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Abstract: Choroidal neovascularization (CNV) is a complication of age-related macular degeneration
and a major contributing factor to vision loss. In this paper, we show that in a mouse model
of laser-induced CNV, systemic administration of Butyroyloxymethyl-diethyl phosphate (AN7),
a histone deacetylase inhibitor (HDACi), significantly reduced CNV area and vascular leakage, as
measured by choroidal flatmounts and fluorescein angiography. CNV area reduction by systemic
AN7 treatment was similar to that achieved by intravitreal bevacizumab treatment. The expression
of vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF-2), and the endothelial
cells marker CD31, was lower in the AN7 treated group in comparison to the control group at the
laser lesion site. In vitro, AN7 facilitated retinal pigmented epithelium (RPE) cells tight junctions’
integrity during hypoxia, by protecting the hexagonal pattern of ZO-1 protein in the cell borders,
hence reducing RPE permeability. In conclusion, systemic AN7 should be further investigated as a
possible effective treatment for CNV.

Keywords: AN7; bevacizumab; choroidal neovascularization; histone acetylation; histone deacetylase
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1. Introduction

Choroidal neovascularization (CNV) is the pathological growth of immature blood vessels from
the choroid underlying the retinal pigmented epithelium (RPE) towards the sensory retina. It is a
complication of age-related macular degeneration (AMD) and a major contributing factor to vision
loss. The newly formed blood vessels are immature, lack structural integrity, and leak fluid, leading to
hemorrhage and exudates, accompanied by fibrosis [1–4].

In AMD, angiogenic factors, such as vascular endothelial growth factor (VEGF), are excessively
secreted by the RPE layer that forms the outer Blood-Retina Barrier (oBRB), and may contribute to the
stimulation of CNV and breakdown of the oBRB [5–7].

Histone acetylation status plays a pivotal role in the epigenetic modulation of gene expression [8–10].
The status of acetylation is maintained by a dynamic balance between histone acetyl transferases
(HATs) and histone deacetylases (HDACs) [11]. HATs add acetyl groups on lysine residues of the

Int. J. Mol. Sci. 2019, 20, 714; doi:10.3390/ijms20030714 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
http://dx.doi.org/10.3390/ijms20030714
http://www.mdpi.com/journal/ijms
http://www.mdpi.com/1422-0067/20/3/714?type=check_update&version=2


Int. J. Mol. Sci. 2019, 20, 714 2 of 15

histones tails, resulting in the reduction of the electrostatic attraction of the negative backbone of
the DNA to the histones, loosening the chromatin structure to a more accessible form and enabling
active transcription. In contrast, HDACs remove acetyl groups from lysine residues of the histone tails,
leading to a more compact and less accessible chromatin [9–12].

Data regarding the importance of histone acetylation to the regulation of cell behavior has led to
increased interest in the role of HDAC inhibitors (HDACi) as potential pharmacological agents, mainly
for cancer prevention and treatment [13–15].

The effect that different HDACs have on the eye is yet to be genetically explored. Studies in
rodents have shown that the retina expresses HDACs 1 to 6, and that HDACs 1, 2, 3, and 6 may
constitute 98% of the total HDAC activity [16–18].

While reduced expression of HDACs 1, 2, 5 and 6 was observed in AMD [19], other studies addressing
the potential use of HDACi’s in the retina have indicated that HDAC inhibition can protect the retina
from acute injury [16,20–24] and may also have an inhibitory effect on CNV development [25,26].

Butyroyloxymethyl-diethyl phosphate (AN7) is a water-soluble and orally bioavailable prodrug
of the HDACi butyric acid, and as such, inhibits HDAC classes I and II, which results in the
hyperacetylation of histones H3 and H4 [27,28].

AN7 has been shown to effectively stimulate reduction of vascularization in a variety of tissues
in vitro, ex vivo, and in vivo [27–32]. These previous reports prompted the notion that AN7 may serve
as an inhibitor of pathological choroidal angiogenesis as well. We therefore directly evaluated the effect
of AN7 on laser-induced CNV using a mouse model and assessed its effect on RPE cell permeability
in vitro.

2. Results

2.1. AN7 Treatment Elevates Histone H3 Acetylation Levels in Laser-induced CNV Lesions

Figure 1 shows representative images of cryosections stained for Hematoxylin and Eosin (H&E),
anti-CD31 and anti- acetylated histone H3 (AC-H3) from naïve eyes (no laser applied) and laser-applied
eyes of mice treated with AN7 or saline, from day 7 post laser induction.

In the naïve eyes, AN7 treatment did not induce structural changes of the retina in comparison to
control as indicated by H&E images (Figure 1A,B). Moreover, no significant variation in the endothelial
cells marker CD31 (green) and AC-H3 (red) staining pattern was noticed between naïve eyes, treated
with AN7 in comparison to control (Figure 1E,F). AC-H3 staining was observed mainly in the ganglion
cell layer (GCL) showing the basal histone H3 acetylation status.

The effect of intraperitoneal (IP) administration of AN7 on eyes subjected to laser applications is
demonstrated in Figure 1C,D,G,H. Representative images of cryosections of lesion sites taken 7 days
post laser application show disorganized retinal layers, including disruption of the RPE layer in both
saline and AN7-treated eyes. Newly formed blood vessels, stained for CD31, penetrated from the
choroid through the sensory retina (Figure 1G,H). AC-H3 staining was observed not only in the GCL,
but also in other layers of the retina (i.e., inner nuclear layer, outer nuclear layer, RPE) as well as
in the choroid and sclera. However, AC-H3 fluorescence intensity was significantly increased from
4.17 ± 0.58 Mean Grey Values (MGV) in the saline control group to 6.65 ± 1.46 MGV in the AN7-treated
group (p < 0.001; Figure 1I).
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Figure 1. AN7 treatment elevates Histone H3 acetylation levels in laser-applied eyes. Representative 

images of cryosections from naïve eyes (without laser applications) of mice treated by intraperitoneal 

(IP) AN7 or saline (A,B,E,F) and lesions sites of laser-applied eyes of mice treated with IP AN7 or 

saline (C,D,G,H), from day 7 post laser application. (A–D) Hematoxylin and Eosin (H&E). Scale bar, 

100µm. Yellow arrows mark the same blood vessel in the H&E and the corresponding 

immunostaining image to allow orientation. (E–H) Immunostaining for CD31 (green), acetylated 

histone H3 (AC-H3; red) and cells nuclei, DAPI (blue). GCL, Ganglion Cells Layer; INL, Inner Nuclear 

Layer; ONL, Outer Nuclear Layer; RPE, Retinal Pigmented Epithelium; C, Choroid. Scale bar, 50µm. 

(I) Quantification of AC-H3 staining in laser applied eyes. 

2.2. Systemic Administration of AN7 Reduces CNV Area in Choroidal Flatmounts 

In order to perform CNV area quantification, 7 days after CNV induction, Fluorescein 

isothiocyanate dextran (FITC-dextran; green) was perfused and choroidal flatmounts were prepared. 

Figure 2A shows representative images of laser-induced lesion site from mice treated with saline 

(control), AN7 or bevacizumab. FITC-dextran perfused from the heart to the blood vessels of the eyes 

and stained the newly formed blood vessels that penetrated from the choroid towards the retina. 

First, a dose dependency experiment was performed (Figure 2B). Significant elevation in 

vascular area was noticed between eyes without laser applications and eyes with laser applications, 

confirming the formation of blood vessels, penetrating through the intact black pigmented RPE layer, 

and indicating CNV (p < 0.001, no laser vs. laser and saline). 

Treatment with 10 mg/kg AN7 reduced CNV area from 60,751 ± 9,327 μm2 to 53,319 ± 8,941 μm2 

(nonsignificant), whereas 20 mg/kg AN7 significantly reduced CNV area to 43,527 ± 7,350 μm2 (p = 

0.008, laser and saline vs. laser and 20 mg/kg AN7). Consequently, we used AN7 dosage of 20 mg/kg 

in our in vivo studies. 

Next, we compared the efficacy of AN7 to reduce CNV area, to that of bevacizumab, a broadly 

used medication for neovascular AMD [33]. CNV area was measured by quantification of FITC-

dextran area in choroidal flatmounts, prepared on day 7 post laser induction. 

Figure 2C shows that IP AN7 reduced CNV area at a similar extent to intravitreal (IVT) 

bevacizumab. CNV area was significantly reduced from approximately 70,000 μm2 in the saline 

controls, to 33,838 ± 11,057 μm2 and 48,472 ± 12,130 μm2, by AN7 and bevacizumab, respectively (p < 

0.05), thus indicating the anti-angiogenic effect of systemic AN7. 

We further extended our evaluation and tested the therapeutic potential of oral administration 

of AN7 (Figure S1). Similar to IP AN7 treatment, oral AN7 treatment significantly reduced CNV area 

from approximately 60,000 μm2 in the saline controls, to 43,527 ± 7,350 μm2 and 44,002 ± 11,662 μm2, 

by IP AN7 and oral AN7, respectively (p < 0.05). 

