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Posttraumatic stress disorder (PTSD) is a frequent and distressing mental disorder, about
which much remains to be learned. It is a heterogeneous disorder; the hyperarousal sub-
type (about 70% of occurrences and simply termed PTSD in this paper) is the topic of this
article, but the dissociative subtype (about 30% of occurrences and likely involving quite
different brain mechanisms) is outside its scope. A theoretical model is presented that
integrates neuroscience data on diverse brain regions known to be involved in PTSD, and
extensive psychiatric findings on the disorder. Specifically, the amygdala is a multifunctional
brain region that is crucial to PTSD, and processes peritraumatic hyperarousal on grounded
cognition principles to produce hyperarousal symptoms. Amygdala activity also modulates
hippocampal function, which is supported by a large body of evidence, and likewise amyg-
dala activity modulates several brainstem regions, visual cortex, rostral anterior cingulate
cortex (rACC), and medial orbitofrontal cortex (mOFC), to produce diverse startle, visual,
memory, numbing, anger, and recklessness symptoms. Additional brain regions process
other aspects of peritraumatic responses to produce further symptoms.These contentions
are supported by neuroimaging, neuropsychological, neuroanatomical, physiological, cog-
nitive, and behavioral evidence. Collectively, the model offers an account of how responses
at the time of trauma are transformed into an extensive array of the 20 PTSD symptoms
that are specified in the Diagnostic and Statistical Manual of Mental Disorders, Fifth edition.
It elucidates the neural mechanisms of a specific form of psychopathology, and accords
with the Research Domain Criteria framework.

Keywords: PTSD, fear, amygdala, insula, ACC, RDoC

INTRODUCTION
Posttraumatic stress disorder (PTSD) is a frequent mental dis-
order, with a lifetime prevalence in the US general population
estimated at 6.8–7.8% (1, 2). In regions of civil disorder or armed
conflict, rates are substantially higher (3, 4). PTSD is disabling,
distressing, and commonly persistent (2, 5), and leads to serious
impairment of economic and social functioning (6–9), as well as
increased mortality from multiple causes (10). Although some
interventions can be very effective, a substantial proportion of
PTSD sufferers achieve limited improvement (11–13), so new and
theory-based treatment options require early development. More
generally, theoretical progress on this disorder may illuminate the
mechanisms of anxiety disorders, the most prevalent class of psy-
chological disorders, with a lifetime prevalence of 28.8% in the US
general population (1).

The character of PTSD is well illustrated by the following
vignette that epitomizes the condition of severely traumatized
Vietnam veterans decades after active combat in Vietnam:

I can’t get the memories out of my mind! The images come
flooding back in vivid detail, triggered by the most inconse-
quential things, like a door slamming or the smell of stir-fried
pork. Last night, I went to bed, was having a good sleep for
a change. Then in the early morning a storm front passed
through and there was a bolt of crackling thunder. I awoke

instantly, frozen in fear. I am right back in Vietnam, in the
middle of the monsoon season at my guard post. I am sure I’ll
get hit in the next volley and convinced I will die. My hands
are freezing, yet sweat pours from my entire body. I feel each
hair on the back of my neck standing on end. I can’t catch
my breath and my heart is pounding. I smell a damp sulphur
smell. Suddenly I see what’s left of my buddy Troy, his head
on a bamboo platter, sent back to our camp by the Viet Cong.
Propaganda messages are stuffed between his clenched teeth.
The next bolt of lightning and clap of thunder makes me
jump so much that I fall to the floor. . ..” [(14), p. 470].

The Diagnostic and Statistical Manual of Mental Disorders, fifth
edition (DSM-5) (15) and its predecessors have set out criteria for
PTSD for over 30 years. Extensive research has generated a valu-
able body of findings, but current hypotheses of PTSD have yet
to achieve a comprehensive account of the accumulated findings.
Recent reviews [cf. Ref. (16–18)] explain the mechanisms of rather
few of the 20 DSM-5 PTSD symptoms. Moreover, fear condition-
ing mediated by the amygdala dominates current PTSD theorizing,
and is central to major theoretical models (19–22). Nevertheless,
fear is not essential to the pathogenesis of PTSD, because there is
good evidence that PTSD can develop in the absence of fear at the
time of trauma [i.e., peritraumatic fear; Ref. (23–27)]. Together,
it is suggested that a broader view of peritraumatic responses,
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and different theoretical perspectives, should enrich and progress
understanding of PTSD.

A theoretical model is presented that elaborates how peri-
traumatic responses are transformed into an extensive array of
DSM-5 PTSD symptoms, to manifest as the hyperarousal sub-
type of PTSD. In brief, the model elucidates how peritraumatic
responses, particularly those participating in hyperarousal, are
processed by the amygdala, which subsequently replicates those
responses on later encounters with trauma-related stimuli, to pro-
duce hyperarousal symptoms. This perspective is consistent with
grounded cognition, which contends that brain regions that are
active during an event, are reactivated when that event is recalled,
and is known to operate in diverse brain regions (28–32). Hyper-
arousal further drives the other symptom clusters (33, 34), and
correspondingly, the amygdala modulates the activity of diverse
brain regions known to be involved in PTSD. For example, there
is an abundant literature that arousal-enhanced amygdala activity
influences hippocampal function, and thus episodic memory per-
formance [see for reviews, Ref. (35, 36) and summary later]. Sim-
ilar amygdala processes are suggested to modulate diverse other
brain regions involved in PTSD, namely, brainstem, visual cortex,
rostral anterior cingulate cortex (rACC), and medial orbitofrontal
cortex (mOFC). The result is a theoretical model, summarized
in Figure 2, which integrates neuroscientific data on multiple
brain regions, and extensive psychiatric findings on PTSD, to elu-
cidate the etiology, symptomatology, and neurocircuitry of the
hyperarousal subtype of PTSD, and to suggest new directions for
theoretical, prevention, and intervention research.

MAJOR FEATURES OF PTSD
Posttraumatic stress disorder comprises four symptom clus-
ters according to DSM-5, namely, hyperarousal, persistent re-
experiencing of the trauma, avoidance of trauma-related stimuli,
and negative alterations in cognitions and mood. Empirical find-
ings have further characterized PTSD symptomatology, as sum-
marized next. PTSD is a heterogeneous disorder, and there are
several subtypes of it. One is characterized by hyperarousal, and
a second by dissociation, numbness, and physiological unrespon-
siveness, accounting for approximately 70 and 30% of occurrences,
respectively (37–39). Quite different brain mechanisms are likely
involved (37–39), and only those relating to the former, hyper-
arousal subtype are considered, which is simply termed PTSD in
this article. That is, the theoretical model elucidates the neural
mechanisms of a specific form of psychopathology, and accords
with the Research Domain Criteria (RDoC) framework (40, 41).
Such PTSD represents the extreme of a continuum of stress reac-
tions rather than a discrete syndrome (42–44). The etiology of
PTSD is multifactorial (45, 46), and hyperarousal is of particu-
lar importance as detailed later. In contrast, peritraumatic intense
fear commonly contributes to symptomatology, but is not a cru-
cial factor as it is not experienced by a substantial minority of
those who subsequently develop PTSD (23–25, 27). Pain, injury,
and dysphoric emotions besides fear (e.g., shame, guilt, sadness,
and anger) are further factors that can substantially contribute to
PTSD development (24, 25, 47–50).

Peritraumatic hyperarousal is supported by the majority of
behavioral and physiological findings (51–56). Reactivation of

hyperarousal and other symptoms is elicited by specific trauma-
related stimuli or reminders of them, even in conditions of no
current danger (7, 18, 21, 57–59). Nevertheless, no significant
differences between PTSD patients and controls are generally
reported for physiological responses to control scripts, and to
standard physical and mental challenges (58–61). Resting levels of
physiological variables did not differ significantly between PTSD
patients and controls in several studies that measured these vari-
ables under appropriate conditions [such as at home; Ref. (60,
62)]. More generally, the meta-analysis of Pole (63) found small
and significant weighted mean effect sizes for resting heart rate
(r = 0.18) and skin conductance level (r = 0.08) in PTSD, but not
for other individual resting physiological variables. Basal levels of
cortisol do not differ significantly between PTSD patients and con-
trols, according to the meta-analysis of Meewisse et al. (64). There
is, however, significant heterogeneity, and specific subgroups dif-
fer significantly from controls (64). More broadly, hyperarousal is
the predominant PTSD symptom cluster (33, 34). A longitudinal
study collected data on patients’ symptom levels through face to
face interviews at several days, 3 and 12 months post-trauma. The
findings were that hyperarousal strongly influences the develop-
ment of the other symptom clusters but is little influenced by them
(34). A subsequent study of similar design but with methodologi-
cal modifications to increase generalizability, replicated the earlier
findings (33).

