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Abstract
Aim To assess if tumour grading based on dynamic [18F]FET positron emission tomography/magnetic resonance imaging (PET/
MRI) studies is affected by different MRI-based attenuation correction (AC) methods.
Methods Twenty-four patients with suspected brain tumours underwent dynamic [18F]FET-PET/MRI examinations and subse-
quent low-dose computed tomography (CT) scans of the head. The dynamic PET data was reconstructed using the following AC
methods: standard Dixon-based AC and ultra-short echo time MRI-based AC (MR-AC) and a model-based AC approach. All
data were reconstructed also using CT-based AC (reference). For all lesions and reconstructions, time-activity curves (TACs) and
time to peak (TTP) were extracted using different region-of-interest (ROI) and volume-of-interest (VOI) definitions. According
to the most common evaluation approaches, TACs were categorised into two or three distinct curve patterns. Changes in TTP and
TAC patterns compared to PET using CT-based AC were reported.
Results In the majority of cases, TAC patterns did not change. However, TAC pattern changes as well as changes in TTP were
observed in up to 8% and 17% of the cases when using different MR-AC methods and ROI/VOI definitions, respectively.
However, these changes in TTP and TAC pattern were attributed to different delineations of the ROIs/VOIs in PETcorrected with
different AC methods.
Conclusion PET/MRI using different MR-AC methods can be used for the assessment of TAC patterns in dynamic [18F]FET
studies, as long as a meaningful delineation of the area of interest within the tumour is ensured.
Key Points
• PET/MRI using different MR-AC methods can be used for dynamic [18F]FET studies.
• A meaningful segmentation of the area of interest needs to be ensured, mandating a visual validation of the delineation by an
experienced reader.
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Abbreviations
AC Attenuation correction
CT-AC CT-based attenuation correction
MR-AC MRI-based attenuation correction

ROI Region of interest
SUV Standardised uptake value
TAC Time-activity curve
TBR Tissue-to-background ratio
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TTP Time to peak
UTE Ultra-short echo time
VOI Volume of interest

Introduction

Positron emission tomography (PET) is a well-established
tool for tumour imaging in neuro-oncology. PET imaging
using amino acid tracers has been demonstrated to be of par-
ticular value for the diagnosis, prognosis and therapy response
assessment of glioma patients [1–3]. Moreover, amino acid
PET is used for target definition in radiation therapy and for
guided surgical biopsy [4, 5]. Among the available amino acid
tracers, [18F]2-fluoroethyl-L-tyrosine ([18F]FET) is one of
the most frequently used. Several studies have shown the val-
ue of [18F]FET for the assessment of gliomas [1, 6–9].
Moreover, its clinical adoption has been recently recommend-
ed by the Response Assessment in Neuro-Oncology Working
Group together with the European Association for Neuro-
Oncology [2]. Particularly, the observed [18F]FET uptake be-
haviour within a brain tumour lesion over the time evaluated
by different PET techniques enables a better understanding for
brain tumour grading with the possibility to detect anaplastic
foci and treatment response [10–13].

These evaluation techniques are based on a classification of
the tracer uptake over time into two [14] or three [15] curve
patterns and have shown to increase the diagnostic accuracy in
relatively large patient cohorts in stand-alone PET and PET/
CT examinations.

With the introduction of fully integrated PET and magnetic
resonance imaging (PET/MRI), a new modality has become
available, which has the potential to improve the diagnostic
accuracy compared to PET or PET/CT imaging. The MRI
component not only provides a high-resolution and high-
contrast anatomical reference for the tracer distribution but
also helps probe cellular and molecular pathways through ad-
vanced MRI techniques, such as diffusion-weighted imaging,
perfusion imaging and spectroscopy [16, 17]. These advanced
MRI techniques enable a more detailed soft tissue analysis and
showed promising results for an improvement in discriminat-
ing malignant from benign lesions and glioma grading [18,
19]. However, only few studies have been published regarding
the impact of combined PET/MRI in the clinical management
of glioma patients [19, 20] and PET/MRI has primarily been
suggested to be beneficial especially in paediatric patients
[21]. In this patient group, the reduced radiation burden aris-
ing from the CT component in PET/CT examinations is par-
ticularly desirable. Further, general anaesthesia is often re-
quired for paediatric patients for MRI as well as PET.
Performing both examinations simultaneously in one PET/
MRI session has the advantage of reduced risks related to
anaesthesia in this group of patients.