Figure 1. AN7 treatment elevates Histone H3 acetylation levels in laser-applied eyes. Representative
images of cryosections from naïve eyes (without laser applications) of mice treated by intraperitoneal
(IP) AN7 or saline (A,B,E,F) and lesions sites of laser-applied eyes of mice treated with IP AN7 or saline
(C,D,G,H), from day 7 post laser application. (A–D) Hematoxylin and Eosin (H&E). Scale bar, 100 µm.
Yellow arrows mark the same blood vessel in the H&E and the corresponding immunostaining image
to allow orientation. (E–H) Immunostaining for CD31 (green), acetylated histone H3 (AC-H3; red) and
cells nuclei, DAPI (blue). GCL, Ganglion Cells Layer; INL, Inner Nuclear Layer; ONL, Outer Nuclear
Layer; RPE, Retinal Pigmented Epithelium; C, Choroid. Scale bar, 50 µm. (I) Quantification of AC-H3
staining in laser applied eyes.

2.2. Systemic Administration of AN7 Reduces CNV Area in Choroidal Flatmounts

In order to perform CNV area quantification, 7 days after CNV induction, Fluorescein
isothiocyanate dextran (FITC-dextran; green) was perfused and choroidal flatmounts were prepared.
Figure 2A shows representative images of laser-induced lesion site from mice treated with saline
(control), AN7 or bevacizumab. FITC-dextran perfused from the heart to the blood vessels of the eyes
and stained the newly formed blood vessels that penetrated from the choroid towards the retina.

First, a dose dependency experiment was performed (Figure 2B). Significant elevation in vascular
area was noticed between eyes without laser applications and eyes with laser applications, confirming
the formation of blood vessels, penetrating through the intact black pigmented RPE layer, and
indicating CNV (p < 0.001, no laser vs. laser and saline).

Treatment with 10 mg/kg AN7 reduced CNV area from 60,751 ± 9327 µm2 to 53,319 ± 8941 µm2

(nonsignificant), whereas 20 mg/kg AN7 significantly reduced CNV area to 43,527 ± 7350 µm2

(p = 0.008, laser and saline vs. laser and 20 mg/kg AN7). Consequently, we used AN7 dosage of
20 mg/kg in our in vivo studies.

Next, we compared the efficacy of AN7 to reduce CNV area, to that of bevacizumab, a broadly
used medication for neovascular AMD [33]. CNV area was measured by quantification of FITC-dextran
area in choroidal flatmounts, prepared on day 7 post laser induction.

Figure 2C shows that IP AN7 reduced CNV area at a similar extent to intravitreal (IVT)
bevacizumab. CNV area was significantly reduced from approximately 70,000 µm2 in the saline
controls, to 33,838 ± 11,057 µm2 and 48,472 ± 12,130 µm2, by AN7 and bevacizumab, respectively
(p < 0.05), thus indicating the anti-angiogenic effect of systemic AN7.

We further extended our evaluation and tested the therapeutic potential of oral administration of
AN7 (Figure S1). Similar to IP AN7 treatment, oral AN7 treatment significantly reduced CNV area
from approximately 60,000 µm2 in the saline controls, to 43,527 ± 7350 µm2 and 44,002 ± 11,662 µm2,
by IP AN7 and oral AN7, respectively (p < 0.05).
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Figure 2. Systemic AN7 treatment reduces choroidal neovascularization (CNV) area. (A) 

Representative images of choroidal flatmounts from day 7 post laser application, with CNV lesions 

sites from mice treated with saline, AN7 or bevacizumab. Fluorescein isothiocyanate dextran (FITC-

dextran) (green) perfused through the blood vessels of the eyes and is seen at the laser lesion site, 

indicative of CNV formation. Scale bar, 100 µm. (B) Quantification of FITC area in choroidal 

flatmounts (indicative of CNV area) on day 7 from laser photocoagulation. Three laser applications 

were performed on the right eyes and mice were randomized to intraperitoneal (IP) 20 mg/kg AN7 

or 10 mg/kg AN7 or IP saline-control groups, administered immediately following laser 

photocoagulation and for a total of three times a week thereafter. One-way ANOVA followed by 

Sidak post hoc test was used for statistical analysis. n = number of eyes per group. (C) Quantification 

of FITC area in choroidal flatmounts (indicative of CNV area) on day 7 post laser photocoagulation. 

Three laser applications were performed on the right eyes. IP injections of AN7 were compared to 

intravitreal (IVT) injection of bevacizumab and to corresponding saline controls. IP injections of AN7 

or saline were administered immediately following laser applications and for a total of three times a 

week thereafter. IVT injections of bevacizumab or saline were administered once, immediately 

following the laser applications. One-way ANOVA followed by Sidak post-hoc test was used for 

statistical analysis. n = number of eyes per group. 

2.3. AN7 Reduces CD31, VEGF, and FGF-2 at the Laser Lesion Site 

To elucidate the mechanism of AN7 leading to CNV attenuation, we examined the effect of AN7 

on the expression of VEGF and fibroblast growth factor (FGF-2), on day 3 post CNV induction, while 

they were highly expressed [34,35]. 

Figure 3 demonstrates that VEGF (red) and FGF-2 (purple) staining was less prominent at the 

lesion site of IP AN7 treatment in comparison to control. VEGF fluorescence intensity was 

significantly decreased from 5.55 ± 0.83 MGV in the saline control group to 3.88 ± 0.74 MGV in the 

AN7-treated group (p < 0.001). FGF-2 fluorescence intensity was significantly decreased from 10.35 ± 

1.09 MGV in the saline control group to 7.31 ± 1.33 MGV in the AN7-treated group (p < 0.001). These 

results are in accordance with the statistically significant reduction in CD31 induced by AN7 from 

3.7 ± 0.87 MGV in the saline control group to 2.12 ± 0.68 MGV in the AN7-treated group (p < 0.001); 

the less angiogenic factors were expressed, the less endothelial cells were present, showing the anti-

angiogenic effect of AN7. 

Figure 2. Systemic AN7 treatment reduces choroidal neovascularization (CNV) area. (A) Representative
images of choroidal flatmounts from day 7 post laser application, with CNV lesions sites from mice
treated with saline, AN7 or bevacizumab. Fluorescein isothiocyanate dextran (FITC-dextran) (green)
perfused through the blood vessels of the eyes and is seen at the laser lesion site, indicative of CNV
formation. Scale bar, 100 µm. (B) Quantification of FITC area in choroidal flatmounts (indicative of CNV
area) on day 7 from laser photocoagulation. Three laser applications were performed on the right eyes
and mice were randomized to intraperitoneal (IP) 20 mg/kg AN7 or 10 mg/kg AN7 or IP saline-control
groups, administered immediately following laser photocoagulation and for a total of three times a
week thereafter. One-way ANOVA followed by Sidak post hoc test was used for statistical analysis.
n = number of eyes per group. (C) Quantification of FITC area in choroidal flatmounts (indicative
of CNV area) on day 7 post laser photocoagulation. Three laser applications were performed on the
right eyes. IP injections of AN7 were compared to intravitreal (IVT) injection of bevacizumab and to
corresponding saline controls. IP injections of AN7 or saline were administered immediately following
laser applications and for a total of three times a week thereafter. IVT injections of bevacizumab
or saline were administered once, immediately following the laser applications. One-way ANOVA
followed by Sidak post-hoc test was used for statistical analysis. n = number of eyes per group.

2.3. AN7 Reduces CD31, VEGF, and FGF-2 at the Laser Lesion Site

To elucidate the mechanism of AN7 leading to CNV attenuation, we examined the effect of AN7
on the expression of VEGF and fibroblast growth factor (FGF-2), on day 3 post CNV induction, while
they were highly expressed [34,35].

Figure 3 demonstrates that VEGF (red) and FGF-2 (purple) staining was less prominent at the
lesion site of IP AN7 treatment in comparison to control. VEGF fluorescence intensity was significantly
decreased from 5.55 ± 0.83 MGV in the saline control group to 3.88 ± 0.74 MGV in the AN7-treated
group (p < 0.001). FGF-2 fluorescence intensity was significantly decreased from 10.35 ± 1.09 MGV
in the saline control group to 7.31 ± 1.33 MGV in the AN7-treated group (p < 0.001). These results
are in accordance with the statistically significant reduction in CD31 induced by AN7 from 3.7 ± 0.87
MGV in the saline control group to 2.12 ± 0.68 MGV in the AN7-treated group (p < 0.001); the less
angiogenic factors were expressed, the less endothelial cells were present, showing the anti-angiogenic
effect of AN7.
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Figure 3. AN7 treatment reduces CD31, vascular endothelial growth factor (VEGF) and fibroblast 

growth factor 2 (FGF-2). Representative images of laser lesion sites from mice treated with IP 20 mg/kg 

AN7 or saline (control), from day 3 post laser photocoagulation. Sequential cryosections are stained for 

endothelial cells marker CD31 (green; A,D), VEGF (red; B,E), and FGF-2 (purple; C,F). Cells nuclei are 

stained with DAPI (blue). GCL, Ganglion Cells Layer; INL, Inner Nuclear Layer; ONL, Outer Nuclear 

Layer; RPE, Retinal Pigmented Epithelium; C, Choroid. Scale bar, 50µm. (G) Quantification of CD31 

staining in laser applied eyes. (H) Quantification of VEGF staining in laser applied eyes. (I) 

Quantification of FGF-2 staining in laser applied eyes. 

2.4. AN7 Reduces Vascular Leakage from CNV Lesions 

Fluorescein angiography (FA) was used in order to detect the effect of AN7 on CNV leakage. 

Figure 4 shows representative images of en face color images of the fundus (Figure 4A,D) and FA, 

performed on day 7 after CNV induction, revealing three laser spots around the optic disc of each 

eye. While saline treated eyes demonstrated blurred margins increasing in size over time, in AN7 

treated eyes the lesion margins remained stable and distinct over time. 