Major sequelae of PTSD are disrupted economic and social
behaviors, manifested in high levels of marital and parenting
problems, divorce, unemployment, isolation, homelessness, and
imprisonment (6–9). Comorbid disorders occur at high rates in
PTSD sufferers (2, 65, 66). The relationship between PTSD and
comorbid disorders appears complex and bidirectional. Specif-
ically, a history of pre-trauma psychiatric disorders is a weak
risk factor for PTSD (45, 46). Conversely, the time course of
onsets suggests PTSD may often cause comorbid depression, anx-
iety disorders, and alcohol and other substance abuse/dependence
disorders (65, 66). In sum, PTSD comprises a complex symptoma-
tology, which continues to be elaborated and revised, and which
must be explained by models of PTSD.

PTSD THEORETICAL MODEL
The model proposes that arousal/hyperarousal is processed by the
(multifunctional) amygdala, which does so on grounded cogni-
tion principles, and these are summarized below. Hyperarousal
is rarely defined, but simply means a high-level of physiologi-
cal arousal. Arousal is a common component of diverse emotions,
and may also occur in their absence (67–69). Dysfunctional hyper-
arousal is suggested to be the overriding feature of PTSD, and its
independence of particular emotions is consistent with the diver-
sity of peritraumatic emotions reported earlier. It is dysfunctional
because its co-occurrence with traumatic reminders is automatic,
involuntary, severe, and uncontrollable, even when there is no
current danger or other challenge, as illustrated by the vignette
quoted earlier, and as elucidated later. Besides processing hyper-
arousal symptoms, the amygdala also modulates the activity of
multiple brain regions, thereby generating further DSM-5 PTSD
symptoms. The hypothesis of the amygdala’s contribution to PTSD
is summarized in Figure 1.
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related representations 
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representations
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activation

Visual cortex 
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Hippocampus 

disruption

- Hyperarousal

- Exaggerated startle

- Sleep disturbance

PHC    STS    VTC    STG    OFC

Insula 

Amygdala

- processing of 

peritraumatic 

hyperarousal, 

producing  amygdala 

hyperactivity

- consolidation into 

persisting  

representations of 

 amygdala hyperactivity

(1a)

(1b)

(1c)

(1d)

(2) (3)

(4a)

(4b)

(4c)

- Hypervigilance

- Visual intrusions

- Visual flashbacks/
hallucinations

- Memory impairment

- Impaired interest & motivation

- Withdrawal

- Emotional numbing

- Impaired cognition & attention

- Distress, mental pain

rACC

 suppression

mOFC

 suppression

PERITRAUMATIC RESPONSES PROCESSING     PTSD SYMPTOMS

(4d)

(4e) - Anger, irritability

- Recklessness

FIGURE 1 | Diagram summarizing hyperarousal processing by the
amygdala, and consequent array of PTSD symptoms. During traumatic
interactions, the amygdala processes diverse hyperarousal inputs, producing
amygdala hyperactivity. Consolidation in the amygdala generates persisting
representations of hyperactivity, which participate in distributed
trauma-related representations. Reminders reactivate the distributed
trauma-related representations, including those mediated by the amygdala,
which influence further brain regions and thereby drive multiple PTSD

symptoms. E.g., amygdala projections to brainstem reactivate hyperarousal
symptoms automatically and involuntarily. , Heavy interconnections;

, moderate interconnections; −→, amygdala hyperactivity
representations drive PTSD symptoms. Italics indicate symptoms.
Abbreviations: dACC, dorsal anterior cingulate cortex; rACC, rostral anterior
cingulate cortex; mOFC, medial orbitofrontal cortex; PHC, parahippocampal
cortex; PRC, perirhinal cortex; STG, superior temporal gyrus; STS, superior
temporal sulcus; VTC, ventral temporal cortex.

GROUNDED COGNITION
Grounded cognition operates widely in the brain (as do many
other processes), including it is suggested, in the amygdala. It offers
an account of the transformation of peritraumatic hyperarousal
into enduring PTSD hyperarousal symptoms, and is the overall
process that is performed in Box 2 of Figure 1. Grounded cognition
proposes that enduring knowledge representations are grounded
in or based in sensory, motor, and other specialized brain sys-
tems. Sensory systems, for example, which process the perception
of a feature, also mediate enduring representations of that fea-
ture, usually in higher-level subregions. That is, sensory systems
are engaged in both perceptual processing and in the mediation
of sensory knowledge representations. Hence, a sensory system
that is active during the perception of a stimulus, is later reacti-
vated when the corresponding memory representation is retrieved.
Similar principles apply to the motor system, which is involved in
both action execution processes and in the mediation of action
knowledge representations. In short, enduring knowledge repre-
sentations are grounded in or based in the systems that mediate
perceptual, motor, and other processes, hence the term grounded
cognition (28–31). More broadly, a complex knowledge represen-
tation is constituted by a network of component representations
distributed across multiple sensory, motor, and other specialized

brain regions (28–31, 70, 71), and this is also termed a distributed
representation. Further, such distributed networks may be inte-
grated by means of nodes or hubs, which also efficiently reactivate
such distributed networks so as to achieve knowledge reactivation
and retrieval (28–31, 72).

Sensory property knowledge (e.g., object color knowledge) is
represented in corresponding sensory systems (color perception
system), and this is evidenced by diverse neuroimaging findings. In
a neuroimaging study using functional magnetic resonance imag-
ing (fMRI), healthy subjects were scanned while they performed
a color perception task (Farnsworth–Munsell 100 hue test) and a
color knowledge task (a property verification task). The findings
were that partially overlapping subregions of the color processing
system mediated color perception and color knowledge represen-
tation (32). Findings that likewise support overlapping of percep-
tual processing and of knowledge representation within a sensory
modality,have been reported by a number of neuroimaging studies
using various experimental designs, and covering multiple sensory
modalities including visual object form, auditory, somatosensory,
and gustatory modalities (73–75).

Action knowledge is likewise represented in the motor system
and participates in distributed knowledge representations. This
is exemplified by the distributed networks that represent tool
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concepts. The robust findings of numerous neuroimaging stud-
ies using diverse designs are that tool concepts are represented
across multiple brain regions, including ventral premotor cortex,
and intraparietal sulcus in parietal cortex. These regions likely rep-
resent the typical actions performed with tools, and contribute to
tool identification (76). Convergent support is provided by neu-
ropsychological findings that motor system dysfunction is associ-
ated with impaired action knowledge. Several studies of substantial
groups of patients (n= 29 and n= 90) with circumscribed brain
lesions, presented diverse tests of action knowledge, and mapped
lesion locations from structural MRI data. The findings were
that impaired knowledge of actions was associated with lesions
to motor cortical areas, and regions interconnected with them
(77, 78). In summary, numerous brain systems that mediate per-
ceptual or motor processes also mediate corresponding persisting
knowledge representations, in accordance with grounded cogni-
tion. It is suggested that the amygdala implements corresponding
operations, as described in the next sections.

THE AMYGDALA, PERITRAUMATIC HYPERAROUSAL, AND
HYPERAROUSAL SYMPTOMS
The amygdala and its projections are crucially involved in PTSD
symptomatology, and this is evidenced by a neuropsychological
study. The study used Vietnam Head Injury Study (VHIS) partici-
pants who had experienced heavy combat exposure, and had been
assessed for PTSD using standard methods. The findings were that
of the combatants with amygdala lesions (n= 15), none devel-
oped PTSD, whereas in comparison groups of combatants with
lesions to control regions or no brain lesions, 40–48% developed
PTSD (79).

The model contends that the amygdala, which processes arousal
(80, 81), also produces related representations on grounded cogni-
tion principles. Correspondingly, at the severe intensity levels that
characterize PTSD, peritraumatic hyperarousal is transformed
into enduring hyperarousal symptoms. In more detail, multi-
ple forms of arousal and peritraumatic responses (Boxes 1a–d,
Figure 1) input to the amygdala, enhancing amygdala activity
(Box 2, Figure 1). Consolidation is implemented in the amygdala
to produce enduring representations of amygdala hyperactivity
(Box 2, Figure 1). Amygdala-mediated representations participate
in and are reactivated with distributed stimulus representations
(Box 3, Figure 1), and via projections to brainstem can reactivate
arousal/hyperarousal (Box 4a and related symptom, Figure 1). The
result in PTSD is hyperarousal that is automatic, involuntary, and
severe, even in conditions of no current danger or other challenge.
Arousal that is integral with challenging stimulus representations
mobilizes necessary resources, so is normally adaptive [cf. Ref.
(81)], but PTSD is the extreme of the stress reactions continuum
(42–44), so the effects are extreme and disabling, and constitute
hyperarousal symptoms.

