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a b s t r a c t

In precise medicine, it is with great value to develop computational frameworks for identifying prognos-
tic biomarkers which can capture both multi-genomic and phenotypic heterogeneity of breast cancer
(BC). Radiogenomics is a field where medical images and genomic measurements are integrated and
mined to solve challenging clinical problems. Previous radiogenomic studies suffered from data incom-
pleteness, feature subjectivity and low interpretability. For example, the majority of the radiogenomic
studies miss one or two of medical imaging data, genomic data, and clinical outcome data, which results
in the data incomplete issue. Feature subjectivity issue comes from the extraction of imaging features
with significant human involvement. Thus, there is an urgent need to address above-mentioned limita-
tions so that fully automatic and transparent radiogenomic prognostic biomarkers could be identified for
BC.
We proposed a novel framework for BC prognostic radiogenomic biomarker identification. This frame-

work involves an explainable DL model for image feature extraction, a Bayesian tensor factorization (BTF)
processing for multi-genomic feature extraction, a leverage strategy to utilize unpaired imaging, geno-
mic, and survival outcome data, and a mediation analysis to provide further interpretation for identified
biomarkers. This work provided a new perspective for conducting a comprehensive radiogenomic study
when only limited resources are given. Compared with baseline traditional radiogenomic biomarkers, the
23 biomarkers identified by the proposed framework performed better in indicating patients’ survival
outcome. And their interpretability is guaranteed by different levels of build-in and follow-up analyses.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Breast cancer (BC) is the most commonly diagnosed cancer and
is one of the leading causes of cancer death for women worldwide
[1]. It is an advanced solid tumor with very high heterogeneity that
comes from a variety of cellular function gain and loss during the
development of the tumor. The widely accepted cancer theory
indicates that there might be ten large biological capabilities
acquired during the course of human tumors [2]. These unnormal
biological capabilities range from sustaining proliferative signaling
to evading immune destruction. They influence intermediate phe-
notypes such as tumor morphology and then eventually change the
clinical outcomes such as overall survival (OS). Therefore, it is crit-
ical to characterize the cellular heterogeneity comprehensively.
Meanwhile, the intermediate tumor morphology is also worth of
consideration in estimating the clinical outcome of patients. The
cellular heterogeneity could be detected in different biological
levels using variety of modern molecular biological techniques
which could generate high-throughput measurements, such as
gene expression values, copy number variation (CNV) scores, and
DNA methylation levels. These measurements contain rich and
valuable information about the molecular heterogeneity but are
hard to be digested directly by human. A lot of computational tools
have been developed to help human experts summary the hetero-
geneity of cancer cells from these high-dimensional molecular
biology measurements [3]. The majority of them involve unsuper-
vised matrix deconvolution in their workflow [4,5]. One disadvan-
tage of matrix deconvolution is that it cannot keep the inherent
and complement information of different biological levels because
matrix deconvolution method simply merges different molecular
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omics data matrix into a big data matrix without consider the
interaction between them [6]. Furthermore, it might be difficult
to establish biological interpretations for the variety of genomic
factors calculated using the matrix deconvolutional operation [7].