Figure 4B,C of the saline-control demonstrates three hyperfluorescent lesions. Lesions two and three 

were classified as “leakage”, while lesion one had distinct margins and was therefore classified as 

“staining”. 

Figure 4E,F of the AN7 treatment shows three lesions that were classified as “staining”. Figure 

4G summarizes the percentage of leaky lesions of total lesions from day 2 to day 7 post CNV 

induction. A statistically significant reduction in leaky lesions was observed in the AN7 treatment 

group, as early as day 3 post CNV induction (p = 0.041; Day 3). On day 7 post CNV induction, nearly 

all lesions of AN7 treatment became stained (17 stained, one leaky; 5.6% leaky lesions), while the 

saline lesions remained mostly leaking. Some of these became stained as part of the natural course of 

the healing process (six stained, 11 leaky; 64.7% leaky lesions) (p = 0.0003; Day 7). 

Figure 3. AN7 treatment reduces CD31, vascular endothelial growth factor (VEGF) and fibroblast
growth factor 2 (FGF-2). Representative images of laser lesion sites from mice treated with IP 20 mg/kg
AN7 or saline (control), from day 3 post laser photocoagulation. Sequential cryosections are stained
for endothelial cells marker CD31 (green; A,D), VEGF (red; B,E), and FGF-2 (purple; C,F). Cells nuclei
are stained with DAPI (blue). GCL, Ganglion Cells Layer; INL, Inner Nuclear Layer; ONL, Outer
Nuclear Layer; RPE, Retinal Pigmented Epithelium; C, Choroid. Scale bar, 50 µm. (G) Quantification
of CD31 staining in laser applied eyes. (H) Quantification of VEGF staining in laser applied eyes.
(I) Quantification of FGF-2 staining in laser applied eyes.

2.4. AN7 Reduces Vascular Leakage from CNV Lesions

Fluorescein angiography (FA) was used in order to detect the effect of AN7 on CNV leakage.
Figure 4 shows representative images of en face color images of the fundus (Figure 4A,D) and FA,
performed on day 7 after CNV induction, revealing three laser spots around the optic disc of each eye.
While saline treated eyes demonstrated blurred margins increasing in size over time, in AN7 treated
eyes the lesion margins remained stable and distinct over time.

Figure 4B,C of the saline-control demonstrates three hyperfluorescent lesions. Lesions two and
three were classified as “leakage”, while lesion one had distinct margins and was therefore classified
as “staining”.

Figure 4E,F of the AN7 treatment shows three lesions that were classified as “staining”. Figure 4G
summarizes the percentage of leaky lesions of total lesions from day 2 to day 7 post CNV induction.
A statistically significant reduction in leaky lesions was observed in the AN7 treatment group, as early
as day 3 post CNV induction (p = 0.041; Day 3). On day 7 post CNV induction, nearly all lesions of
AN7 treatment became stained (17 stained, one leaky; 5.6% leaky lesions), while the saline lesions
remained mostly leaking. Some of these became stained as part of the natural course of the healing
process (six stained, 11 leaky; 64.7% leaky lesions) (p = 0.0003; Day 7).
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Figure 4. AN7 treatment reduces fluorescein leakage from laser lesions. Representative images of color 

fundus (A,D) and fluorescein angiography (FA; B,C,E,F) from day 7 post CNV induction of mice treated 

by intraperitoneal (IP) 20 mg/kg AN7 or saline. Time of imaging post fluorescein injection is indicated 

at the bottom right side of each angiogram. (B,C) Early (1 to 2 minutes post fluorescein injection) and 

late (4 to 5 minutes post fluorescein injection) angiograms of an eye from IP saline-control group. Lesion 

one was classified as stained, while lesions two and three were classified as leaky. (E,F) Early and late 

angiograms of an eye from IP 20 mg/kg AN7-treated group. All three lesions were classified as stained. 

(G) The percentage of leaky lesions of total lesions (six mice with 18 lesions total for each group) on days 

2 to 7 post CNV induction (the proportions of leaky and stained lesions in each group were tested using 

the Fisher’s exact test; *Day 3, p = 0.041; **Day 4, p = 0.021; ***Day 6, p = 0.002; ****Day 7, p = 0.0003). 

2.5. AN7 Treatment Stabilizes Tight Junctions and Reduces Permeability of RPE Cells Exposed to Hypoxia 

To test the effect of AN7 on the oBRB formed by the RPE cells, we used a hypoxia model, as 

hypoxia is known to induce the expression of angiogenic factors such as VEGF [36]. RPE cells were 

exposed to 24 h normoxic or hypoxic conditions in the presence or absence of AN7 in the media. 

First, AC-H3 staining (Red; Figure 5A–E) was used to validate the selective activity of AN7 on 

stimulated cells, i.e., exposed to hypoxia. In normoxic conditions (Figure 5A,B), the addition of AN7 

did not affect the acetylation status. In hypoxic conditions (Figure 5C,D), however, the addition of 

AN7 induced a significant elevation in the histone acetylation levels (p = 0.002). 

Figure 5F to M shows representative images of the tight junctions (TJ)-associated protein Zonula 

Occludens-1 (ZO-1) staining. Under normoxic conditions, ZO-1 staining was observed partly inside 

the cells, but mostly at the cell borders (Figure 5F,J), confirming the normal hexagonal shape of RPE 

cells. Addition of AN7 under normoxic conditions did not affect the ZO-1 localization (Figure 5G,K). 

In contrast, exposure of RPE cells to hypoxia significantly reduced ZO-1 expression at the cell borders 

(Figure 5H,L), resulting in the loss of the normal tiling pattern. However, addition of AN7 to the cells 

media while exposing them to hypoxia protected the normal hexagonal tiling pattern of ZO-1 at the 

cell borders (Figure 5I,M), indicating the stabilizing effect of AN7 on the TJ of RPE during hypoxia. 

These results are in correlation with the effect of AN7 on AC-H3 staining during hypoxia. 

Figure 5N shows the quantification of FITC-dextran leakage through RPE cell layer. In 

normoxia, FITC-dextran concentration in the lower chamber was 17.4 μg/mL and the addition of AN7 

did not induce any significant effect (19.4 μg/mL). Exposure of RPE to hypoxia, increased FITC-

dextran leakage to 42 μg/mL (p = 0.004; normoxia vs. hypoxia), indicating the significant elevation in 

RPE cells permeability. Notably, adding AN7 during hypoxia restored FITC-dextran leakage to 

normal levels (20.3 μg/mL; p = 0.001, hypoxia vs. hypoxia and AN7). 

Figure 4. AN7 treatment reduces fluorescein leakage from laser lesions. Representative images of
color fundus (A,D) and fluorescein angiography (FA; B,C,E,F) from day 7 post CNV induction of mice
treated by intraperitoneal (IP) 20 mg/kg AN7 or saline. Time of imaging post fluorescein injection is
indicated at the bottom right side of each angiogram. (B,C) Early (1 to 2 min post fluorescein injection)
and late (4 to 5 min post fluorescein injection) angiograms of an eye from IP saline-control group.
Lesion one was classified as stained, while lesions two and three were classified as leaky. (E,F) Early
and late angiograms of an eye from IP 20 mg/kg AN7-treated group. All three lesions were classified
as stained. (G) The percentage of leaky lesions of total lesions (six mice with 18 lesions total for each
group) on days 2 to 7 post CNV induction (the proportions of leaky and stained lesions in each group
were tested using the Fisher’s exact test; *Day 3, p = 0.041; **Day 4, p = 0.021; ***Day 6, p = 0.002;
****Day 7, p = 0.0003).

2.5. AN7 Treatment Stabilizes Tight Junctions and Reduces Permeability of RPE Cells Exposed to Hypoxia

To test the effect of AN7 on the oBRB formed by the RPE cells, we used a hypoxia model, as
hypoxia is known to induce the expression of angiogenic factors such as VEGF [36]. RPE cells were
exposed to 24 h normoxic or hypoxic conditions in the presence or absence of AN7 in the media.

First, AC-H3 staining (Red; Figure 5A–E) was used to validate the selective activity of AN7 on
stimulated cells, i.e., exposed to hypoxia. In normoxic conditions (Figure 5A,B), the addition of AN7
did not affect the acetylation status. In hypoxic conditions (Figure 5C,D), however, the addition of
AN7 induced a significant elevation in the histone acetylation levels (p = 0.002).

Figure 5F to M shows representative images of the tight junctions (TJ)-associated protein Zonula
Occludens-1 (ZO-1) staining. Under normoxic conditions, ZO-1 staining was observed partly inside
the cells, but mostly at the cell borders (Figure 5F,J), confirming the normal hexagonal shape of RPE
cells. Addition of AN7 under normoxic conditions did not affect the ZO-1 localization (Figure 5G,K).
In contrast, exposure of RPE cells to hypoxia significantly reduced ZO-1 expression at the cell borders
(Figure 5H,L), resulting in the loss of the normal tiling pattern. However, addition of AN7 to the cells
media while exposing them to hypoxia protected the normal hexagonal tiling pattern of ZO-1 at the
cell borders (Figure 5I,M), indicating the stabilizing effect of AN7 on the TJ of RPE during hypoxia.
These results are in correlation with the effect of AN7 on AC-H3 staining during hypoxia.