Nevertheless, clinical PET/MRI is still challenged by tech-
nical issues related to attenuation correction (AC) [22].
Reasons are that MRI information is not related to the attenu-
ation properties of the investigated tissue [23]. Further, the
visualisation of bone is challenging inMRI, and thus, standard
MRI-based AC (MR-AC) methods do not account for bone,
which has been shown to yield a regionally variable bias in the
reconstructed tracer distribution [24]. Several MR-AC
methods have been developed to overcome this issue [25].
However, for clinical routine, just three methods are available
in current PET/MRI systems. These include the standard
Dixon-based MR-AC method, an ultra-short echo time
(UTE)-based method and a model-based approach [26–29].
The quantitative accuracy of these MR-AC methods has been
assessed for static PET examinations and standardised uptake
values (SUVs) [22, 24, 25, 28, 29]. However, none of these
studies assessed the influence of the available MR-AC
methods on the dynamic evaluation of [18F]FET examina-
tions by means of a categorisation of the uptake pattern into
different pattern classes. On first glance, one could assume
that a bias in quantification only results in a scaling of the
tracer uptake patterns but does not change the shape, and
therefore, the categorisation of the patterns itself. However,
as the above-mentioned studies revealed spatially variant
biases in quantitative readings and the uptake patterns are
extracted from regions selected based on the tracer distribu-
tion, a straightforward translation of the established tech-
niques to PET/MRI is probably not possible.

Therefore, the aim of our study was to evaluate if the
established classification of uptake curves of dynamic
[18F]FET PET imaging of glioma patients is applicable to
PET/MRI data using different MR-based attenuation correc-
tion techniques.

Materials and methods

Subjects and study protocol

This study included 24 patients (20 female, mean age ± SD =
49 ± 14 years) referred for a [18F]FET-PET examination due
to findings in earlier performed MRI examinations. These
findings included suspected primary (n = 5) and recurrent
(n = 11) gliomas as well as suspected metastasis (n = 8). For
further details, see Table 1. All patients underwent a PET/MRI
examination of the brain (Biograph mMR, Siemens
Healthineers) starting with a bolus injection of about
200 MBq [18F]FET. PET emission data were acquired in
listmode for 40 min. The protocol included the acquisition
of the following MR sequences: standard Dixon, standard
UTE and an anatomical T1-weighted MRI of the brain (MP-
R AG E , T E = 4 . 2 m s , T R = 2 0 0 0 m s , v o x e l
size = 1 mm × 1 mm × 1 mm). Following the PET/MR
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examination, an additional low-dose CT of the head was ac-
quired on a whole-body PET/CT system (Biograph TPTV,
Siemens Healthcare GmbH) for the purpose of CT-based at-
tenuation correction (CT-AC). This study was approved by the
Ethics Committee of the Medical University of Vienna (EK-
No. 1828/2016). All patients did give their written informed
consent before the examination.

Data processing

For each acquisition, the 40-min dynamic PET data were re-
constructed into eight frames (2 × 2 min, 4 × 4 min, 2 ×
10 min) using four different attenuation corrections: standard
Dixon-based MR-AC (Dixon-AC) [26], standard UTE-based
MR-AC (UTE-AC) [28], model-based MR-AC and CT-AC
[29, 30] (Fig. 1). In short, the Dixon-AC is based on the Dixon
technique [31] and results in a four-class AC map with uni-
form linear attenuation coefficients for soft tissue, fat, air and,
if applicable, lung [27]. The UTE-AC is based on an ultra-
short echo time sequence enabling the generation of an AC

map categorising the head into three tissue classes (soft tissue,
bone and air) [28]. Finally, the model-based AC incorporates
spatially variant attenuation coefficients of the major bone
structures into the Dixon-AC [29, 30]. It employs a prototype
version of the five compartment AC method available for the
mMR PET/MRI system in software version E11.