AROUSAL/HYPERAROUSAL PROCESSING IN THE AMYGDALA
The amygdala receives extensive arousal/hyperarousal inputs
(Boxes 1a–d, Figure 1), which is evidenced by neuroanatomical,
neuroimaging, and physiological findings. The cardiovascular and
respiratory systems project via multiple pathways to the amygdala
in rodent and monkey. Visceral sensory nerves of the autonomic

nervous system (ANS) that innervate these organs project to spinal
cord neurons, which relay information sequentially via thalamus
and insula to the amygdala. A major medullary pathway has simi-
lar origins, and projects sequentially through the visceral region of
the nucleus of the solitary tract (NTS) in the medulla, parabrachial
complex (PBC), thalamus, and insula to multiple amygdaloid
nuclei (82–85). Functional activation of the human respiratory
system can be elicited by such methods as adding resistive respi-
ratory loads to an external breathing circuit, and the resulting
brain activations have been neuroimaged. A common finding
of such studies is that the activated brain regions include the
amygdala (86–89).

The hypothalamus is a further arousal-related system, which
projects substantially to multiple amygdaloid nuclei, in rodent
neuroanatomical studies (84). Consistent with the neuroanatomy,
electrical stimulation of parts of the hypothalamus and PBC was
found to evoke responses in amygdala neurons, predominantly in
the central nucleus (90).

Elevated levels of stress hormones also influence amygdala
activity. Cortisol binds directly to glucocorticoid receptors on the
amygdala, and to glucocorticoid receptors on NTS neurons, which
project to the amygdala as described above (35, 85, 91). Epineph-
rine binds to vagus neurons of the parasympathetic division of
the ANS, which projects to the amygdala via routes described
above (35, 85, 91–93). Consistent with the neuroanatomy, elec-
trical stimulation of vagus neurons in rats was found to produce
substantially enhanced neurotransmitter release in the basolateral
amygdala (94).

In human neuroimaging studies, enhanced levels of arousal are
brought about by stimuli such as pictures or words, and these
have been found to elicit enhanced amygdala activation (95–98).
In PTSD, the occurrence of peritraumatic hyperarousal, often
assessed hours or days after trauma, is commonly supported by
studies of heart rate, respiration rate, and subjective arousal (51–
56). Moreover, elevated heart rate and respiration rate shortly after
the trauma significantly predict subsequent PTSD diagnosis or
PTSD symptoms (52, 53, 55, 56). In addition, a linear relation-
ship between severity of combat as measured by the number of
firefights and prevalence of PTSD diagnosis, was found in mili-
tary personnel deployed to Iraq (99). This finding was replicated
in personnel deployed to Afghanistan (99). Further, elevated pre-
trauma amygdala reactivity predicts a greater increase in PTSD
symptoms after exposure to stressful events (100). Peritraumatic
hyperarousal is likely relayed to the amygdala by the pathways
described above; nevertheless, empirical verification of this in
human is required.

CONSOLIDATION IN THE AMYGDALA
Consolidation is the process whereby initially transient neural
activity is transformed into persisting neural representations (101–
103), and there is substantial evidence it occurs in the amygdala
(Box 2, Figure 1). At the neural level, consolidation occurs in the
period after learning events (101–103), and corresponding pro-
cessing occurs in the amygdala. In a lever-pressing paradigm, cats
that had already learned to lever-press received on a single trial
a footshock. Neurons in several amygdaloid nuclei were recorded
and the findings were that their activity increased in the period

Frontiers in Psychiatry | Affective Disorders and Psychosomatic Research April 2014 | Volume 5 | Article 37 | 4

http://www.frontiersin.org/Affective_Disorders_and_Psychosomatic_Research
http://www.frontiersin.org/Affective_Disorders_and_Psychosomatic_Research/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Weston PTSD neuroanatomical model

after the footshock for several hours (mean 137± 5 min) relative
to control levels (104).

Long-term potentiation (LTP) is a persistent enhancement in
a neuron’s responsiveness (105), and is thought to be a major
mechanism that contributes to the formation of long-term rep-
resentations and memories (106). There is substantial evidence
for its occurrence in the amygdala. For example, rats were trained
with a classical fear conditioning design, involving a tone repeat-
edly paired with electric shock, and neural activity was measured
in the amygdala. The findings were that learning that the tone
predicted shock was paralleled by persisting enhancements in
responses of amygdala neurons to the tone (107). Moreover, such
enhanced responsiveness corresponds to that brought about in
the same amygdala areas through the experimental induction of
LTP (108). Results consistent with these mechanisms and related
ones have been reported by multiple studies (109–112). In addi-
tion, fear-related conditioning in rats can be severely impaired
by infusing into the amygdala pharmacological agents that block
LTP and other processes in the consolidation cascade (110, 113–
115). Moreover, destruction of parts of the amygdala well after
fear conditioning training has been completed, abolishes that fear-
related conditioning (116–118). Collectively, the hypothesis that
the amygdala implements consolidation is well supported.

AMYGDALA-MEDIATED REPRESENTATIONS PARTICIPATE IN
DISTRIBUTED REPRESENTATIONS
Amygdala-mediated representations participate in distributed
representations, and via projections to brainstem can reactivate
arousal/hyperarousal (Boxes 3,4a,and related symptom, Figure 1).
The multiple components of distributed representations are linked
together by perirhinal cortex [PRC; Brodmann’s Areas 35, 36,
and part of 38, which constitutes the temporal pole; Ref. (119,
120)]. The binding role of PRC is evidenced by robust find-
ings that lesions to PRC produce visual recognition and visual
discrimination impairments for complex visual stimuli, but not
for more basic ones, in monkey and human (72, 121–124). PRC
interconnects heavily with ventral temporal cortex (VTC), supe-
rior temporal sulcus (STS), parahippocampal cortex, and amyg-
dala, and moderately with superior temporal gyrus (STG), insula,
and OFC, according to neuroanatomical tracing studies in mon-
key (120, 125). Thus, amygdala–PRC interconnections, which are
dense, pervasive, and reciprocal in primate and rat (83, 84, 125),
enable the amygdala to contribute specialized representations to
distributed representations in parallel with other regions. More-
over, neuroimaging investigations of the neural representation of
diverse objects, reveal that such neural representations are consti-
tuted by the above regions, including the amygdala [see for reviews,
Ref. (30, 71)].

In PTSD, a common neuroimaging paradigm involves presen-
tation of individualized auditory scripts of highly traumatic and
of neutral experiences to subjects while they are neuroimaged.
Common findings are that relative to comparison groups or con-
ditions, PTSD patients during traumatic recollections, which are
likely constituted by distributed trauma-related representations
[cf. Ref. (63)], exhibit enhanced activations in the amygdala, as
well as other brain regions [see for reviews and meta-analyses, Ref.
(16–18, 21, 126)]. Further, amygdala involvement in distributed

representations suggests that such amygdala activation should be
automatic, and this is supported by findings from neuroimag-
ing studies of amygdala activation during unattended processing
of feared stimuli (127, 128). Thus, convergent evidence supports
amygdala participation in distributed representations, including
trauma-related ones.

The amygdala can reactivate arousal/hyperarousal, via its heavy
projections to hypothalamus and brainstem. Specifically, the
amygdala sends heavy projections to hypothalamus, NTS, and
PBC, and it projects extensively to further brainstem regions (14,
84, 92, 129, 130). Convergent support is provided by findings from
neuroimaging studies that PTSD symptom severity is positively
correlated with amygdala activity, as measured by PET or fMRI
during exposure to trauma-related or experimental stimuli (131–
135). Additional brain regions, specifically insula (BA 13), anterior
parts of ACC (BAs 25, 32), and dorsomedial PFC (BAs 9, 10) may
also contribute to components of hyperarousal (136, 137).

Several cautions concerning the above hypotheses and evidence
should be noted. Enhanced peritraumatic stress hormone lev-
els are not supported by recent studies (138, 139); nevertheless,
field studies of stressed animals demonstrate enormous increases
(140–142). The contradictory findings may arise because of diverse
methodological issues. For example, human stress hormone mea-
surements were typically taken several hours after trauma, whereas
stress hormone half-lives measured in rat blood range from 70 s
to 20 min (143–145). Further, stress hormone levels are strongly
influenced by psychological factors [e.g., Ref. (146, 147)], so are
likely to have been lowered by such factors as being rescued, know-
ing that medical care and other support is at hand, and so forth.
As regards measures such as resting heart rate, these are typically
taken hours or days after trauma, so are only coarse approxima-
tions of peritraumatic processes, and are unlikely to reflect the
intensity of responses involving, for example, faintness, vomiting,
and defecation, as can occur in combat (148). Medication admin-
istered during ambulance transport or in the emergency room are
further issues.