Figure 5N shows the quantification of FITC-dextran leakage through RPE cell layer. In normoxia,
FITC-dextran concentration in the lower chamber was 17.4 µg/mL and the addition of AN7 did
not induce any significant effect (19.4 µg/mL). Exposure of RPE to hypoxia, increased FITC-dextran
leakage to 42 µg/mL (p = 0.004; normoxia vs. hypoxia), indicating the significant elevation in RPE cells
permeability. Notably, adding AN7 during hypoxia restored FITC-dextran leakage to normal levels
(20.3 µg/mL; p = 0.001, hypoxia vs. hypoxia and AN7).
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Figure 5. AN7 treatment stabilizes the retinal pigmented epithelium (RPE) monolayer during 
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Figure 5. AN7 treatment stabilizes the retinal pigmented epithelium (RPE) monolayer during hypoxia.
RPE cells were grown in normoxic or hypoxic conditions for 24 h, in the presence or absence of
AN7 in the media. (A–D) Representative images of RPE cells stained for acetylated histone H3
(AC-H3; red) and cells nuclei, DAPI (blue). Scale bar, 20µm. (E) Quantification of the percentage
of AC-H3 stained cells of total cells, comparing normoxic and hypoxic conditions in the presence
or absence of AN7 in the cell media. One-way ANOVA followed by Tukey’s multiple comparisons
test was used for statistical analysis. (F–M) Representative images of RPE cells stained for the tight
junctions associated protein, Zonula Occludens-1 (ZO-1; red) and cells nuclei, DAPI (blue). Scale bar,
5 µm. (E–H) Z-axis images are showing the distribution pattern of ZO-1 through the borders of the
cells. (N) Quantification of FITC-dextran leakage through the RPE cell layer grown on Polyethylene
Terephthalate (PET) membranes, comparing normoxic and hypoxic conditions in the presence or
absence of AN7 in the cell media. One-way ANOVA followed by Tukey’s multiple comparisons test
was used for statistical analysis.

3. Discussion

While inhibition of VEGF remains the mainstay of research focus for CNV therapies, anti-VEGF
agents do not alleviate the disease or stop its progression in all cases, thus indicating the involvement
of additional pathways in chorioretinal angiogenesis. Moreover, repeated intravitreal injections are
required for successful treatment, increasing the risk for vision-threatening complications, as the
injected eye is exposed to infection, inflammation, intraocular pressure elevation, vitreous hemorrhage,
cataract, and retinal detachment, with a consequent loss of vision or loss of eye [37–40]. Therefore,
additional therapeutic agents and alternative routes of administration should be explored.

HDACi’s have been extensively studied in cancer biology and have been found to affect key
events in tumor progression by inhibiting proliferation and inducing differentiation and apoptosis
in vitro and in vivo [28,41]. Several compounds with HDAC inhibitory activity have been identified,
differing in structure, HDAC enzymes specificity, potency, and toxicity. The approval of HDACi’s
such as vorinostat, romidepsin, belinostat, and panobinostat, has revolutionized the way cancers are
being treated [42]. However, lack of response and development of resistance to the treatment is an
issue [43,44]. Improving the selectivity of HDACi’s to amplify their accumulation in cancer cells at a
lower dose and thereby reduce the toxic effect [45–47] of these drugs on normal healthy cells entail
future studies [48].

HDACi’s are currently being evaluated for the treatment of various eye diseases, including retinal
degenerative diseases [49]. Studies in rodents have shown that HDACi’s can significantly reduce
retinal injury initiated by ischemia/reperfusion [16,24], reduce inflammation in dry eye disease [50],
and inhibit postoperative conjunctival fibrosis [51]. Moreover, valproic acid, an HDACi, has been used
for treating patients with retinitis pigmentosa [52].
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The potential role of HDACi’s in the regulation of CNV formation was previously studied [16,24,
26]. Using the laser induced CNV experimental mice model, Chan et al. [25] showed that Trichostatin
A (TSA), an HDACi, attenuated CNV formation. However, TSA’s production is costly and highly
inefficient [53,54], and TSA studies are considered difficult to reproduce, and its function is largely
dependent on the presence or absence of a carrier protein [55]. Thus, TSA is considered mainly a
reference substance utilized in the search for new and more efficient HDACi’s.

AN7 has previously been reported to exhibit high selectivity, low toxicity, and significant
anti-angiogenic and anti-metastatic properties in different cell lines in vitro [30,41,56] and in various
tumors in vivo [30,41,56,57]. It has been suggested that AN7 specifically targets the elevated HDACs
activities and expression in cancer cells. The specific suppression of HDACs activity and expression,
as well as the difference in the inherent HDAC activity in different cell types was attributed to the
anti-cancer efficacy and the selectivity of AN7 [28,41,58]. The well-established anti-angiogenic activities
of AN7 [30,56], in addition to the similarity between the angiogenic processes involved in cancer, and
the pathologic blood vessels development in the eye, encouraged us to evaluate the protective effect of
AN7 in ocular pathologies.

Rephaeli et al. showed that the acute LD50 doses of AN7 in C57BL mice were >1 g/kg for
IP and >1.2 g/kg for oral administration [27,41], while the anti-metastatic activity of AN7 when
administered by either route reached a plateau between 20 to 50 mg/kg and higher doses did not
result in any increased activity [28]. Our group previously showed that IP administration of 20 mg/kg
AN7 attenuated chemical-burn-induced corneal neovascularization in mice [32], demonstrating the
anti-angiogenic effect of systemic AN7 in an ocular pathology. Based on these studies, we speculated
that a dosage of 20 mg/kg AN7 would be sufficiently efficacious in treating CNV in a mouse model,
and therefore our dose dependency study was performed with a maximal dosage of 20 mg/kg AN7.

Histone acetylation and deacetylation play an important role in transcription modulation [59,60].
The protective effects of AN7 are known to be facilitated by changes in histone acetylation status [27,28].
We demonstrated that both laser induction of CNV in vivo and hypoxia induction in vitro altered
histone acetylation status. Treatment of laser-induced CNV with AN7 and the addition of AN7 to RPE
cells under hypoxia, both resulted in a statistically significant increase in histone hyperacetylation.

Our in vivo study revealed that AN7 has inhibitory effects on both formation and leakage
of pathologic blood vessels, emphasizing the anti-angiogenic effects of AN7 treatment. We have
demonstrated that systemic administration of AN7 induced changes in the histone acetylation levels
in the retina, leading to VEGF and FGF-2 reduction in the laser lesion area. This is highly important,
as these factors are known to be principal in the pathologic neovascularization process [61,62].
These results are in correlation with the observed reduction in the endothelial cells marker CD31
staining, supporting the contribution of angiogenic factors to CNV development, and the involvement
of AN7 in attenuating CNV through down regulation of pro-angiogenic factors. However, the exact
mechanism by which AN7 reduces CNV is yet to be elucidated. Moreover, it would be interesting to
study the combination of AN7 treatment with the conventional bevacizumab treatment, as we have
shown that they each have comparable effects on CNV area reduction.

Loss of vision is a main outcome of the newly formed blood vessels being immature and leaky [1–3].
Systemic administration of AN7 suppressed fluorescein leakage from CNV lesions. It is likely that the
observed reduction in CNV leakage, exerted by AN7 treatment, is due to the significant decrease in
CNV lesion area, as well as the reduction in vascular permeability, manifested through the suppression
of VEGF and FGF-2.

RPE permeability is known to be increased by VEGF through the functional disruption of TJ
proteins, such as ZO-1, leading to destabilization of the oBRB [6,7,63,64]. We have found that AN7 had
a protective effect over the barrier features maintained by the RPE, as AN7 protected the hexagonal
tiling pattern of ZO-1 and significantly reduced RPE permeability during hypoxia. To the best of our
knowledge, this is the first study to show the potential of AN7 as a stabilizer of epithelial barriers in
general, and the oBRB of the eye in particular, through TJ modifications.
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No less important, our results show no significant deleterious effects of systemic AN7 in naïve
eyes or non-stimulated cells. This may be significant for its future safety as a potential drug.
Its systemic way of administration may appeal to clinicians who currently rely solely on treatment
with intraocular injections.

In conclusion, based on the anti-angiogenic and anti-permeability effects exerted by the systemic
administration of AN7 on laser-induced CNV in a mouse model, we propose that AN7 and possibly
other low-toxicity, orally-bioavailable HDACi’s, should be considered as potential future candidates
for the treatment of persistent, recurrent, or refractory CNV, which requires further investigation.

4. Materials and Methods

4.1. Animals

Eight-week old male C57BL/6J mice (Envigo RMS, Jerusalem, Israel) weighing 19 to 25 grams,
were obtained and handled according to the guidelines of the Association for Research in Vision and
Ophthalmology (ARVO) statement for the Use of Animals in Ophthalmic and Visual Research and
the approval of the Institutional Animal Care and Use Committee of Rabin Medical Center (Project
identification #022-b11353 041116, 4 November 2016).

Mice were anesthetized with an IP injection of ketamine (40 mg/kg; Vetoquinol, Lure, France)
and xylazine (10 mg/kg; Eurovet Animal Health BV, Bladel, Netherlands), supplemented with topical
anesthesia with oxybuprocaine hydrochloride (0.4%; Fischer Pharmaceutical Labs Ltd., Bnei Brak,
Israel) and their pupils were dilated with topical administration of 0.8% tropicamide eye drops (Fischer
Pharmaceutical Labs Ltd.).