We use the images following CT-AC as a reference stan-
dard. For the CT-AC, the low-dose CTacquired with the PET/
CT was co-registered rigidly to the anatomical T1-weighted
MRI images after removal of the patient bed from the PET/
CT. Then, the CT image volume was resampled to the spatial
resolution of the Dixon-AC map and the Hounsfield units
were converted into linear attenuation values for 511 keV
photons using the same segmentation/bi-linear scaling ap-
proach as used in the PET/CT system [32].

All image reconstructions were performed on an external
workstation (e7tools, Siemens Healthcare GmbH) using an
ordinary Poisson ordered-subset expectation maximisation
(OP-OSEM) algorithm with the following image reconstruc-
tion settings: 3 iterations, 21 subsets, matrix size = 172 × 172,

Table 1 Overview of patients included in this study. The given diagnosis was based on the latest available histological findings except for two patients
with suspected low grad glioma

Patient Age Sex Indication for
18F[FDG] PET/MR

Therapy before PET/MR Diagnosis based on histology Localisation

1 22 F Primary None Anaplastic astrocytoma II–III* Frontotemporal left

2 43 M Recurrent OP, CH, RT, GKN Anaplastic astrocytoma III Temporal left

3 37 F Primary None Not established (suspected low grad glioma) Operculum right

4 52 F Recurrent RT Diffuse astrocytoma II Pons

5 51 F Recurrent CH, RT Oligodendroglioma II Temporal left

6 27 F Primary None Not established (suspected low grad glioma) Thalamus left

7 53 F Metastasis CH, RT,GKN Breast carcinoma* Frontal right

8 38 M Primary None Diffuse astrocytoma II* Frontal left

9 44 F Recurrent OP Oligodendroglioma II Frontal left

10 69 F Metastasis CH, RT, GKN Breast carcinoma Cerebellar right

11 34 F Recurrent CH, RT Diffuse fibrillar astrocytoma II–III Basal ganglia right

12 55 F Metastasis OP, RT, CH, GKN Cervix carcinoma* Frontal left

13 37 F Recurrent OP, RT, CH Glioblastoma Frontal left

14 26 F Recurrent OP Diffuse astrocytoma II Parietal right

15 63 F Primary None Oligodendroglioma II* Temporal left

16 45 F Recurrent OP Diffuse astrocytoma II–III Parietal right

17 59 F Recurrent OP, RT, CH Anaplastic oligodendroglioma III Frontal left

18 75 M Metastasis CH, ST, GKN Lung carcinoma Frontal left

19 51 F Metastasis OP, CH, GKN Lung carcinoma Temporal, occipital right

20 53 F Recurrent OP, RT Anaplastic oligoastrocytoma III Frontal, temporal right

21 46 F Recurrent OP, CH Anaplastic oligoastrocytoma II–III Frontal right

22 67 F Metastasis CH, GKN Breast carcinoma Parietal right

23 66 F Metastasis CH, GKN Breast carcinoma Frontal right

24 64 F Metastasis CH, GKN Melanoma Cerebellar right

F female, M male, OP surgery, RT radiation therapy, CH chemotherapy, GKN gamma-knife therapy

*Histology was established after PET/MR examination
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zoom factor = 2 and post-reconstruction filter = 3 mm FWHM
Gaussian kernel.