There is considerable variability in neuroimaging findings.
Nevertheless, such variability has been ascribed to numerous tech-
nical reasons, including low spatial and temporal resolution of
scanners, limited subject numbers, lack of segregation of the sev-
eral subtypes of PTSD, comorbid disorders, the amygdala’s deep
location, small size and signal changes, and so forth [see for
reviews, Ref. (18, 126)]. Brainstem regions probably participate
in the reactivation of hyperarousal co-occurring with trauma-
related stimuli, but brainstem activations are rarely reported in
neuroimaging studies of PTSD, perhaps again for technical rea-
sons. Amygdala hyperactivity could be a pre-trauma vulnerability
factor which with others could substantially explain PTSD symp-
tomatology (100, 149). Nevertheless, several meta-analyses, twin,
and other studies have found that pre-trauma vulnerability fac-
tors have generally small effects, which interact with the crucial
traumatic events in the generation of PTSD symptomatology and
amygdala hyperactivity (45, 46, 49, 150–152).

In summary, hyperarousal is the predominant symptom of
PTSD (33, 34), and it is suggested to be processed by the amyg-
dala. Specifically, peritraumatic hyperarousal is transformed into
enduring hyperarousal symptoms, and this is likely mediated
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by a network comprising the amygdala, its inputs, and its
interconnections with PRC and brainstem.

THE AMYGDALA MODULATES DIVERSE BRAIN REGIONS, SO
DRIVING FURTHER PTSD SYMPTOMS
The primate amygdala interconnects with approximately 90% of
cerebral cortical areas (153), and numerous subcortical areas (92,
130). It is suggested amygdala hyperactivity modulates the activ-
ity of diverse interconnected brain regions, and thereby drives
the development of further DSM-5 PTSD symptoms, which are
generally markedly different in nature from hyperarousal. This is
summarized in Boxes 4a–e and related symptoms, Figure 1.

EXAGGERATED STARTLE, SLEEP DISTURBANCE, AND MODULATION OF
FURTHER BRAINSTEM REGIONS
There is abundant evidence that the amygdala crucially partic-
ipates in the enhancement of startle [see for reviews, Ref. (14,
154)], so amygdala hyperactivity likely produces the exaggerated
startle symptom of PTSD (Box 4a and related symptom, Figure 1).
Startle is elicited by a sudden unexpected stimulus, such as a noise,
and involves involuntary reactions by muscular, hormonal, and
visceral systems (105). In laboratory paradigms, heightened star-
tle responses are reliably elicited by presentation of conditioned
stimuli (e.g., a light formerly paired with electric shocks) and an
unexpected sudden stimulus (e.g., a noise burst); together these
constitute the fear-potentiated startle paradigm (14, 154). The
network underlying such heightened startle responses involves a
major modulatory role for the amygdala and its brainstem pro-
jections (14, 154). This claim is evidenced by findings that in
rodents trained and tested in the fear-potentiated startle para-
digm, lesions of the amygdala consistently abolish the heightened
fear-potentiated startle response (14, 154). Conversely, low-level
electrical stimulation applied to the rodent amygdala heightens the
startle response, but when applied to adjacent brain regions, does
not do so (14). Moreover, such amygdala stimulation enhances
activation of the brainstem region that implements the startle
response (14, 154). Thus, the amygdala and its brainstem projec-
tions can enhance startle responses. It is suggested that amygdala
hyperactivity in PTSD and the consequent brainstem activation,
likely produce the exaggerated startle symptom of PTSD.

The amygdala likely participates also in the sleep disturbance
symptom of PTSD [(155); Box 4a and related symptom, Figure 1].
The networks that regulate wakefulness and sleep substantially
overlap ANS regions that modulate arousal (156). These shared
regions include midbrain reticular formation, NTS, posterior
hypothalamus, anterior hypothalamus, and preoptic area (156).
The amygdala interconnects with components of the wakeful-
ness and sleep regulating networks, including brainstem subre-
gions, NTS, anterior hypothalamus, preoptic area, basal nucleus of
Meynert, and OFC (84, 130, 155–157). Non-rapid eye movement
(NREM) sleep is a state of attenuated arousal, during which overall
brain activity is reduced substantially, according to neuroimaging
findings in healthy human subjects (155, 158, 159). After control-
ling for this overall decline, brainstem subregions that generate and
maintain sleep, as well as the amygdala and other areas, are rela-
tively activated compared to waking (155, 156, 159). NREM sleep
recurs throughout the sleep period, in alternation with rapid eye

movement (REM) sleep. The latter is a state of heightened activ-
ity in numerous brain regions and deactivations in others. There
is increased activity relative to wakefulness and NREM sleep, in
brainstem subregions, amygdala, and other regions, whereas high-
level sensory and lateral prefrontal cortices are deactivated (155,
157, 158, 160).

It has been hypothesized that amygdala hyperactivity in PTSD
likely drives the sleep disturbance symptom of this disorder,
through modulation of components of the wakefulness and sleep
networks (155). Specifically, amygdala hyperactivity likely acti-
vates brainstem subregions promoting wakefulness, and reduces
activation of brainstem subregions that generate and maintain
sleep (155). The amygdala also suppresses mOFC activity as
evidenced in a later section. OFC importantly influences sleep;
electrical stimulation of it in animals produces sleep, and neu-
roimaging studies of humans report increased activation during
NREM and REM sleep. Furthermore, lesions of OFC in experi-
mental animals reduce sleep (156, 157). Thus, amygdala suppres-
sion of mOFC likely further disturbs sleep. The amygdala may
also modulate other components of the wakefulness and sleep
networks, although further investigations are required. In sum,
amygdala hyperactivity modulates brainstem subregions, mOFC,
and perhaps other components of the networks that regulate wake-
fulness and sleep, and so may drive the sleep disturbance symptom
of PTSD.

HYPERVIGILANCE, VISUAL INTRUSIONS, AND FLASHBACKS AND
MODULATION OF VISUAL CORTEX
Posttraumatic stress disorder symptoms that are primarily visual
symptoms, including visual sensory components of flashbacks,
are likely mediated by a network including visual cortex, a region
which is modulated by the amygdala (Box 4b and related symp-
toms, Figure 1). Visual perceptual processing in PTSD is enhanced
for trauma-related stimuli (161). This is evidenced by findings that
identification accuracy is higher for trauma-related stimuli than
control stimuli, in PTSD patients but not healthy trauma-exposed
comparison subjects (161). Moreover, the authors suggest that
such enhancement likely contributes to intrusions and other re-
experiencing PTSD symptoms. Several neuroimaging studies have
examined brain activations during traumatic flashbacks or analogs
of them. The findings were that visual flashbacks and their analogs
consistently recruited early visual cortex; less consistent activations
were reported in somatosensory cortex, insula, and motor-related
areas (162–164). A further neuroimaging study using fMRI exam-
ined the non-traumatic visual hallucinations that are the hallmark
of Charles Bonnet syndrome patients, who are otherwise neu-
ropsychiatrically normal, and the related brain activations. The
findings were that visual hallucinations of particular stimuli (e.g.,
color, faces) co-occurred with activations of visual cortical sub-
regions that are specialized for representing those stimuli (165).
Convergent evidence for visual cortex involvement in PTSD is
provided by a longitudinal study of brain structure changes in vet-
erans with and without PTSD. The findings were that significantly
greater atrophy of visual cortex (and other brain regions) occurred
in veterans with PTSD whose symptoms were worsening, whereas
such atrophy did not co-occur in those whose PTSD symptoms
were improving. These findings may arise from the neurotoxic
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effects of overactivation (166). Thus, the findings of the limited
investigations to date suggest that enhanced activation in visual
cortex occurs in PTSD, and likely contributes to the visual sensory
symptoms of PTSD.

The amygdala likely drives enhancements of visual cortex func-
tioning. The amygdala projects densely to all levels of the ventral
visual stream, from anterior TE to posterior V1, according to
neuroanatomical tracing studies in monkey (167–169). Moreover,
examination of amygdaloid boutons adjacent to TE and V1 neu-
rons, revealed that the boutons formed asymmetric synapses and
predominantly onto dendritic spines. Such synapses are normally
excitatory, suggesting amygdala-visual cortex projections enhance
visual function (170). This is further supported by behavioral and
neuroimaging studies. In an attentional blink paradigm, neutral
and negative words were briefly presented at short temporal inter-
vals, and the findings were that healthy controls processed negative
words with greater accuracy than neutral words. This effect, how-
ever, was not found in patients with bilateral or left amygdala
lesions (171). In an fMRI study, fearful faces relative to neutral faces
elicited enhanced activation in visual cortical areas in healthy con-
trols. Such visual cortex enhancement, however, did not occur in
patients who had amygdala lesions due to sclerosis, but structurally
intact visual cortex (172). Together, these findings are consistent
with amygdala dependent enhancement of visual function.