CNV was performed as previously described by Weinberger et al. [65] Briefly, diode laser indirect
ophthalmoscope (Iris Medical Oculight SLX System©, Iridex, Mountain View, CA, USA) was used
with laser power of 350 mW for duration of 100 msec, and a condensing lens of 90 diopters. Three laser
applications were applied on the right eye, at a distance of 1 to 2 optic disc diameters around the optic
nerve. Disruption of the Bruch’s membrane was identified by the appearance of a white bubble at the
site of photocoagulation.

Mice were then randomized and treated with AN7 or saline. AN7 was prepared as previously
described [27]. Net AN7 is a liquid containing 1 mg/µL at a concentration of 3.93M prior to further
dilution. The structure and metabolic products of AN7 are shown in Table 1.

Table 1. Chemical structure and metabolites of AN7.

Name Structure Metabolites

AN7 (Butyroyloxymethyl-diethyl
phosphate)
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AN7 was formulated in sterile saline just before administration. AN7 (20 mg/kg) or saline
(as control) was administered IP immediately following CNV induction and for a total of three times a
week. Naïve mice, without laser applications, received IP 20 mg/kg AN7 or saline, three times a week.

In order to compare the efficacy of AN7 with bevacizumab (25 mg/0.1 mL Avastin; Genentech,
South San Francisco, CA, USA and Roche, Basel, Switzerland), mice were randomized to 4 groups:
AN7 IP injections, saline IP injections, bevacizumab IVT injection, or saline IVT injection.

IVT injections were administered once, immediately post CNV induction, and performed under
an operating microscope (Zeiss Opmi Microscope; Carl Zeiss Microscopy GmbH, Jena, Germany).
Briefly, a microsyringe (33-gauge; Hamilton) was placed intravitreally in the retrolental space of the
right eye, and 1 µL of bevacizumab or saline (as control) were injected. AN7 and saline IP injections
were administered three times a week, as described above.
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4.2. Histology and Immunofluorescence Staining

On days 3 or 7 post CNV induction and treatment initiation with IP 20 mg/kg AN7 or saline, mice
were sacrificed by cervical dislocation (n = 5 mice per group, total of 10 mice per day 3 receiving one IP
injection, and 10 mice per day 7 receiving three IP injections). Eyes were fixed in 4% paraformaldehyde
(PFA) for 2 h, washed with phosphate buffered saline (PBS) and gradually incubated with sucrose to a
final concentration of 30% sucrose overnight. Eyes were then embedded in OCT compound (Sakura
Finetek, Tokyo, Japan) on dry ice and kept in −80 ◦C. Serial sections of 10 µm thickness were cut using
a cryostat (Leica Biosystems, Wetzlar, Germany).

Day 7 cryosections were blocked with 10% normal donkey serum (NDS) and incubated with rat
anti-mouse CD31 antibody (BD biosciences, San Jose, CA, USA) and rabbit anti-acetylated histone
H3 (Cell Signaling Technology, Danvers, MA, USA). The cryosections were then incubated with the
appropriate secondary antibodies (Alexa Fluor488 for CD31 and Alexa Fluor568 for AC-H3; Invitrogen,
Carlsbad, CA, USA). Finally, Nuclei were counterstained with DAPI.

Sequential cryosections with comparing regions were stained for H&E (ScyTek Laboratories inc.,
Logan, UT, USA). Day 3 cryosections were stained using the same immunostaining protocol described
above, with rabbit anti-mouse VEGF antibody or rabbit anti-mouse FGF-2 antibody (Abcam plc.,
Cambridge, UK), and with rat anti-mouse CD31 antibody, followed by the appropriate secondary
antibodies (Alexa Fluor568 for VEGF or FGF-2, and Alexa Fluor488 for CD31; Invitrogen, Carlsbad,
CA, USA). Images were captured using a fluorescence microscope (Olympus Optical Co., Tokyo, Japan;
or Axio Imager.Z2, Carl Zeiss Microscopy GmbH, Jena, Germany).

MGV were used to define AC-H3, VEGF, and FGF-2 fluorescence intensities using ImageJ software
(Version 1.51J, NIH, MD, USA). Six slides containing laser lesions sites from 5 eyes of each group (total
of 30 slides per group) were used for the aforementioned analysis.

4.3. Choroidal Flatmounts and CNV Area Quantification

Seven days post CNV induction and treatment with IP 20 mg/kg AN7, IP saline, IVT bevacizumab
or IVT saline, mice were anesthetized (54 mice, n = 10 to 15 per group). FITC-dextran (MW = 500 kD,
Sigma Aldrich, Rehovot, Israel), diluted in saline to a concentration of 25 mg/mL, was perfused
through the mice hearts, and 5 min later mice were euthanized by cervical dislocation.

Eyes were enucleated and fixed in 4% PFA for 2 h. Eyes were then washed with PBS, and the
RPE-choroid-sclera complex was carefully isolated, flattened by radial incisions, resulting in choroidal
flatmounts, and placed on slides.

Sensory retina flatmounts were used to validate FITC-dextran perfusion from the heart to the
blood vessels of the eyes. Therefore, mice without staining on retinal flatmounts were excluded from
further analysis.

Images of choroidal and retinal flatmounts were captured using a fluorescence microscope
(Olympus Optical Co., Tokyo, Japan). Choroidal flatmounts images were also captured with a light
microscope, to eliminate areas transparent to light.

ImageJ software (Version 1.51J, NIH, MD, USA) was used to delineate and quantify FITC-dextran
area (indicative of CNV area) on the choroidal flatmounts.

4.4. Fluorescein Angiography

Mice with laser induction of CNV were treated with 20 mg/kg AN7 or saline (n = 6 in each group),
administered IP immediately following laser application for a total of three times a week (on days 0,
2, 4 post CNV induction). On days 2 to 7 post CNV induction, mice were anesthetized, their pupils
dilated, and 0.1 ml 2.5% fluorescein sodium (Novartis, Basel, Switzerland) was injected IP. Vascular
leakage was evaluated using the Optos California UWF imaging system (Optos Inc., Marlborough,
MA, USA). Color fundus images were also taken.
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Two masked retina specialists, not involved in laser photocoagulation or FA imaging, interpreted
the fluorescein angiograms. Each laser spot was classified to “Leakage”: Hyperfluorescence gradually
increases in intensity over time, with the borders of hyperfluorescence becoming increasingly blurred
on the late phases of imaging; or “Staining”: Hyperfluorescence gradually increases in intensity over
time, but the borders remain fixed throughout the angiograms.

4.5. Cell Culture

Human RPE cells (ARPE-19; ATCC, Manassas, VA, USA) were grown in Dulbecco’s Modified
Eagle Medium (DMEM) and Ham’s nutrient mixture F12 (F12; Biological Industries, Beit Ha’emek,
Israel) culture medium, containing 10% Fetal Bovine Serum (FBS; Biological Industries, Beit Ha’emek,
Israel), 1 mM Glutamine, and 100 U/mL Penicillin, 0.1 mg/mL Streptomycin, 12.5 U/mL Nystatin
(PSN; Biological Industries, Beit Ha’emek, Israel) as full medium. Cells were cultured in humidified
incubator at 37 ◦C and 5% CO2, for 3 to 4 weeks (passages 10 to 20) to achieve epithelial apical-basal
polarity, with culture media being changed every 3 to 4 days.

RPE cells (passages 10 to 20) were grown in normoxic conditions as described above. Hypoxic
conditions were provided using hypoxia chamber, with flushes of 1% O2 and 5% CO2 every 3 h.

4.6. Immunofluorescence for RPE Cell Culture

RPE cells were cultured on slides in full medium containing or lacking 100µM AN7, while exposed
to normoxic or hypoxic conditions (described above) for 24 h. Slides were then fixed in 4% PFA and
blocked with 10% NDS for 1 h, followed by incubation with primary antibodies: Rabbit anti-ZO-1
(Invitrogen, Carlsbad, CA, USA) or rabbit anti-AC-H3; at 4 ◦C overnight. Alexa Fluor568 was used as
secondary antibody. Finally, Nuclei were counterstained with DAPI.

ZO-1 staining was digitally captured using a confocal microscope (Leica TCS SP8, Leica
Biosystems, Wetzlar, Germany), and 3-dimensional images were represented using Imaris software
(Version 9.1, Oxford Instruments, Abingdon, UK).

AC-H3 staining was digitally imaged using a fluorescence microscope (Axio Imager.Z2, Carl
Zeiss Microscopy GmbH, Jena, Germany), and was quantified using ImageJ software (n = 9 images per
group) (Version 1.51J, NIH, MD, USA).

4.7. RPE Cell Culture Permeability Assay

RPE cells were grown on top of a 1 µM Polyethylene Terephthalate (PET) hanging cell culture
inserts (Merck Millipore, Burlington, MA, USA) in 24 wells plate. On the day of experiment, plates
were cultured in full medium containing or lacking 100 µM AN7, while exposed to normoxic or
hypoxic conditions for 24 h (n = 3 wells per group).

Media were discarded, cells were washed with basal medium (DMEM/F12 only), and basal
medium was applied to the lower chamber of the inserts. Basal medium containing 1000 µg/mL
FITC-dextran (MW = 10 kD, Sigma Aldrich, Rehovot, Israel) was instilled in the upper chamber of the
inserts. Fluorescence of media from the lower chambers, representing flow across the RPE cell layer,
was measured half an hour following incubation, using the Synergy HT microplate reader (excitation
= 485 nm, emission = 528 nm; BioTek Instruments Inc., Winooski, VT, USA). Fluorescence of samples
was compared to a calibration curve for the calculation of the FITC-dextran concentration.