Recently, tensor decomposition has been introduced into multi-
genomic data analysis [8]. Tensor is defined as a high-dimensional
data array [9]. Several two-dimensional genomics data matrices
can form a three-dimensional tensor with the new dimension rep-
resenting the data sources (such as genotyping data, gene expres-
sions, DNA methylation, et al). Then the tensor can be decomposed
or factorized into factors with a reduced size [9–11]. These factors
could represent the heterogeneity of the tumor and inform progno-
sis. Comparing with matrix deconvolution, tensor decomposition
could take the cross-level interactions into consideration. What is
more, the decomposed latent factors have patient-directional pro-
jections as well as gene-directional projections. Patient-directional
factors could reflect the heterogeneity among subjects, while gene-
directional projections could capture the contribution of each gene
to each patient-directional factor. By analyzing the gene-
directional projection matrix, key biological functions of each
patient-directional factor could be estimated. Tensor decomposi-
tion is not a new topic and there are several algorithms to conduct
this task. Among them, canonical decomposition (CANDECOM)
[11] and parallel factors (PARAFAC) [10] are often referred together
as CP (CANDECOM/ PARAFAC) because they both decompose a ten-
sor as the sum of several rank-one tensors [12–14]. The number of
these rank-one tensors, which is also called the rank of the given
tensor, needs to be pre-defined. However, determining the rank
of a given tensor is a non-deterministic polynomial time (NP) prob-
lem [15,16], and for a long time, there had been no direct way to
solve this problem [9]. Until recently, the emerge of Bayesian ten-
sor factorization (BTF) algorithm provided a solution [17]. BTF first
uses a multi-linear model to decompose the given tensor to latent
factors, then performs Bayesian inference to estimate the posterior
distribution of these latent factors. At the end is a filtering proce-
dure to remove redundant factors. In this way, BTF could deter-
mine the optimum rank of a tensor and extract latent factors at
the same time. Factors extracted by BTF performed better in many
healthcare-related tasks comparing with the other tensor factor-
ization algorithms [17].

Although multi-genomic measurements could provide us with
rich information about the cellular tumor heterogeneity, the geno-
mic examination is invasive and sometime expensive. In addition,
it may not be able to capture the dynamic and macroscopic infor-
mation of the whole tumor as the biopsy is often taking at a certain
time point on a small bulk of tumor tissues. Radiomics is a research
field where high-throughput medical image features are used to
describe disease phenotypes [18]. It could be used as an auxiliary
or surrogate of the multi-genomic analysis. Medical imaging is
non-invasive, so it is often used as a disease monitoring method
and thus performed at multiple time points during the course of
the BC. And the imaging region of interest (ROI) usually covers
the entire tumor and even the tissues around the tumor. Current
radiomic studies are facing feature subjectivity and interpretability
trade-off issue. Traditional computational engineering methods
usually involve human experts’ pre-processing which introduces
the subjectivity. Although human understandable image features
such as tumor morphological features and the first-order,
second-order statistic features of the image pixel distribution
[19] could be generated using the traditional feature engineering
methods, they are pre-defined and limited by human knowledge
therefore may not be able to fully represent the image heterogene-
ity. Recently, with the fast development of deep learning (DL) tech-
niques, DL-based feature extraction approaches have been widely
used in radiomics [20]. DL is highly flexible and accurate in analyz-
ing multi-modal volumetric and dynamic medical images in a fully
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automatic and non-linear manner [21]. But image features
extracted by sophisticated DL models are considered not human
understandable. Therefore, it is critical to explore potential tools
to increase their explainability [22].

Combining radiomics with genomics leads to the field of radio-
genomics, which has a goal of noninvasively uncover the radio-
genomic biomarkers that could indicate the clinical outcomes of
the patients [3]. Besides the challenges in radiomics and genomics,
radiogenomics also faces the unpaired data problem. Currently, the
publicly available BC datasets are usually incomplete to do a
biomarker-oriented radiogenomics study. For example, a dataset
may contain medical images and genomics data for the same
patients, which provides us with enough information for feature
extraction and radiogenomic mapping, but the patients’ clinical
outcomes might be hard to obtain as this may need long-term
observation. Hence the prognostic significance of the image fea-
tures could not be evaluated (i.e. the image features cannot be
identified as prognostic biomarkers) [23,24]. Effective utilization
of the unpaired imaging, genomic, and clinical data should be con-
sidered wisely.