Amygdala modulation of visual cortex may also have more fun-
damental plasticity effects. In a rat study, a training pure tone was
presented on 30 trials in a single session, concurrently with elec-
trical stimulation of the basolateral amygdala. A microelectrode
array implanted in the primary auditory cortex (A1) measured
plasticity changes in that system. The findings were that relative
to pretraining baseline measurements, the frequency tuning of
a majority of the tested A1 sites shifted toward or to match the
frequency of the training tone. These changes were specific to
the training tone, as they failed to occur for a tone that was not
accompanied by basolateral amygdala stimulation. Such plasticity
developed rapidly after a single training session, underwent con-
solidation processes, and was enduring as it persisted throughout
the 3-week duration of testing. There was also some evidence for
increased sensitivity (reduced threshold) and increased selectivity
(reduced bandwidth) at these A1 sites, although these effects were
less enduring (173, 174). Plasticity is ubiquitous in the brain, so
corresponding plasticity likely occurs in human visual cortex.

Collectively, multiple findings suggest that trauma-specific
hyperactivity of the amygdala in PTSD likely drives enhance-
ment of visual perceptual processing, as well as specialization and
enlargement of visual cortex representations, of trauma-related
stimuli. These effects likely support hypervigilance, visual intru-
sions, and visual flashbacks/hallucinations symptoms of PTSD,
although further investigations in human are required. In addi-
tion, the amygdala projects to further unimodal sensory regions
(130, 167, 168), and likely replicates parallel effects in those sensory
domains also.

MEMORY IMPAIRMENT AND MODULATION OF THE HIPPOCAMPUS
The hippocampus is disturbed in PTSD, likely producing mem-
ory impairment for important aspects of the traumatic event, a
DSM-5 PTSD symptom [(17, 18, 21, 126); Box 4c and related

symptom, Figure 1]. Numerous functional neuroimaging stud-
ies have reported aberrant activations of the hippocampus in
PTSD, with reports of both diminished and increased activations,
although the reasons for these variations are not clear (17, 18,
21, 126). In addition, structural neuroimaging studies commonly
report reduced hippocampal volume (18, 21). In a VHIS study, a
patient group was identified with damage to the hippocampus but
none to the amygdala (n= 9). Four of these patients had devel-
oped PTSD, a prevalence that was not significantly different from
that of the control groups (79). These findings suggest that the
hippocampus does not play a crucial pathogenic role in PTSD;
it is further suggested that hippocampal dysfunction is probably
driven by amygdala influence, as elucidated below.

The hippocampus is a high-level region in a hierarchy of inter-
connected brain regions, which together support progressively
more comprehensive representations, which are used in percep-
tion, memory, cognition, and so forth. The particular function of
the hippocampus is to integrate complex representations from ear-
lier regions (e.g., PRC and entorhinal cortex) with spatio-temporal
representations, to generate episodic memory [i.e., event memory;
Ref. (72, 175, 176)]. Thus, impaired memory for important aspects
of the traumatic event is likely brought about by hippocampal
dysfunction.

Numerous studies have provided evidence that the amygdala
influences the hippocampus. The primate amygdala sends heavy
anatomical projections directly and extensively to the hippocam-
pus, and indirectly via the entorhinal cortex, a major input to
the hippocampus. The reciprocal projections are substantially
weaker and restricted in extent (83, 92, 130, 168). Functionally,
the amygdala enhances hippocampal consolidation of emotion-
ally arousing information, leading to greater memory for such
information. This is supported by abundant evidence from neu-
roimaging, neuropsychological, behavioral, and animal studies
(35, 36, 177–179).

Nevertheless, the amygdala may also impair memory retrieval
processes in the hippocampus, and these effects have many par-
allels with the memory enhancement effects; that is, participation
of stress hormones, common neurotransmitters, and restriction
to emotionally arousing memories (177, 179). A neuroimaging
study found that the amygdala and hippocampus participate in
the recollective retrieval of emotional relative to neutral memo-
ries. Further, correlation analyses revealed that the amygdala and
subregions of hippocampus were strongly coactivated during such
recollection of emotional memories (180). A number of studies
have presented stressful challenges that elicit endogenous release
of stress hormones or have directly administered glucocorticoids
(e.g., cortisol), to healthy human subjects before memory test-
ing. The findings were that memory retrieval was impaired during
arousal and elevation of stress hormone levels, predominantly for
emotionally arousing information (179, 181–184). Such retrieval
deficits, however, may be modulated by multiple factors, such as
duration and extent of hormone elevations, timing and type of
retrieval tests, and so forth (177, 183). The amygdala is responsive
to stress hormones as described earlier, and releases noradrenaline.
Consistent with the involvement of this system, cortisol induced
memory impairment is abolished by treatment with propranolol,
an antagonist of adrenergic receptors (182). In addition, further
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neuroimaging studies found that elevated cortisol levels reduce
activation of parts of the medial temporal network during retrieval
of memories (185, 186).

Much of the evidence above, as well as the amygdala’s peritrau-
matic involvement, the amygdala’s established modulation under
stress of hippocampal consolidation, and the latter phenomenon’s
parallels with retrieval impairment, suggests the amygdala likely
modulates hippocampal retrieval rather than the reverse. Further
findings are that hippocampal volumes are commonly reduced in
severe PTSD (18, 21, 187), and that reduced hippocampal volume
is a risk factor for PTSD (187). The theoretical implications of
these findings are currently unclear.

Collectively, there is abundant evidence that amygdala activity
can enhance hippocampal consolidation, and these brain regions
likely participate also in stress-induced impairment of emotional
memory retrieval. The evidence generally suggests the amygdala
may drive hippocampal dysfunction to produce the PTSD symp-
tom of impaired memory for important aspects of the traumatic
event, although further studies are needed.

IMPAIRMENTS OF MOTIVATION, EMOTION, AND COGNITION, AND
MODULATION OF ROSTRAL ANTERIOR CINGULATE CORTEX
The rostral (anterior) subregion of anterior cingulate cortex
(rACC), and adjacent medial subregion of orbitofrontal cortex
(mOFC) are often treated together as ventromedial prefrontal cor-
tex (vmPFC). Nevertheless, as these regions have both common-
alities and substantial differences in connectivity, functions, and
contributions to PTSD symptomatology, they are reviewed sepa-
rately. The rACC participates in PTSD, likely producing impair-
ments of motivation, emotion, and cognition (Box 4d and related
symptoms, Figure 1). Moreover, impaired motivation and related
symptoms likely contribute to the social and economic sequelae of
PTSD (6, 9), adding to their significance. The rACC manifests in
PTSD diminished responsiveness to trauma-related stimuli, which
is a robust finding of functional neuroimaging studies (16–18,
126). Such diminished activation is inversely correlated with PTSD
symptom severity (134, 188–190). In addition, following therapy
rACC activity increases and this is associated with reduction of
PTSD symptoms (191, 192). Together, these findings indicate that
rACC is hypoactive in PTSD, and that such hypoactivation likely
contributes substantively to PTSD symptomatology.

The normal ACC participates in networks that process wide-
ranging motivated behaviors, emotion, cognition, and attention
(193–195). In addition, lesions, degeneration, or hypometabolism
located predominantly in rACC have been associated with impair-
ments of these functions, including motivational and emotional
deficits such as apathy, disinterest, aimlessness, inactivity, and
uncommunicativeness (196–200). PTSD patients manifest DSM-
5 symptoms of impaired interest and motivation, withdrawal
and detachment, and emotional numbing [collectively termed
numbing symptoms; Ref. (26, 201)], as well as impaired cogni-
tive and attentional functioning according to neuropsychological
tests (202–204). There is evident overlap between impairments
caused by rACC pathology, and multiple PTSD numbing symp-
toms, suggesting rACC dysfunction participates in the latter also.
Convergent evidence is provided by an fMRI study of numbing
symptoms in women with PTSD predominantly due to childhood

abuse. The findings were that emotional numbing symptoms in
the PTSD group relative to healthy controls were associated with
hypoactivation of rACC and adjacent medial PFC (205).