Data evaluation

The evaluation of the dynamic [18F]FETstudies was based on
the most common evaluation approaches as described by
Jansen et al [10, 11] and Pöpperl et al [14, 33] and Galldiks
et al [15, 34]. In general, all methods followed the same con-
cept. First, a summed PET image is generated from the last
20 min of the acquisition (21–40 min post tracer injection).
Then, tumours are delineated using region of interest (ROI) or
volume of interest (VOI). In this work, ROI refers to a con-
nected area in one single image slice. VOI refers to a connect-
ed volume, which can include connected voxels frommultiple
slices. ROIs and VOIs are copied to all time frames of the
dynamic PET data, and time-activity curves (TACs) are ex-
tracted from this data. TACs are composed of the average
SUV of all voxels in a ROI or VOI within a reconstructed
frame and the time elapsed from the start of the acquisition
to the end of the respective frame. These TACs are then
categorised by their shapes into different TAC patterns, which
are linked to differences in expected overall survival time or
represent different tumour grades [14, 15]. The differences
between the methods used by different groups are found in
the ROI or VOI definition and in the pattern categories.

In this study, we replicated the most common evaluation
techniques published by Jansen et al [10, 11] and Pöpperl et al
[14] as well as Galldiks et al [15, 34]. In accordance with their
published methodology, the following ROI and VOI defini-
tions and pattern categories combinations were used:

& ROI90: ROI in the axial slice with the highest uptake in the
tumour generated by a threshold-based region growing
including all (surrounding and connected) voxels whose
SUVs were equal or greater than 90% of the of the max-
imum SUV within the tumour

& VOI90: Similar to ROI90, but in three dimensions

Similar to Jansen et al [10] and Pöpperl et al [14], TACs
extracted using ROI90 and VOI90 were categorised into the
following [18F]FET uptake patterns:

(I) Increasing, with [18F]FET uptake constantly increasing,
and

(II) Decreasing, with TAC reaching a maximum within
20 min, followed by a decrease

& ROITBR: ROI in the axial slice with the highest uptake in
the tumour generated by a threshold-based region growing
including all (surrounding and connected) voxels with
SUV equal to or higher than 1.6 times the background
tracer concentration. The background uptake is deter-
mined as the average tracer concentration in a spherical,
2-cm-diameter VOI placed contralateral on an unaffected
brain region (enclosing grey and white matter)

& VOITBR: Similar to ROITBR, but in three dimensions
& VOIFix: Spherical VOI of ~ 2 mL volume (1.56 cm diam-

eter) centred around the maximum tracer uptake in the
tumour [15]

Similar to Galldiks et al [15, 34], TACs extracted using
ROITBR, VOITBR and VOIFix were categorised into the fol-
lowing [18F]FET uptake patterns:

(I) Increasing, with [18F]FET uptake constantly increasing,
(II) Plateau, with TAC reaching a maximum between 20 and

40 min followed by a plateau or slight descent, and
(III) Decreasing, with TAC showing an early peak within

20 min followed by a continuous descent

Lesion definition and TAC extraction were performed
using the Hermes Hybrid Viewer software (version 2.6,
Hermes Medical). TACs extracted from threshold-based
VOIs (VOI90, VOITBR), but with the threshold being too
low for a meaningful segmentation (i.e. segmentation includ-
ed large fractions of the neck and the viscerocranium), were

Fig. 1 Example of the used MR-
ACmethods compared to CT-AC.
a CT-AC. b Dixon-AC. c Model-
based AC. d UTE AC. Image
shows the same sagittal and axial
slices of one patient
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excluded from further analysis. For all ROI and VOI defini-
tions, changes in the corresponding TAC categorisation were
reported as a function of the MR-AC method.

In addition to the assessment of changes in the TAC
categorisation, changes in time to peak (TTP), which is the
elapsed time between tracer injection and maximum tracer
concentration in the target region within the 40 min post in-
jection, were evaluated for all ROI and VOI definitions and
MR-AC methods. Furthermore, differences in the tissue-to-
background ratio (TBR) in the last 10-min frame (31–
40 min post tracer injection) and threshold-defined volumes
in PET images reconstructed with the different MR-AC
methods were reported.