4.8. Statistical Analysis

Unless indicated otherwise, data are expressed as mean±SD. Statistical analyses were performed
(GraphPad Prism 7, CA, USA) using the unpaired t-test or the one-way ANOVA, or the Fisher’s exact
test. p < 0.05 was considered statistically significant.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/3/
714/s1.

http://www.mdpi.com/1422-0067/20/3/714/s1
http://www.mdpi.com/1422-0067/20/3/714/s1


Int. J. Mol. Sci. 2019, 20, 714 12 of 15

Author Contributions: Conceptualization, M.D., A.R. and T.L.; Methodology, M.D., E.M.-B., Y.N., D.W. and T.L.;
Validation, M.D., E.M.-B., Y.N. and T.L.; Formal Analysis, M.D., E.M.-B. and Y.N.; Investigation, M.D., E.M.-B.,
Y.N. and D.W.; Resources, N.T., D.W., A.R. and T.L.; Writing—Original Draft Preparation, M.D., R.S. and T.L.;
Writing—Review and Editing, M.D., R.S., E.M.-B., Y.N., N.T., D.W., A.R. and T.L.; Visualization, M.D., E.M.-B.,
and Y.N.; Supervision, D.W., A.R. and T.L.; Project Administration, T.L.; Funding Acquisition, D.W. and T.L.

Acknowledgments: This study was supported by a grant from the Claire and Amedee Maratier Institute for the
Study of Blindness and Visual Disorders, Sackler Faculty of Medicine, Tel Aviv University, Israel. Mor Dahbash
carried out this work as part of the requirements for an MSc degree from Sackler School of Medicine, Tel Aviv
University, Israel. The authors would like to thank Dalia Sela for her professional assistance at all times.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Green, W.R.; Wilson, D.J. Choroidal Neovascularization. Ophthalmology 1986, 93, 1169–1176. [CrossRef]
2. Grossniklaus, H.E.; Green, W.R. Choroidal neovascularization. Am. J. Ophthalmol. 2004, 137, 496–503.

[CrossRef] [PubMed]
3. Fine, S.L. Age-Related Macular Degeneration. N. Engl. J. Med. 2000, 483–492. [CrossRef] [PubMed]
4. Gunda, V.; Sudhakar, Y.A. Regulation of tumor angiogenesis and choroidal neovascularization by

endogenous angioinhibitors. J. Cancer Sci. Ther. 2013, 5, 417–426. [CrossRef] [PubMed]
5. Das, A.; McGuire, P.G. Retinal and choroidal angiogenesis: Pathophysiology and strategies for inhibition.

Prog. Retin. Eye Res. 2003, 22, 721–748. [CrossRef] [PubMed]
6. Casey, R.; Li, W.W. Factors controlling ocular angiogenesis. Am. J. Ophthalmol. 1997, 124, 521–529. [CrossRef]
7. Bressler, S.B. Introduction: Understanding the Role of Angiogenesis and Antiangiogenic Agents in

Age-Related Macular Degeneration. Ophthalmology 2009, 116, S1–S7. [CrossRef]
8. Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 2011, 21, 381–395.

[CrossRef]
9. Gregory, P.D.; Wagner, K.; Hörz, W. Histone acetylation and chromatin remodeling. Exp. Cell Res. 2001, 265,

195–202. [CrossRef]
10. Grunstein, M. Histone acetylation in chromatin structure and transcription. Nature 1997, 389, 349–352.

[CrossRef]
11. Hake, S.B.; Xiao, A.; Allis, C.D. Linking the epigenetic “language” of covalent histone modifications to cancer.

Br. J. Cancer 2004, 90, 761–769. [CrossRef] [PubMed]
12. Kouzarides, T. Chromatin Modifications and Their Function. Cell 2007, 128, 693–705. [CrossRef] [PubMed]
13. Rosato, R.R.; Grant, S. Histone deacetylase inhibitors in clinical development. Expert Opin. Investig. Drugs

2004, 13, 21–38. [CrossRef]
14. Dokmanovic, M.; Clarke, C.; Marks, P.A. Histone Deacetylase Inhibitors: Overview and Perspectives. Mol.

Cancer Res. 2007, 5, 981–989. [CrossRef] [PubMed]
15. Kelly, W.K.; O’Connor, O.A.; Marks, P.A.; Connor, O.A.O. Histone deacetylase inhibitors: From target to

clinical trials. Expert Opin. Investig. Drugs 2002, 11, 1695–1713. [CrossRef] [PubMed]
16. Fan, J.; Alsarraf, O.; Dahrouj, M.; Platt, K.A.; Chou, C.J.; Rice, D.S.; Crosson, C.E. Inhibition of HDAC2

protects the retina from ischemic injury. Investig. Ophthalmol. Vis. Sci. 2013, 54, 4072–4080. [CrossRef]
[PubMed]

17. Chen, B.; Cepko, C.L. Requirement of histone deacetylase activity for the expression of critical photoreceptor
genes. BMC Dev. Biol. 2007, 7, 78. [CrossRef] [PubMed]

18. Schwechter, B.R.; Millet, L.E.; Levin, L.A. Histone deacetylase inhibition-mediated differentiation of RGC-5
cells and interaction with survival. Investig. Ophthalmol. Vis. Sci. 2007, 48, 2845–2857. [CrossRef] [PubMed]

19. Anderson, K.W.; Chen, J.; Wang, M.; Mast, N.; Pikuleva, I.A.; Turko, I.V. Quantification of histone deacetylase
isoforms in human frontal cortex, human retina, and mouse brain. PLoS ONE 2015, 10. [CrossRef] [PubMed]

20. Chindasub, P.; Lindsey, J.D.; Duong-Polk, K.; Leung, C.K.; Weinreb, R.N. Inhibition of histone deacetylases
1 and 3 protects injured retinal ganglion cells. Investig. Ophthalmol. Vis. Sci. 2013, 54, 96–102. [CrossRef]
[PubMed]

21. Alsarraf, O.; Fan, J.; Dahrouj, M.; Chou, C.J.; Menick, D.R.; Crosson, C.E. Acetylation: A lysine modification
with neuroprotective effects in ischemic retinal degeneration. Exp. Eye Res. 2014, 127, 124–131. [CrossRef]
[PubMed]

http://dx.doi.org/10.1016/S0161-6420(86)33609-1
http://dx.doi.org/10.1016/j.ajo.2003.09.042
http://www.ncbi.nlm.nih.gov/pubmed/15013874
http://dx.doi.org/10.1056/NEJM200002173420707
http://www.ncbi.nlm.nih.gov/pubmed/10675430
http://dx.doi.org/10.4172/1948-5956.1000235
http://www.ncbi.nlm.nih.gov/pubmed/25258675
http://dx.doi.org/10.1016/j.preteyeres.2003.08.001
http://www.ncbi.nlm.nih.gov/pubmed/14575722
http://dx.doi.org/10.1016/S0002-9394(14)70868-2
http://dx.doi.org/10.1016/j.ophtha.2009.06.045
http://dx.doi.org/10.1038/cr.2011.22
http://dx.doi.org/10.1006/excr.2001.5187
http://dx.doi.org/10.1038/38664
http://dx.doi.org/10.1038/sj.bjc.6601575
http://www.ncbi.nlm.nih.gov/pubmed/14970850
http://dx.doi.org/10.1016/j.cell.2007.02.005
http://www.ncbi.nlm.nih.gov/pubmed/17320507
http://dx.doi.org/10.1517/13543784.13.1.21
http://dx.doi.org/10.1158/1541-7786.MCR-07-0324
http://www.ncbi.nlm.nih.gov/pubmed/17951399
http://dx.doi.org/10.1517/13543784.11.12.1695
http://www.ncbi.nlm.nih.gov/pubmed/12457432
http://dx.doi.org/10.1167/iovs.12-11529
http://www.ncbi.nlm.nih.gov/pubmed/23696608
http://dx.doi.org/10.1186/1471-213X-7-78
http://www.ncbi.nlm.nih.gov/pubmed/17603891
http://dx.doi.org/10.1167/iovs.06-1364
http://www.ncbi.nlm.nih.gov/pubmed/17525221
http://dx.doi.org/10.1371/journal.pone.0126592
http://www.ncbi.nlm.nih.gov/pubmed/25962138
http://dx.doi.org/10.1167/iovs.12-10850
http://www.ncbi.nlm.nih.gov/pubmed/23197683
http://dx.doi.org/10.1016/j.exer.2014.07.012
http://www.ncbi.nlm.nih.gov/pubmed/25064603


Int. J. Mol. Sci. 2019, 20, 714 13 of 15

22. Biermann, J.; Grieshaber, P.; Goebel, U.; Martin, G.; Thanos, S.; Di Giovanni, S.; Lagrèze, W.A. Valproic
acid-mediated neuroprotection and regeneration in injured retinal ganglion cells. Investig. Ophthalmol. Vis.
Sci. 2010, 51, 526–534. [CrossRef] [PubMed]

23. Chen, P.S.; Wang, C.C.; Bortner, C.D.; Peng, G.S.; Wu, X.; Pang, H.; Lu, R.B.; Gean, P.W.; Chuang, D.M.;
Hong, J.S. Valproic acid and other histone deacetylase inhibitors induce microglial apoptosis and attenuate
lipopolysaccharide-induced dopaminergic neurotoxicity. Neuroscience 2007, 149, 203–212. [CrossRef]
[PubMed]