In this study, we propose a DL-based radiogenomic framework
for prognostic biomarker identification. Our framework includes
the following five modules: a DL-based multi-modal image feature
extraction module with build-in saliency maps for DL explanation;
a BTF multi-genomic feature extraction module with gene set
enrichment analysis (GSEA) [25] to explore the biological meaning
of the extracted features; a radiogenomic leverage module consists
of a series of predictive models to impute the unpaired imaging,
genomic, and survival data; a prognostic biomarker identification
module which uses survival analysis to evaluate the prognostic sig-
nificance of each radiogenomic feature; and a statistic mediation
analysis module to provide potential biological causal inference
of the identified prognostic biomarkers. It is expected that the
identified radiogenomic biomarkers have better prognostic signif-
icance than the traditional ones.
2. Material and methods

The overall design of this study is shown in Fig. 1. Single-
radiogenomic stage (Fig. 1A) is a baseline workflow with only gene
expression as genomic data source. This is to test whether multi-
genomic features have better radiogenomic associations than the
single-genomic features. Multi-radiogenomic stage (Fig. 1B) is the
proposed workflow.
2.1. Formation of the datasets

Multi-source genomic data (gene expression, CNV, and DNA
methylation) of the breast carcinoma cohort (BRCA) are provided
by The Cancer Genome Atlas (TCGA) [24] platform. Medical image
data, specifically, the three-dimensional dynamic contrast-
enhanced Magnetic resonance imaging (DCE-MRI) volumes of a
sub-cohort of the BRCA, are collected from The Cancer Imaging
Archive (TCIA) [23] platform. Part of these medical images has seg-
mentation labels and 36 traditional semi-auto radiomic (SAR) fea-
tures provided by the TCIA Breast Phenotype Research Group [26].
The data of BRCA cohort from both TCGA and TCIA form two data-
sets for this study: BRCA single-radiogenomic dataset, and BRCA
multi-radiogenomic dataset. The exact data matching and forma-
tion workflow can be found in Fig. 2. The demographic information
of the sub-cohorts is listed in Table 1.
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Fig. 2. Breast cancer cohort (BRCA) single- and multi- radiogenomic datasets organization flowcharts. TCGA provides genomic data and clinical data of a cohort with
1097 BRCA patients. TCIA provides medical images of partial TCGA-BRCA cohort (137 patients). Four of the 1097 BRCA patients have no meaningful survival information
(death days or last contact days are negative numbers) thus were excluded. Nighty-one of 137 TCIA patients have annotated dynamic contrast-enhanced magnetic resonance
images (DCE-MRI). A: BRCA single-radiogenomic dataset. One-thousand and nighty-three (1097-4) TCGA-BRCA patients all have gene expression data. Thus, gene
expression data were used as baseline single-genomic information in this study to compare with the multi-genomic information. Those 91 patients with annotated DCE-MRI
are all included in the 1093 TCGA-BRCA patients. This means, 91 patients have paired gene expression data and annotated image data. However, no survival difference is
observed among these 91 patients, because they were all alive according to the last follow-up. Therefore, we cannot perform survival analysis using the paired data. The rest
of 1002 (1093-91) patients only have gene expression data (no DCE-MRI data), but there exists survival difference among them. B: BRCA multi-radiogenomic dataset. Only
762 of the 1093 TCGA-BRCA patients have matched gene expression, copy number alteration (CNA), and DNA methylation data. Sixty-one of those 91 TCIA-BRCA patients
with annotated DCE-MRI are included in the 762 TCGA-BRCA patients with multi-genomic data. This means, 61 patients have paired multi-genomic data and annotated
image data. However, no survival difference is observed among these 61 patients. The rest of 701 (762-61) patients only have multi-genomic data (no medical image data),
but there exists survival difference among them.
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2.2. Explainable DL-based image feature extraction

DCE-MRI volumes of the same patients were acquired at differ-
ent time points with an interval of dozens of seconds [27]. That is
where the ‘‘dynamic” comes from and it is a very strong advantage
of DCE-MRI. Besides, the number of DCE-MRI volumes (i.e., time
points) variates among patients, depending on the exam pipeline
of the imaging institute and the patient’s individual conditions
(such as blood flow velocities). To handle this problem, a multi-
modal three-dimensional DL model [28–31] called 3DU-Net [32]
was applied to incorporates DCE-MRI volumes acquired at differ-
ent time points to extract fused and dynamic deep DL-based radio-
mic (DLR) features. The modality of the input was set to the
3