To evaluate the sole contribution of the MR-AC on the
tracer uptake pattern, TACs were additionally extracted from
VOIs placed at exactly the same location for all MR-AC
methods. Therefore, an experienced nuclear medicine physi-
cian (> 10 years of experience in neuro-oncological imaging)
placed spherical VOIs of 1 cm diameter within the 18F-FET
avid lesion on the CT-AC reconstructions, thereby avoiding
the inclusion of obviously non-malignant structures (e.g. ma-
jor blood vessels). These VOIs were then copied to the MR-
AC PET images, and TACs were extracted. These TACs were
categorised according to all above-mentioned methods, and
MR-AC-dependent changes in TAC categorisation and TTP
were assessed.

Results

TACs were extracted from ROI90, ROITBR and VOIShpere for
all 24 patients. Using VOI90 and VOITBR, TACs were extract-
ed for 23 and 17 patients, respectively. For the remaining
patients, VOI90 and VOITBR segmentations included large
parts of the head in at least one of the reconstructions and,
therefore, were excluded.

No change in TAC pattern was observed for TACs extract-
ed from VOI90 and VOIFix. For ROI90, ROITBR and VOITBR
changes in TAC pattern categorisations were observed in up to
4%, 8% and 6% of the examinations when using different
MR-AC methods, respectively. Table 2 summarises the per-
centage of changes in TAC categories depending on the
choice of the MR-ACmethod in relation to the reference stan-
dard (CT-AC). In cases where TAC categorisation did change,
differences in the delineated ROI/VOI by means of their vol-
ume and location could be observed (Figs. 2 and 3). TTP
changes were found for all ROI/VOI definitions in a varying
percentage of cases depending on the used MR-AC method
(Table 3).

TBRs were similar for all AC methods and ROI/VOI def-
initions. Average deviations of TBRs compared to TBRs after
CT-AC PET were between 0 and − 3%, depending on the
ROI/VOI definition and MR-AC method. Figure 4 depicts

the changes in TBRs compared to CT-AC PET. The median
absolute delineated volumes in the CT-AC PETwhere 0.1 mL,
0.6 mL, 0.3 mL and 4 mL for ROI90, ROITBR, VOI90 and
VOITBR, respectively. Average changes of volumes of the
ROIs/VOIs in relation to CT-AC PET were between + 8%
and − 17% when using different MR-AC methods and ROI/
VOI definitions with maximum relative changes of ROI/VOI
volumes of up to − 63% (ROITBR, model-based AC) and +
138% (ROI90, model-based AC) (Fig. 5). However, changes
in absolute delineated volumes > 1 mL only occurred for
VOITBR-based delineations in five cases.

The evaluation of the sole MR-AC-based contribution on
the uptake pattern categorisation revealed that for the exactly
similar located VOI, no changes in pattern categorisation and
TTP were present.

Discussion

This study evaluated if TAC pattern categorisations of dynam-
ic [18F]FET PET studies are influenced by the use of MR-AC
in PET/MRI imaging. It was shown that in the majority of
cases, no change in TAC pattern categorisation occurred when
using different MR-AC methods and that tumour grading in
[18F]FET PET seems to be feasible, regardless of the choice
of the MR-AC method.

In general, local biased quantitative readings (e.g. SUVs)
are known to occur in PET after MR-AC when compared to
reference CT-AC [22, 24, 25]. Such bias results from known
limitations of MR-AC, such as incorrect assumptions of local
tissue attenuation [25], and thus, to locally biased readings of
the attenuation-corrected emission data. However, in dynamic
emission studies, all time frames are corrected using the same
ACmap. Thus, a relative quantitative bias in a certain location
should be stable for all reconstructed time frames as long as
movement artefacts can be neglected. Such a systematic error
will lead to a scaling of the quantitative readings but should
not influence the shape of a TAC for a given ROI or VOI.
Furthermore, any quantitative bias in brain PET/MRI is ap-
proximately symmetrical across both brain hemispheres [22,
29]. Therefore, TBR should be similar between different AC
methods when sampling the background tracer uptake contra-
lateral to the evaluated ROI or VOI. These assumptions are
also confirmed by our results, where similar TBR values are
found for all AC methods (Fig. 4) and no changes in
categorisation and TTP were present for the TACs extracted
from the VOIs placed at exactly the same location for all AC
methods.