24. Crosson, C.E.; Mani, S.K.; Husain, S.; Alsarraf, O.; Menick, D.R. Inhibition of histone deacetylase protects the
retina from ischemic injury. Investig. Ophthalmol. Vis. Sci. 2010, 51, 3639–3645. [CrossRef] [PubMed]

25. Chan, N.; He, S.; Spee, C.K.; Ishikawa, K.; Hinton, D.R. Attenuation of choroidal neovascularization by
histone deacetylase inhibitor. PLoS ONE 2015, 10. [CrossRef] [PubMed]

26. Kim, J.H.; Kim, J.H.; Oh, M.; Yu, Y.S.; Kim, K.W.; Kwon, H.J. N-hydroxy-7-(2-naphthylthio) heptanomide
inhibits retinal and choroidal angiogenesis. Mol. Pharm. 2009, 6, 513–519. [CrossRef] [PubMed]

27. Rephaeli, A.; Zhuk, R. Nudelman, a Prodrugs of butyric acid from bench to bedside: Synthetic design,
mechanisms of action, and clinical applications. Drug Dev. Res. 2000, 50, 379–391. [CrossRef]

28. Rephaeli, A.; Entin-Meer, M.; Angel, D.; Tarasenko, N.; Gruss-Fischer, T.; Bruachman, I.; Phillips, D.R.;
Cutts, S.M.; Haas-Kogan, D.; Nudelman, A. The selectivty and anti-metastatic activity of oral bioavailable
butyric acid prodrugs. Investig. New Drugs 2006, 24, 383–392. [CrossRef]

29. Nudelman, A.; Gnizi, E.; Katz, Y.; Azulai, R.; Cohen-Ohana, M.; Zhuk, R.; Sampson, S.R.; Langzam, L.;
Fibach, E.; Prus, E.; et al. Prodrugs of butyric acid. Novel derivatives possessing increased aqueous solubility
and potential for treating cancer and blood diseases. Eur. J. Med. Chem. 2001, 36, 63–74. [CrossRef]

30. Tarasenko, N.; Nudelman, A.; Tarasenko, I.; Entin-Meer, M.; Hass-Kogan, D.; Inbal, A.; Rephaeli, A. Histone
deacetylase inhibitors: The anticancer, antimetastatic and antiangiogenic activities of AN-7 are superior to
those of the clinically tested AN-9 (Pivanex). Clin. Exp. Metastasis 2008, 25, 703–716. [CrossRef]

31. Nudelman, A.; Levovich, I.; Cutts, S.M.; Phillips, D.R.; Rephaeli, A. The role of intracellularly released
formaldehyde and butyric acid in the anticancer activity of acyloxyalkyl esters. J. Med. Chem. 2005, 48,
1042–1054. [CrossRef] [PubMed]

32. Schaap-Fogler, M.; Bahar, I.; Rephaeli, A.; Dahbash, M.; Nudelman, A.; Livny, E.; Barliya, T.; Nisgav, Y.;
Livnat, T. Effect of Histone Deacetylase Inhibitor, Butyroyloxymethyl-Diethyl Phosphate (AN-7), on Corneal
Neovascularization in a Mouse Model. J. Ocul. Pharmacol. Ther. 2017, 33, 480–486. [CrossRef] [PubMed]

33. Yonekawa, Y.; Miller, J.; Kim, I. Age-Related Macular Degeneration: Advances in Management and Diagnosis.
J. Clin. Med. 2015, 4, 343–359. [CrossRef] [PubMed]

34. Kim, S.J.; Toma, H.S.; Barnett, J.M.; Penn, J.S. Ketorolac inhibits choroidal neovascularization by suppression
of retinal VEGF. Exp. Eye Res. 2010, 91, 537–543. [CrossRef] [PubMed]

35. Ishibashi, T.; Hata, Y.; Yoshikawa, H.; Nakagawa, K.; Sueishi, K.; Inomata, H. Expression of vascular
endothelial growth factor in experimental choroidal neovascularization. Graefes Arch. Clin. Exp. Ophthalmol.
1997, 235, 159–167. [CrossRef] [PubMed]

36. Arjamaa, O.; Nikinmaa, M.; Salminen, A.; Kaarniranta, K. Regulatory role of HIF-1α in the pathogenesis of
age-related macular degeneration (AMD). Ageing Res. Rev. 2009, 8, 349–358. [CrossRef] [PubMed]

37. Forooghian, F.; Cukras, C.; Meyerle, C.B.; Chew, E.Y.; Wong, W.T. Tachyphylaxis after intravitreal
bevacizumab for exudative age-related macular degeneration. Retina 2009, 29, 723–731. [CrossRef]

38. Kaiser, P.K. Antivascular Endothelial Growth Factor Agents and Their Development: Therapeutic
Implications in Ocular Diseases. Am. J. Ophthalmol. 2006, 142, 660–668. [CrossRef]

39. Chakravarthy, U.; Harding, S.P.; Rogers, C.A.; Downes, S.M.; Lotery, A.J.; Culliford, L.A.; Reeves, B.C. IVAN
study investigators Alternative treatments to inhibit VEGF in age-related choroidal neovascularisation:
2-year findings of the IVAN randomised controlled trial. Lancet 2013, 382, 1258–1267. [CrossRef]

40. Gillies, M.C.; Campain, A.; Barthelmes, D.; Simpson, J.M.; Arnold, J.J.; Guymer, R.H.; McAllister, I.L.;
Essex, R.W.; Morlet, N.; Hunyor, A.P. Long-Term Outcomes of Treatment of Neovascular Age-Related
Macular Degeneration: Data from an Observational Study. Ophthalmology 2015, 122, 1837–1844. [CrossRef]

41. Rephaeli, A.; Blank-Porat, D.; Tarasenko, N.; Entin-Meer, M.; Levovich, I.; Cutts, S.M.; Phillips, D.R.; Malik, Z.;
Nudelman, A. In vivo and in vitro antitumor activity of butyroyloxymethyl-diethyl phosphate (AN-7), a
histone deacetylase inhibitor, in human prostate cancer. Int. J. Cancer 2005, 116, 226–235. [CrossRef]
[PubMed]

http://dx.doi.org/10.1167/iovs.09-3903
http://www.ncbi.nlm.nih.gov/pubmed/19628741
http://dx.doi.org/10.1016/j.neuroscience.2007.06.053
http://www.ncbi.nlm.nih.gov/pubmed/17850978
http://dx.doi.org/10.1167/iovs.09-4538
http://www.ncbi.nlm.nih.gov/pubmed/20164449
http://dx.doi.org/10.1371/journal.pone.0120587
http://www.ncbi.nlm.nih.gov/pubmed/25807249
http://dx.doi.org/10.1021/mp800178b
http://www.ncbi.nlm.nih.gov/pubmed/19718802
http://dx.doi.org/10.1002/1098-2299(200007/08)50:3/4&lt;379::AID-DDR20&gt;3.0.CO;2-8
http://dx.doi.org/10.1007/s10637-006-6213-1
http://dx.doi.org/10.1016/S0223-5234(00)01199-5
http://dx.doi.org/10.1007/s10585-008-9179-x
http://dx.doi.org/10.1021/jm049428p
http://www.ncbi.nlm.nih.gov/pubmed/15715472
http://dx.doi.org/10.1089/jop.2016.0017
http://www.ncbi.nlm.nih.gov/pubmed/28338404
http://dx.doi.org/10.3390/jcm4020343
http://www.ncbi.nlm.nih.gov/pubmed/26239130
http://dx.doi.org/10.1016/j.exer.2010.07.011
http://www.ncbi.nlm.nih.gov/pubmed/20659449
http://dx.doi.org/10.1007/BF00941723
http://www.ncbi.nlm.nih.gov/pubmed/9085111
http://dx.doi.org/10.1016/j.arr.2009.06.002
http://www.ncbi.nlm.nih.gov/pubmed/19589398
http://dx.doi.org/10.1097/IAE.0b013e3181a2c1c3
http://dx.doi.org/10.1016/j.ajo.2006.05.061
http://dx.doi.org/10.1016/S0140-6736(13)61501-9
http://dx.doi.org/10.1016/j.ophtha.2015.05.010
http://dx.doi.org/10.1002/ijc.21030
http://www.ncbi.nlm.nih.gov/pubmed/15800932


Int. J. Mol. Sci. 2019, 20, 714 14 of 15

42. Tarasenko, N.; Chekroun-Setti, H.; Nudelman, A.; Rephaeli, A. Comparison of the anticancer properties of a
novel valproic acid prodrug to leading histone deacetylase inhibitors. J. Cell. Biochem. 2018, 119, 3417–3428.
[CrossRef] [PubMed]

43. Prince, H.M.; Bishton, M.J.; Harrison, S.J. Clinical studies of histone deacetylase inhibitors. Clin. Cancer Res.
2009, 15, 3958–3969. [CrossRef] [PubMed]

44. Mercurio, C.; Minucci, S.; Pelicci, P.G. Histone deacetylases and epigenetic therapies of hematological
malignancies. Pharmacol. Res. 2010, 62, 18–34. [CrossRef] [PubMed]

45. Gryder, B.E.; Sodji, Q.H.; Oyelere, A.K. Targeted cancer therapy: Giving histone deacetylase inhibitors all
they need to succeed. Future Med. Chem. 2012, 4, 1369–1370. [CrossRef] [PubMed]