The diminished rACC activation in PTSD is inversely corre-
lated with amygdala activation according to the meta-analysis of
Hayes et al. (16), suggesting one region may functionally influence
the other. Contrary to the conventional view, it is suggested the
predominant influence is that trauma-specific amygdala hyper-
activity in PTSD likely drives the diminution of rACC activity,
and consequent impairment of rACC functions. The ACC is rec-
iprocally interconnected with the amygdala in primates; ACC
(mainly BAs 24, 25) projections to the amygdala are moderate,
whereas amygdala projections to ACC (BAs 24, 25, 32) are dense
throughout the ventral to dorsal extent of rACC (130, 168, 206).
In addition, in rodent experiments, amygdala activation elicited
by fear conditioned stimuli or by electrical stimulation, suppresses
rACC and medial PFC activity (207, 208). Further, in an audi-
tory oddball task, targets that elicited arousal as measured by skin
conductance responses, were associated with reduced activation
in rACC as measured by fMRI, in PTSD subjects relative to con-
trols. In contrast, non-arousing targets had no such rACC effects
(209). Together, these findings support the amygdala’s suppres-
sive influence on rACC. Consistent with the overall hypothesis
of this section, Litz et al. (201) found that, after controlling for
demographic variables, trauma exposure, comorbid disorders, and
PTSD symptom clusters, hyperarousal symptoms were the best
predictor of numbing symptoms. Moreover, these findings were
supported in subsequent studies of diverse trauma samples by the
same and other research groups [e.g., Ref. (210, 211)]. In sum,
trauma-specific amygdala hyperactivity, which derives from peri-
traumatic responses, likely drives the diminished activity of rACC.
This diminished activity likely contributes to the motivational,
emotional, cognitive, and attentional symptoms of PTSD and their
sequelae.

ANGER, IRRITABILITY, AGGRESSION, AND RECKLESSNESS, AND
MODULATION OF MEDIAL ORBITOFRONTAL CORTEX
Anger, irritability, and aggression are closely related, and
anger/irritability may be expressed in multiple forms including
as aggression, or in extremes as violence (212–214). In addition,
restraints on angry impulses are an important component of anger
(212–214). The mOFC is located adjacent to rACC on the vmPFC.
In PTSD, mOFC is hypoactive, which is suggested to be driven
by amygdala hyperactivity, and it crucially participates in anger,
irritability, aggression, and recklessness symptoms of PTSD (Box
4e and related symptoms, Figure 1). There are many similarities
in findings between mOFC and rACC regions. The mOFC man-
ifests in PTSD reduced activation to trauma-related stimuli (16,
17, 126). The mOFC is substantially and reciprocally intercon-
nected with the amygdala, according to neuroanatomical tracing
studies in monkey (168, 215, 216). In addition, mOFC hypoacti-
vation is inversely correlated with amygdala activation according
to the meta-analysis of Hayes et al. (16). Further, electrical stimu-
lation of the rat amygdala suppresses activity in medial PFC (208).
Together, these similar findings suggest that the amygdala may
suppress mOFC activation, paralleling the amygdala’s suppression
of activation of the adjacent rACC.
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Impaired function of mOFC produces behavioral disinhi-
bition, which is the expression of socially inappropriate and
aberrant behaviors, as well as impaired regulation, and these
likely participate crucially in anger/aggression (217), and reck-
lessness. In a study of patients with frontotemporal demen-
tia, behavioral disinhibition, which was measured with the
Neuropsychiatric Inventory, was found to be significantly corre-
lated with mOFC hypometabolism, which was measured with PET
and the [18F]fluorodeoxyglucose method (218). A further study
of patients with dementia used the same behavioral measures,
together with structural MRI and voxel-based morphometry. A
significant association was found between reduced gray matter tis-
sue in mOFC and several further regions, and several behavioral
impairments including disinhibition (200). Lesions to the OFC
have also been acquired through head injuries, and such patients
have been found to manifest elevated levels of anger and aggres-
sion as well as aberrant social behaviors (219, 220). For example, in
the latter study of a large sample of VHIS patients, elevated levels
of aggression were found in patients with lesions to vmPFC, rela-
tive to patients with lesions to other brain regions and to healthy
controls (220).

A different experimental paradigm compared patients with
major depressive disorder with anger attacks, patients with major
depressive disorder without anger attacks, and healthy controls.
The study involved individualized anger and neutral scripts, an
adaptation of the Pitman et al. (61) paradigm, and PET neu-
roimaging. The findings were that depressive patients with anger
attacks relative to controls, during anger provocation manifested
hypoactivation of mOFC and adjacent medial BA 10 (221). In an
fMRI neuroimaging study, healthy subjects recalled anger elicit-
ing events, and executed specified anger regulation strategies. The
findings of the conjunction analysis were that anger regulation
strategies activated mOFC and adjacent OFC regions, lateral PFC,
and additional regions outside PFC (222).

Taken together, there is convergent evidence from diverse exper-
imental paradigms that the OFC, particularly the mOFC, mediates
inhibitory and regulatory processes (among other functions), and
impairment of these leads to elevated levels of disinhibition, anger,
and aggression. In PTSD, amygdala hyperactivity likely drives
suppression of mOFC activity, which contributes to the corre-
sponding symptoms of anger, irritability, and aggression. This
overall hypothesis is further supported by behavioral findings that
hyperarousal is robustly and significantly associated with measures
of anger and aggression in PTSD (223, 224).

Recklessness or self-destructive behaviors are heterogeneous,
and include diverse potentially destructive activities: sexual
excesses, risky driving, substance abuse, aggression, violence, and
so forth (225). Such diversity is likely promoted by multiple and
poorly understood mechanisms. Recklessness or self-destructive
behaviors are evidently related to aggression, which includes
self-directed injurious or destructive activities (217). Similarly,
impaired inhibitory and regulatory processes, as well as impaired
processing of adverse feedback and of risk, are likely components
for such behaviors to become manifest, and these flow from mOFC
disruption [see earlier; Ref. (226, 227)]. Hence, mOFC dysfunc-
tion may play a crucial role in this PTSD symptom also. In sum,
amygdala hyperactivity likely drives mOFC hypoactivation, which

likely participates in anger/aggression, and recklessness symptoms
of PTSD.

PAIN, DISTRESS, AND THE AMYGDALA
Severe pain importantly contributes to PTSD development (47,
49, 50), and the amygdala may process this similarly to hyper-
arousal (Figure 1). The amygdala receives heavy nociceptive inputs
via several neuroanatomical pathways according to neuroanatom-
ical tracing studies in monkey and rodent. Nociceptors in skin
and throughout the body project to spinal cord neurons, which
relay nociceptive information via dense projections sequentially
through spinal cord, several nuclei of the thalamus, insula, or to SII
which in turn projects heavily to insula, thence to multiple amyg-
daloid nuclei (83, 84, 228, 229). A further pathway relaying noci-
ceptive information involves similar origins that project via NTS,
PBC, to the central amygdaloid nucleus (228, 229). Human neu-
roimaging studies further demonstrate that painful stimulation
activates the amygdala, and multiple additional areas (230–233).
Nevertheless, lesions to the amygdala do not affect pain sensitivity
levels nor latency of pain responses (129,234,235), so the amygdala
may mediate chronic or high-level pain-related functions. Pain-
related amygdala activity undergoes consolidation (236–238), and
may produce noxiousness representations that participate in dis-
tributed representations. Mental pain or distress and physical pain
are processed by largely overlapping networks of brain regions
(239–241), including the amygdala (241), so mental pain also may
be processed similarly to hyperarousal. Pain processes are nor-
mally adaptive, but in PTSD are likely extreme and consequently
disabling.

To summarize the above sections, the amygdala interconnects
with and modulates the activity of multiple brain regions, and
thereby drives the development of diverse DSM-5 PTSD symp-
toms. This is consistent with behavioral findings that hyper-
arousal drives the development of the other PTSD symptom
clusters (33, 34).

FEAR AND THE INSULA
Persistent dysphoric emotions such as fear are a further DSM-5
PTSD symptom. Theorizing about fear has been dominated by
the amygdala’s contribution [see for reviews, Ref. (111, 154)], but
the amygdala solely cannot account for fear. The amygdala partic-
ipates in fear, but also in diverse other emotions (81, 231, 232, 242,
243). In addition, fear is frequently elicited in laboratory animals
by inflicting pain, and the latter is also processed in the amyg-
dala (see earlier), suggesting the operation of possible confounds.
Furthermore, rodents with amygdala lesions manifest impaired
fear conditioning when assessed with fear-potentiated startle or
freezing, yet largely intact fear conditioning when assessed by
avoidance behaviors (35, 244, 245). Likewise, several neuropsycho-
logical studies have found that patients with bilateral or unilateral
amygdala lesions continue to experience apparently normal sub-
jective fear and anxiety, although with some subtle abnormalities
of emotion generally (246, 247). Similarly, in a VHIS study using
the Structured Clinical Interview for DSM-IV-TR disorders, it was
found that the frequency of any fear and anxiety disorders (which
did not include PTSD) was not significantly different among
patient groups with lesions to the amygdala or to control regions
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(79). Thus, additional brain regions are crucial for the processing
and representation of fear. In particular, the insula is a region that
is reliably activated in PTSD and in anxiety disorders (18, 126), and
it may contribute to the mediation of the intense and persistent
fear symptom of PTSD (Figure 2).