However, in this study, TAC pattern changes as well as
shifts in time of the TTP, when using established methodology
with different MR-AC methods, were observed in up to 8%
and 17% of the cases, respectively. These changes are attrib-
uted to differences in the segmented ROI or VOI. Threshold-
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based region growing segmentations depend on the set thresh-
old value and on the local tracer distribution. A locally varying
bias of PET activity, as observed in PET images after MR-AC
[24], may affect the representation of a local tracer distribution
and, thus, contributes to differences in the segmented volume
(Fig. 2). These volumes also represent diverging investigated
areas and, thus, distinct tissues with individual uptake behav-
iours. Furthermore, another segmented area may also repre-
sent a tumour area with an altered uptake pattern, given the
possibility of a heterogeneous tumoural lesion.

In addition to altered segmentations within a lesion, obvi-
ously wrong segmentations were found in the evaluated
datasets. Such errors in segmentations were most prominent

when the tumour was located near other anatomical structures
with physiological [18F]FETaccumulation (e.g. blood vessels
or scalp). In such cases, the threshold-based segmentation
methods could not always distinguish increased [18F]FET
uptake of a tumour from the increased uptake of non-
tumoural tissue reliably. Figure 3 shows an example where a
blood vessel was included in the VOITBR following model-
based MR-AC. As a result, the TAC was a mixture of the
blood TAC (input function) and the TAC of the lesion. In this
case, an exclusion of the blood vessel would have resulted in
similar TAC patterns for all AC methods. Such issues are an
inherent property of semiautomatic thresholding algorithms.
Therefore, an incorrect tumour segmentation cannot be

Table 2 Changes (% total) of
TAC categories derived fromROI
and VOI analysis of PET data
following MR-AC as compared
to CT-AC

AC method 2 TAC pattern categories 3 TAC pattern categories

ROI90 (%) VOI90 (%) ROITBR (%) VOITBR (%) VOIFix (%)

Dixon 0 0 8 6 0

UTE 4 0 4 0 0

Model-based 0 0 8 6 0

Fig. 2 a ROI90 and ROITBR delineated on the summed (20–40 min) PET
images following three MR-AC and the CT-AC methods. In the CT-AC
and UTE-AC PET, the ROITBR included physiological [18F]FET uptake
in the scalp. Further, in the UTE-AC PET, the ROITBR segmentation

resulted in an extended ROI when compared to ROITBR in the Dixon-
AC and model-based AC PET. b TAC extracted from ROI90 and ROITBR
in PET images corrected using the different AC methods
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attributed to a specific AC method and, thus, can also occur
after CT-AC.

In general, segmentations with high thresholds (e.g. a
threshold of 90% of the maximum uptake) appear to be more
stable by means of changes of the segmented region.
However, the differences in bias distribution from different
MR-AC methods can lead to a change in the location of the
maximum uptake in a lesion. This will lead to a change of the
starting point of the region growing and, again, will result in a
different delineated area. The differences found for TTP ex-
tracted from the VOIFix are also partly attributed to changes of
the maximum pixel location. Moreover, TTP changes could
be caused by small adjustments by the experienced reader
when manually placing the VOIFix, thus reflecting intra- and
inter-reader variabilities. Nevertheless, for the categorisation
of TACs, VOIFix showed the most stable behaviour (Table 2)
and the exclusion of obviously non-tumoural tissue could be
ensured by the experienced reader.

A change in the appearance of the local tracer distribution
and the location of the maximum uptake in a lesion could
potentially also influence [18F]FET PET-based targeted biop-
sy [1, 5, 13] or radiotherapy planning [35]. Especially, in ra-
diation therapy planning, threshold-based delineation

approached are often used [36, 37]. Here, similar changes of
delineated volumes for different MR-AC concepts as found in
this study can be expected. These variabilities of volumes
might be of minor impact for high threshold values (e.g.
VOI90), due to the small absolute volume changes (< 1 mL).
However, for low threshold segmentations (e.g. VOITBR),
such volume changes might be significant.