46. Mottamal, M.; Zheng, S.; Huang, T.L.; Wang, G. Histone deacetylase inhibitors in clinical studies as templates
for new anticancer agents. Molecules 2015, 20, 3898–3941. [CrossRef] [PubMed]

47. Xu, Q.; Patel, D.; Zhang, X.; Veenstra, R.D. Changes in cardiac Na v 1.5 expression, function, and acetylation
by pan-histone deacetylase inhibitors. Am. J. Physiol.—Hear. Circ. Physiol. 2016, 311, 1139–1149. [CrossRef]
[PubMed]

48. Suraweera, A.; O’Byrne, K.J.; Richard, D.J. Combination Therapy With Histone Deacetylase Inhibitors
(HDACi) for the Treatment of Cancer: Achieving the Full Therapeutic Potential of HDACi. Front. Oncol.
2018, 8. [CrossRef]

49. Zhang, H.; Dai, X.; Qi, Y.; He, Y.; Du, W.; Pang, J.J. Histone deacetylases inhibitors in the treatment of retinal
degenerative diseases: Overview and perspectives. J. Ophthalmol. 2015. [CrossRef]

50. Ratay, M.L.; Balmert, S.C.; Bassin, E.J.; Little, S.R. Controlled release of an HDAC inhibitor for reduction of
inflammation in dry eye disease. Acta Biomater. 2018, 71, 261–270. [CrossRef]

51. Sung, M.S.; Eom, G.H.; Kim, S.J.; Kim, S.Y.; Heo, H.; Woo, S. Trichostatin A Ameliorates Conjunctival Fibrosis
in a Rat Trabeculectomy Model. Investig. Ophthalmol. Vis. Sci. 2018, 59, 3115–3123. [CrossRef] [PubMed]

52. Clemson, C.M.; Tzekov, R.; Krebs, M.; Checchi, J.M.; Bigelow, C.; Kaushal, S. Therapeutic potential of valproic
acid for retinitis pigmentosa. Br. J. Ophthalmol. 2011, 95, 89–93. [CrossRef] [PubMed]

53. Marks, P.A.; Breslow, R. Dimethyl sulfoxide to vorinostat: Development of this histone deacetylase inhibitor
as an anticancer drug. Nat. Biotechnol. 2007, 25, 84–90. [CrossRef] [PubMed]

54. De Ruijter, A.J.M.; van Gennip, A.H.; Caron, H.N.; Kemp, S.; van Kuilenburg, A.B.P. Histone deacetylases
(HDACs): Characterization of the classical HDAC family. Biochem. J. 2003, 370, 737–749. [CrossRef] [PubMed]

55. Desjardins, D.; Liu, Y.; Crosson, C.E.; Ablonczy, Z. Histone Deacetylase Inhibition Restores Retinal Pigment
Epithelium Function in Hyperglycemia. PLoS ONE 2016, 11, 1–16. [CrossRef] [PubMed]

56. Blank-Porat, D.; Gruss-Fischer, T.; Tarasenko, N.; Malik, Z.; Nudelman, A.; Rephaeli, A. The anticancer
prodrugs of butyric acid AN-7 and AN-9, possess antiangiogenic properties. Cancer Lett. 2007, 256, 39–48.
[CrossRef] [PubMed]

57. Tarasenko, N.; Cutts, S.M.; Phillips, D.R.; Inbal, A.; Nudelman, A.; Kessler-Icekson, G.; Rephaeli, A. Disparate
impact of butyroyloxymethyl diethylphosphate (AN-7), a histone deacetylase inhibitor, and doxorubicin in
mice bearing a mammary tumor. PLoS ONE 2012, 7. [CrossRef]

58. Tarasenko, N.; Kessler-Icekson, G.; Boer, P.; Inbal, A.; Schlesinger, H.; Phillips, D.R.; Cutts, S.M.;
Nudelman, A.; Rephaeli, A. The histone deacetylase inhibitor butyroyloxymethyl diethylphosphate (AN-7)
protects normal cells against toxicity of anticancer agents while augmenting their anticancer activity. Investig.
New Drugs 2012, 30, 130–143. [CrossRef]

59. Lehrmann, H.; Pritchard, L.L.; Harel-Bellan, A. Histone acetyltransferases and deacetylases in the control of
cell proliferation and differentiation. Adv. Cancer Res. 2002, 86, 41–65.

60. Mai, A.; Massa, S.; Rotili, D.; Cerbara, I.; Valente, S.; Pezzi, R.; Simeoni, S.; Ragna, R. Histone deacetylation in
epigenetics: An attractive target for anticancer therapy. Med. Res. Rev. 2005, 25, 261–309. [CrossRef]

61. Rusnati, M.; Presta, M. Fibroblast growth factors/fibroblast growth factor receptors as targets for the
development of anti-angiogenesis strategies. Curr. Pharm. Des. 2007, 13, 2025–2044. [CrossRef] [PubMed]

62. Zubilewicz, A.; Hecquet, C.; Jeanny, J.C.; Soubrane, G.; Courtois, Y.; Mascarelli, F. Two distinct signalling
pathways are involved in FGF2-stimulated proliferation of choriocapillary endothelial cells: A comparative
study with VEGF. Oncogene 2001, 20, 1403–1413. [CrossRef] [PubMed]

63. Bhutto, I.A.; McLeod, D.S.; Hasegawa, T.; Kim, S.Y.; Merges, C.; Tong, P.; Lutty, G.A. Pigment
epithelium-derived factor (PEDF) and vascular endothelial growth factor (VEGF) in aged human choroid
and eyes with age-related macular degeneration. Exp. Eye Res. 2006, 82, 99–110. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/jcb.26512
http://www.ncbi.nlm.nih.gov/pubmed/29135083
http://dx.doi.org/10.1158/1078-0432.CCR-08-2785
http://www.ncbi.nlm.nih.gov/pubmed/19509172
http://dx.doi.org/10.1016/j.phrs.2010.02.010
http://www.ncbi.nlm.nih.gov/pubmed/20219679
http://dx.doi.org/10.4155/fmc.12.3
http://www.ncbi.nlm.nih.gov/pubmed/22416777
http://dx.doi.org/10.3390/molecules20033898
http://www.ncbi.nlm.nih.gov/pubmed/25738536
http://dx.doi.org/10.1152/ajpheart.00156.2016
http://www.ncbi.nlm.nih.gov/pubmed/27638876
http://dx.doi.org/10.3389/fonc.2018.00092
http://dx.doi.org/10.1155/2015/250812
http://dx.doi.org/10.1016/j.actbio.2018.03.002
http://dx.doi.org/10.1167/iovs.18-23826
http://www.ncbi.nlm.nih.gov/pubmed/30025124
http://dx.doi.org/10.1136/bjo.2009.175356
http://www.ncbi.nlm.nih.gov/pubmed/20647559
http://dx.doi.org/10.1038/nbt1272
http://www.ncbi.nlm.nih.gov/pubmed/17211407
http://dx.doi.org/10.1042/bj20021321
http://www.ncbi.nlm.nih.gov/pubmed/12429021
http://dx.doi.org/10.1371/journal.pone.0162596
http://www.ncbi.nlm.nih.gov/pubmed/27617745
http://dx.doi.org/10.1016/j.canlet.2007.05.011
http://www.ncbi.nlm.nih.gov/pubmed/17611019
http://dx.doi.org/10.1371/journal.pone.0031393
http://dx.doi.org/10.1007/s10637-010-9542-z
http://dx.doi.org/10.1002/med.20024
http://dx.doi.org/10.2174/138161207781039689
http://www.ncbi.nlm.nih.gov/pubmed/17627537
http://dx.doi.org/10.1038/sj.onc.1204231
http://www.ncbi.nlm.nih.gov/pubmed/11313884
http://dx.doi.org/10.1016/j.exer.2005.05.007
http://www.ncbi.nlm.nih.gov/pubmed/16019000


Int. J. Mol. Sci. 2019, 20, 714 15 of 15

64. Amin, R.; Puklin, J.E.; Frank, R.N. Growth factor localization in choroidal neovascular membranes of
age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 1994, 35, 3178–3188.

65. Weinberger, D.; Bor-Shavit, E.; Barliya, T.; Dahbash, M.; Kinrot, O.; Gaton, D.D.; Nisgav, Y.; Livnat, T. Mobile
Laser Indirect Ophthalmoscope: For the Induction of Choroidal Neovascularization in a Mouse Model. Curr.
Eye Res. 2017, 42, 1545–1551. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/02713683.2017.1349154
http://www.ncbi.nlm.nih.gov/pubmed/28933966
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	AN7 Treatment Elevates Histone H3 Acetylation Levels in Laser-induced CNV Lesions 
	Systemic Administration of AN7 Reduces CNV Area in Choroidal Flatmounts 
	AN7 Reduces CD31, VEGF, and FGF-2 at the Laser Lesion Site 
	AN7 Reduces Vascular Leakage from CNV Lesions 
	AN7 Treatment Stabilizes Tight Junctions and Reduces Permeability of RPE Cells Exposed to Hypoxia 

	Discussion 
	Materials and Methods 
	Animals 
	Histology and Immunofluorescence Staining 
	Choroidal Flatmounts and CNV Area Quantification 
	Fluorescein Angiography 
	Cell Culture 
	Immunofluorescence for RPE Cell Culture 
	RPE Cell Culture Permeability Assay 
	Statistical Analysis 

	References