Fear is poorly understood, but is widely regarded as elicited pre-
dominantly by danger, real, or perceived (105, 248–250). Neverthe-
less, this assumption is rarely tested and is challenged by empirical
findings. Several studies of military personnel have demonstrated
the co-occurrence of high danger levels, but little subjective fear
or physiological activation (251, 252). In addition, correlations
between dangerousness and fear were found to be low and non-
significant in parachute trainees (253). Instead, expectations of
harm may be the chief elicitors of fear (254, 255). Hence, dangers
that can be controlled, normally do not cause harm nor elicit fear
(251, 252, 256), whereas dangers that cannot be controlled, may
produce harm and elicit fear.

It is well established in human studies that fear comprises three
loosely linked components: subjective feelings, fear-related behav-
iors including flexible changes and avoidance, and physiological
arousal (248, 250, 257). The insula is well-suited to participate in
the mediation of fear and its three components. For the subjective

component, the insula represents bodily state (85, 258, 259), and is
involved in cognitive processing (260, 261), so can generate bod-
ily harm expectations. For behaviors, the insula projects via the
corticospinal tract to spinal cord, and together with adjacent SII
accounts for 3.4% of corticospinal projection neurons in mon-
key (262). Consequently, it can directly, rapidly, and efficiently
modulate spinal motoneuron populations, so can generate flight
and urgent motor behaviors. In addition, the insula is strongly
functionally interconnected with ACC, including the cingulate
motor area [CMA; Ref. (263–265)]. Further, a region of dorsal
ACC (dACC) that likely includes part of CMA, was found to be
reliably activated during fear experience in healthy humans, in
a meta-analysis of fMRI neuroimaging studies (266). This brain
area plays a major role in organizing diverse complex behaviors
(195), including avoidance behaviors and emotional facial expres-
sion [see next section; Ref. (266, 267)]. Consequently, the insula
can heighten appropriate behaviors, such effects being apparent
during fear (268). For the physiological component, the insula
sends substantial projections to ANS regulatory areas, and can
modulate diverse autonomic functions (269).

Functional neuroimaging findings provide convergent support
for insula mediation of fear (126, 243, 266, 270). Moreover, Caseras
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FIGURE 2 | In addition to amygdala processing, the insula
participates in the processing of fear and likely drives avoidance
symptoms. Together, these mechanisms account for some 80% of
DSM-5 PTSD symptoms. Abbreviations: dACC, dorsal anterior

cingulate cortex; rACC, rostral anterior cingulate cortex; mOFC, medial
orbitofrontal cortex; PHC, parahippocampal cortex; PRC, perirhinal
cortex; STG, superior temporal gyrus; STS, superior temporal sulcus;
VTC, ventral temporal cortex.
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et al. (270) reported overlap of insula (and ACC) areas engaged
in interoception and in fear. Another study compared fMRI
activations across feared, pleasant, and unpleasant stimuli, and
found enhanced insular subregion activation was specific for fear,
whereas amygdala activation was common to multiple emotions
(243). Further relevant observations are that the insula has moder-
ate interconnections with PRC (120), so can contribute enduring
fear representations to distributed representations. Despite the
accumulated evidence, there is a scarcity of studies that directly
investigate the contribution of the insula to fear, and such studies
are needed. In sum, the insula commonly participates in the net-
work that mediates PTSD, and it likely processes and represents
the intense and persistent fear symptom of PTSD.

AVOIDANCE AND DORSAL ACC
Dorsal ACC is activated in PTSD, according to findings from mul-
tiple neuroimaging studies [see for reviews, Ref. (16, 18)], and is
suggested to mediate avoidance symptoms (Box 4f and related
symptoms, Figure 2). The quantitative meta-analysis of Hayes
et al. (16) covering all reviewed PTSD studies estimates the location
of the activated dACC region, and it appears to encompass part of
the CMA. The CMA (BA 24c) sends heavy projections to spinal
cord motoneurons, M1, supplementary motor area, presupple-
mentary motor area, premotor cortex, putamen, cerebellum, and
lateral prefrontal cortex [lateral PFC; Ref. (264, 271)]. The CMA
receives heavy to substantial inputs from diverse areas, including
anterior cingulate gyrus (BAs 24a, 24b), insula, PRC, and lateral
PFC (264, 271). The primate CMA comprises two subregions, both
somatotopically organized, but with poorly understood functional
differences, although the anterior subregion’s functions include
representation of abstract aspects of behavior (271).

The ACC participates in networks that mediate wide-ranging
motivated behaviors (195), including avoidance behaviors (272–
274). In a rodent study, rats with freedom of movement were given
mildly noxious stimulation when in part of a chamber, and neural
activation was assessed by c-Fos expression. The findings were that
the level of c-Fos expression in ACC was significantly and linearly
related to behavioral avoidance of the noxious stimulation region
(273). Rodent ACC is thought to correspond to primate BA 24
(275). In a study of surgical patients, painful laser stimulation was
applied to the dorsum of the hand, and early neural responses were
measured with chronically implanted intracerebral electrodes. The
findings were that there were early activations within dACC, which
was considered to correspond to CMA, and such activations were
interpreted as mediating withdrawal/avoidance behaviors (272).

More generally, dACC is reliably activated in neuroimaging
studies of pain, and has been suggested to mediate avoidance and
other pain-related behaviors (274, 276). Also, dACC likely medi-
ates avoidance during fear, as noted earlier. In addition, dACC
activations during pain, fear, anger, other negative emotions, and
cognition manifest substantial overlap (276). Thus, dACC and
CMA representations likely support behavioral avoidance across
multiple states. These representations may also support cogni-
tive avoidance, in view of these regions’ involvement in cognitive
processing (276), anterior CMA’s involvement in abstract aspects
of behavior (271), and both regions’ heavy interconnections with
lateral PFC (271). The CMA is also involved in emotional facial

expression (267), which needs to be taken into account in theoret-
ical and empirical studies. In sum, the commonly activated dACC
region in PTSD which likely encompasses part of CMA, CMA’s
heavy and extensive motor system projections, behavioral and
neuroimaging findings across multiple states, and these regions’
cognitive functions and heavy interconnections with lateral PFC,
together support dACC’s involvement in the behavioral avoidance
and cognitive avoidance symptoms of PTSD. Moreover, the inputs
to CMA arise from several regions involved in PTSD, suggesting
such avoidance can be driven by several facets of PTSD.

PREDICTIONS AND DIRECTIONS FOR FUTURE RESEARCH
The proposed model of the hyperarousal subtype of PTSD, offers
an account of how peritraumatic responses are transformed into
an extensive array of the 20 DSM-5 PTSD symptoms, and is sum-
marized in Figure 2. The amygdala is crucial to PTSD (79), and
the model provides a causal account of amygdala activation, of
insula activation, and explains how they influence diverse brain
regions. The model thereby provides an etiological account of an
array of PTSD symptoms, and explains the contributions to PTSD
made by multiple brain regions, which are consistent with their
known functions and connectivities, but whose contributions to
PTSD were otherwise unresolved. The model is also consistent
with findings that hyperarousal drives the other symptom clusters
(33, 34), and that PTSD represents the extreme of a stress reactions
continuum (42–44). Thus, the model integrates neuroscience and
psychiatry to provide an extensive and dimensional account of a
specific form of psychopathology, hyperarousal PTSD, and accords
with the RDoC framework [cf. Ref. (40, 41)]. Together, the level
of explanatory power and the number of symptoms elucidated
exceeds those of existing accounts [cf. Ref. (17, 18, 21)], as summa-
rized below. The model requires empirical tests in some areas, and
also offers predictions and directions for future research, which
should facilitate progress toward a comprehensive model of the
hyperarousal subtype of PTSD, as also summarized below.