In this study, the used methods for tumour segmentations
were replications of published methodologies for which the
diagnostic value of dynamic [18F]FET PET was proved in
large patient cohorts for stand-alone PET examinations [10,
14, 15, 34]. These methods are based on region growing al-
gorithms applied to PET images (except the VOIFix) and do
not take into account a potential involvement of structures
with physiological uptake. Therefore, the definition of the
region of interest should not be purely based on PET images.
Especially in the case of PET/MRI, where co-localised ana-
tomical information is available, this information should be
additionally utilised for the delineation of the targeted struc-
tures (Fig. 3).

However, even with purely PET-based delineation
methods, only a small proportion of the evaluated TAC pat-
terns were categorised differently when using different MR-

Fig. 3 a T1-weighted MRI with a contrast-enhancing lesion (cyan arrow)
and the arteria carotis interna (orange arrow). b ROITBR delineation of a
tumour in the PET image after AC using the model-based approach. In
this case, the ROITBR additionally includes parts of the arteria carotis

interna. c TACs extracted from ROITBR (red) and from two manually
drawnROIs in the tumour (ROITumour, cyan) and the arteria carotis interna
(ROIVessel, orange). The TAC extracted from ROITBR is a mixture of the
TAC extracted from ROITumour and ROIVessel

Table 3 Number of patients in
relation to the total number of
evaluated patients where TTP
derived from ROI and VOI
analysis of PET data changed
following MR-AC as compared
to CT-AC

AC method ROI90 VOI90 ROITBR VOITBR VOIFix

Dixon 2/24 (1, 2) 0/23 3/24 (1, 1, 3) 1/17 (1) 1/24 (1)

UTE 2/24 (1, 3) 4/23 (1, 1, 1, 1) 3/24 (1, 1, 1) 1/17 (2) 2/14 (1, 1)

Model-based 2/24 (1, 1) 1/23 (1) 4/24 (1, 2, 3, 6) 2/17 (2, 6) 2/24 (1, 1)

The numbers in brackets are theΔTTP in units of time frames for the cases where TTP changed (e.g. (1,3) means
TTP shifted one time frame in one case and three time frames in another)
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AC methods. TACs extracted from fixed VOIs and threshold-
based segmentations with conservatively high thresholds only
defining the most metabolic active areas showed the most

stable behaviour. Segmentations based on relatively low
thresholds (e.g. 1.6 times the background) aiming on a seg-
mentation of the total tumour volume were more likely to

Fig. 4 Relative difference of
TBRs using the three MR-based
AC methods in comparison to the
TBRs extracted from PET after
CT-AC

Fig. 5 Relative difference of the
PET-based ROI and VOI for the
three MR-AC methods in com-
parison to the ROI and VOI fol-
lowing CT-AC
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result in different TAC patterns. However, none of the inves-
tigated delineation methods has shown a 100% reproducible
segmentation of the investigated area in all cases.

Limitations

The study protocol did not include motion correction of
the dynamic PET data. Solely foam wedges were used to
limit subject motion. Therefore, motion artefacts cannot
be ruled out. However, no influence of motion artefacts
on the results of the pattern comparison is expected as the
same raw data was used in all reconstructions, and thus,
an artefact will influence all reconstructions similarly.
Nevertheless, motion compensation is highly recommend-
ed for dynamic studies as motion artefacts could influence
the pattern categorisation.

In this study, a high prevalence of lesions with relatively
low tracer uptake was present. We assume that the rate of
failing segmentations using VOI90 and VOITBR is lower in
patient cohorts with higher tracer uptake in the lesions.

Conclusion

Established uptake curve evaluation methods used for gli-
oma characterisation in dynamic [18F]FET PET can be
applied to PET/MRI using all investigated MR-AC tech-
niques. However, quantitative readings by means of SUV
may be biased depending on the used MR-AC. Moreover,
a meaningful segmentation of the area of interest needs to
be ensured with all AC methods. This mandates a visual
validation of the ROI or VOI by an experienced reader,
preferably also using the additional anatomical informa-
tion as provided by the MRI component of the PET/MRI
system.
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