic segments that were used in the region-based 
analyses as gene pieces; Supplemental Table 1 shows the number of gene pieces on each chromosome. The number 
of variants in the gene pieces is extremely variable and ranges from just one variant to a maximum of 2898 SNPs 
(Supplemental Figure 1).

Regions for analysis of candidate genes.  For more in depth investigations of the performance of multi-
variate analysis methods, we selected several candidate genes and divided their genetic data into smaller regions. 
Candidate genes were selected in two ways, firstly we selected the genes with the most significant results of the 
“gene-piece” analyses, and secondly, we analyzed genes that have well-replicated SNP associations with bone 
mineral density17. For both sets of genes, we divided the gene pieces into smaller, non-overlapping segments con-
taining at most 30 variants. We also performed single variant analyses of these two sets of candidate genes. The 
number of regions analyzed for each of the two sets of candidate genes is shown in Supplemental Table 3.

Test statistics.  For a univariate method that tests the two BMD phenotypes separately, we used SKAT to 
identify association. For a joint multivariate analysis of the two BMD phenotypes simultaneously, we used 
MURAT12. For the region-based tests, we compared three contrasting different strategies for weighting the vari-
ants within a region. We first assigned identical weights to all variants. Secondly, we used a beta distribution, 

w Beta MAF a a( ; , )j j 1 2=  to specify weights due to its flexibility of accommodating a wide range of scenarios3. 
For the two parameters of the beta distribution, we considered two situations: (i) a1 = 1 and a2 = 25, (the parame-
ters suggested by SKAT4). These choices allow higher weights for the rare variants (with MAF <1%) and give 
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modest weights for low frequency variants with MAF 1–5%. (ii) a1 = a2 = 0.5, which is equivalent to 
= −w MAF MAF1/ (1 )j j j  for the jth variant. This choice puts more weight onto the very rare variants and 

almost zero weights to variants with MAF >1%4,46.

Brief description of MURAT.  A description of this method is found in more detail in Sun et al.12. The 
method performs a joint analysis of more than one phenotype, and tests for association simultaneously for all 
phenotypes and all variants in a region.

Suppose for the i th subject, i = 1, …, N, we observe K correlated continuous phenotypes, Yi = (yi1, yi2, …, yiK)T; 
m covariates, Xi = (xi1, xi2, …, xim)T; and genotype values for a group of v variants, Gi = (gi1, gi2, …, giv)T, where gij 
for j = 1, …, v are coded as 0, 1, or 2, representing the number of minor alleles that individual i carries for the j th 
variant. Similar to SKAT4, a single phenotype, Yik, is linked with Gi and Xi via a linear mixed model

X GY k Kfor 1, , (1)ik k k
T

i k
T

i ik0 α βα ε= + + + = …

where α0k is a scalar for intercept; αk and βk are corresponding coefficient vectors, and βk ~ N(0, τ2W) is a vector 
of random effects, such that τ2 is an unknown variance component, W = diag{w1, …, wv} is a weight matrix with 
wj representing the weight for the j th variant; and εik is random error following a standard normal distribution.

However, since K phenotypes are correlated, in MURAT, a multivariate linear mixed model is used to jointly 
model these phenotypes,

α α β ε= + ⊗ + ⊗ +Y X G1 1( ) ( ) , (2)i K i
T

K i
T

i0

where α0 = (α01, …, α0K)T, ( , , )T
K
T T

1α α α= … , ( , , )T
K
T T

1β β β= … , εi = (εi1, …, εiK)T, 1K is a K-dimensional 
vector of ones, and ⊗ represents Kronecker product. In this multivariate model, the variant effect, β, is assumed 
to follow a multivariate normal distribution, N(0, Σβ). In addition, to account for trait pleiotropy effects, βk and 

kβ ′, for k ≠ k′, are assumed to be correlated, such that Corr( , )kj k jβ β ρ=′  for variant j with ρ unknown, and 
Corr( , ) 0kj k jβ β =′ ′  for variant j and variant j’. That is, MURAT assumes a common correlation for the effects of the 
same variant on different phenotypes, but the effects of different variants are uncorrelated. Consequently, the 
covariance matrix Σβ = τ2R⊗W, where ρ ρ= − +R I 1 1(1 ) K K K

T . Moreover, to account for the correlation beween 
phenotypes, the model error term, εI is assumed to independently follow a multivariate normal distribution 
N(0,Σ), where Σ is an arbitrary symmetric and positive definite matrix.

In order to test the association between genotype and multiple phenotypes, a score type statistic was derived 
to test whether β equals zero in MURAT. By using a data-adaptive procedure to manage unknown correlation, ρ, 
among variant effects, βk’s, MURAT can obtain p-values analytically via a one dimensional numerical integration. 
It has been shown12 that by incorporating arbitrary correlations among multiple phenotypes and considering the 
existence of trait pleiotropy effects, the proposed MURAT has the potential to increase test power compared with 
other univariate tests. In addition, since MURAT calculated p-values analytically without permutation or resam-
pling, MURAT can be used for a genome-wide analysis.
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