Traumatic events induce full PTSD in a proportion of those
exposed, subthreshold PTSD in a larger proportion, and no dis-
turbance in the majority; respectively, 12.5, 25.6, and 61.4% in
a large Vietnam veterans sample (277), and this variation is an
unresolved puzzle. The predominant existing models of PTSD
involve fear conditioning supplemented by other concepts (18,
20–22), and thus focus on traumatic stimuli and their condition-
ing. In contrast, the current model proposes that peritraumatic
responses are the major determinant of subsequent symptoma-
tology, so the puzzle may be explained in part by variability of
traumatic responses. That is, it is predicted that a given traumatic
event may elicit differing levels of peritraumatic responses across
individuals, leading to differing levels of subsequent symptoma-
tology. A continuum of responses is well supported, and ranges
from the adaptive to the extreme and maladaptive (42–44, 81).
More generally, this hypothesis is consistent with the dimen-
sional approach advocated by the RDoC framework (40, 41).
An implication for prevention strategies is that amelioration of
peritraumatic responses, in particular hyperarousal should ame-
liorate subsequent PTSD symptoms. There is some support for this
from the preliminary findings that of a group of subjects (n= 11)
intoxicated with alcohol at the time of trauma, none manifested
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early PTSD symptomatology (278). More generally, peritraumatic
hyperarousal, stress hormones, heart rate, and so forth, need to
be measured by real-time methods in empirical studies; current
methods involve delays and other methodological shortcomings
that likely produce significant underestimates, as noted earlier.
Real-time measurements could be obtained remotely from per-
sonnel engaged in occupations with elevated rates of PTSD, and
a prediction is that higher levels of peritraumatic arousal, stress
hormones, and so forth, would be revealed than in existing stud-
ies. This seems likely as a significant proportion of combatants,
for example, report such intense responses as faintness, vomit-
ing, or defecation (148). Neuroanatomical, animal, and human
neuroimaging studies suggest that multiple components of peri-
traumatic hyperarousal should heighten amygdala function, but
empirical verification of this in human is needed.

Posttraumatic stress disorder develops in the absence of per-
itraumatic fear in a significant minority of patients [e.g., Ref.
(23–25)], and this is difficult for existing models to explain. In
contrast, the current model proposes that hyperarousal, which
is processed by the multifunctional amygdala, is sufficient for the
development of diverse PTSD symptoms (Figure 1), which are able
to satisfy DSM-IV (279) diagnostic criteria for PTSD. That is, the
model explains how PTSD developed in the absence of peritrau-
matic fear. Hyperarousal to trauma-related reminders likely arises
because amygdala and brainstem projection sites participate in
distributed trauma-related representations. This prediction could
be assessed using neuroimaging optimized for measuring brain-
stem activity. A therapeutic implication is that functional lesions
of the amygdala–brainstem pathway by deep brain stimulation
should have therapeutic potential, and there is preliminary rodent
evidence for this proposal (280). This may need to be combined
with treatment to reduce hyperactivity of the insula [which also
modulates arousal; Ref. (136, 137, 269)] in patients with involve-
ment of severe fear or pain symptoms. A number of medications
have shown some efficacy in ameliorating PTSD symptoms, but
rational pharmacotherapy options require development (12, 281).
The proposed model suggests some directions for progress toward
this goal. Specifically, the amygdala is hypothesized to modu-
late multiple brain regions to produce a diversity of symptoms
(Figure 1), and diverse neurotransmitters may be involved in these
pathways [cf. Ref. (92)]. Once the neurotransmitters involved in
such pathways and symptoms are determined, then corresponding
antagonists are predicted to attenuate those symptoms. Likewise,
amygdala hyperactivity may be driven by severe pain as well as
hyperarousal, so may be activated by additional neurotransmit-
ters that require additional pharmacotherapy. Thus, the model
may open the possibility of efficient, personalized interventions,
in which pharmacotherapy and other treatments are matched to a
patient’s particular pattern of symptoms.

The amygdala tunes the selectivity of auditory cortex neurons in
rodents. Corresponding tuning of visual (and other sensory) cor-
tex neurons and consequent enlargement of visual trauma-related
representations is predicted to occur in human PTSD patients.
Such plasticity effects likely participate in visual symptoms of
PTSD, and merit investigation. The processing and participation
of physical pain and of mental pain/dysphoria in PTSD are eluci-
dated by the current model, but are unexplained by most existing

models. Mental pain may be the common feature of peritrau-
matic dysphoric emotions (e.g., fear, shame, guilt, sadness, and
anger) that can contribute to PTSD development, and this deserves
further investigation.

The numbing symptoms of diminished interest, withdrawal,
and blunted emotions, are unexplained by most existing PTSD
models. The function of rACC is interpreted as the regulation of
the amygdala, but the mechanisms producing its dysfunction in
PTSD are unexplained (17, 18, 21). In contrast, the current model
predicts that amygdala hyperactivity drives rACC hypoactivation,
and this can be investigated at several levels. At the neuroanatomi-
cal level, amygdala neuronal boutons that synapse with rACC neu-
rons are predicted to be predominantly inhibitory, and so should
mainly form symmetric rather than asymmetric synapses [cf. Ref.
(170)]. Amygdala–rACC projections are denser and more exten-
sive than the reciprocal ones (130,168,206). Quantitative estimates
of these projections may provide an index of the relative frequency
of recruitment, and thus of the predominant direction of activa-
tion. At the functional level, replications of Garcia et al. (207)
and Pérez-Jaranay and Vives (208), would determine whether
amygdala suppression of rACC is a robust finding. Such studies
may perhaps be possible in humans with intracerebral electrodes
implanted over these regions as part of presurgical investigations,
combined with, for example, presentation of feared stimuli [cf. Ref.
(272)]. Also, fear-elicited rACC hypoactivation should be abol-
ished by amygdala lesions (e.g., through Urbach–Wiethe disease)
or inactivation. The script driven imagery paradigm with PTSD
patients may be combined with fMRI and effective connectivity
analyses to further determine the direction of activation between
rACC and amygdala. More generally, rACC hypoactivation is
predicted to produce impaired motivation (and other numbing
symptoms), and to be positively correlated with quantitative mea-
sures of impaired motivation, such as those of Robert et al. (282)
and Starkstein et al. (283). More broadly, the above investigations
could be extended to encompass mOFC, whose activation is also
hypothesized to be suppressed by amygdala activity.

An unresolved puzzle is the explanation for the findings of
Koenigs et al. (79), that lesions to vmPFC reduce the occurrence
of PTSD. Lesions to ACC and OFC including vmPFC, and regions
interconnected with them, produce apathy and disturbances of
emotion and sensation [see earlier; Ref. (284)]. For example, fail-
ure to be offered food for 24 h, unexpected bereavement of a much
loved spouse, or reminders of painful experiences, were found to
produce little complaint or distress in single case studies of patients
(196, 197). Substantial levels of pain assessed with the visual ana-
log scale or other measures, are reported by some ACC lesioned
patients not to be bothersome (285, 286). A testable speculation
is that similar processes may operate in PTSD following lesions
to vmPFC. That is, objectively measurable symptoms such as ele-
vated physiological arousal and startle responses, may be regarded
by the patients as not bothersome or distressing, so lowering the
subjective ratings of these and other symptoms. Moreover, this
pattern may be associated with some degree of apathy as assessed
by apathy questionnaires.

Fear is poorly understood,and the widespread assumption of its
activation simply by danger requires empirical testing. The insula
appears to play a crucial role in the mediation of fear, and this may
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explain the findings that patients with amygdala lesions continue
to experience fear (79, 246, 247). Accordingly, lesions or inactiva-
tion of the insula, for example, should cause impairment of fear,
but currently there are few empirical studies of the insula’s con-
tribution to fear. In addition, the insula and its projection sites
can account for the three components of fear, but empirical tests
are required. Avoidance behaviors are not explained by existing
PTSD models (17, 18, 21), and the amygdala sends few projections
directly to the motor system (111, 153). The current model, how-
ever, predicts that dACC activations derive from several facets of
PTSD, that their locations encompass part of CMA, and that they
likely mediate avoidance symptoms. This may be tested with more
precise specification of the location of dACC activations in PTSD,
whether this includes CMA, and whether this overlaps the location
of dACC activations in pain, fear, and so forth. The dACC activa-
tions in PTSD may encompass one or both subregions of CMA,
which could be localized and their functions broadly examined
by means of motor and facial expression tasks in the same PTSD
subjects.

Poor or negative social support after a traumatic event sub-
stantially promotes PTSD (20, 45, 46), and this effect requires
explanation. Possible accounts are that poor or negative social
support may bring about further stress and mental pain that exac-
erbate or reactivate existing PTSD symptoms [cf. Ref. (287)]. In
contrast, positive social support may have corresponding amelio-
rative effects. There is limited literature on a number of PTSD
symptoms (e.g., distressing dreams and distorted cognitions), so
these require early investigation. More generally, enriched under-
standing of the mechanisms and symptomatology of hyperarousal
PTSD should facilitate development of further novel prevention
strategies and targeted therapies.

CONCLUSION
A rich and valuable body of findings is accumulating on PTSD.
The proposed theoretical model integrates wide-ranging findings
about the hyperarousal subtype of PTSD into an extensive syn-
thesis, which is detailed and parsimonious, and consistent with
basic science and cognitive neuroscience literatures. It offers an
account of the etiology and neurocircuitry of hyperarousal PTSD,
explains a high proportion of the 20 DSM-5 PTSD symptoms,
offers testable predictions to further illuminate the mechanisms
of the disorder and of fear more generally, and has implications
for prevention and treatment of the disorder.
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