Fig. 1. The overall workflow of this study. A DL model (3DU-net) was built, trained, an
image. After the 3DU-net were well-trained, DL-based radiomic (DLR) features were extr
saliency maps were generated to show the importance of each input pixel to the 3DU-ne
we first focus on the paired data (top panel of A). Three-level gene expression features
established breast cancer gene signatures) are generated. Then, lasso models are built to
level gene expression features. After the predictive lasso models are well-trained and va
three-level gene expression features using the unpaired data, then we apply the well-tra
generate the DLR and SAR features for the 1002 patients without medical images. Then, w
ones are the identified prognostic radiogenomic biomarkers. Mediation analysis is the
biological mechanisms of them. B: Multi-radiogenomic stage. In this stage, similar proc
data (top panel of B). We perform Bayesian tensor factorization (BTF) on the multi-genom
(GSEA) to identify the key biological pathway of each BTF feature. These key pathways co
train lasso models to utilize these 17 BTF features for predicting the DLR and SAR features
data (bottom panel of B). We obtain the BTF features using the multi-genomic data, then
and SAR features. In this way, we could get the DLR and SAR features for the 701 patient
and SAR features. The significant ones are the identified radiogenomic biomarkers. Media
to check the potential biological mechanisms of them.
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maximum number of volumes a given patient can have, which is
8. If the given patient has less than 8 DCE-MRI volumes, the posi-
tion with absent volume was set to empty. The output of the 3DU-
Net is the tumor segments provided by TCIA Breast Phenotype
Research Group [26]. Two gradient-based saliency maps (Gradient
map [33] and Gradient*image map [34]) were embedded in the
structure of the 3DU-Net to support explaining the segmentation
decision. The detailed model structure of 3DU-Net is shown in
Fig. 3.

The number of DLR features was set as 32, which is comparable
with the 36 SAR features provided with the data. The 91 patients
with annotated DCE-MRI data were involved in training and vali-
dating the 3DU-net. Patients were randomly split into train set
d validated to segment the tumor region from the raw three-dimensional DCE-MRI
acted from the last hidden layer in the encoding phase of the model. Gradient-based
t of making its segmentation decision. A: Single-radiogenomic stage. In this stage,
(197 breast cancer risk gene expressions, 182 KEGG pathway activities, and 6 well-
predict each DLR feature and semi-auto radiomic (SAR) feature using these three-
lidated, we turn to the unpaired data (bottom panel of A). We generate the same
ined lasso models to get the predicted DLR and SAR features. In this way, we could
e performed survival analysis on the predicted DLR and SAR features. The significant
n performed on these identified radiogenomic biomarkers to check the potential
edures of the single-radiogenomic stage are performed. We first focus on the paired
ic data tensor to extract 17 BTF features. We also run gene set enrichment analysis

uld explain the key functions of the identified multi-genomic BTF features. Then we
. After the lasso models are well-trained and well-validated, we turn to the unpaired
we apply the well-trained lasso models in the previous step to get the predicted DLR
s without medical images. Then, we perform survival analysis on the predicted DLR
tion analysis is then performed on each of these identified radiogenomic biomarkers



Table 1
Demographics of BRCA sub-cohorts.

Single-radiogenomic dataset Multi-radiogenomic dataset

Unpaired data Paired data Unpaired data Paired data

Number of patients 1002 91 701 61
Age at diagnosis �65 329 14 215 8

<65 673 77 486 53
Mean 58.9 53.6 58.3 54.0
Min 26 29 26 29
Max 90 82 90 82
Standard deviation 13.3 11.5 13.2 11.5

Stage I 160 22 107 14
II 561 58 386 39
III 237 11 187 8
X or IV 33 0 15 0
Other 11 0 6 0

ER Status Positive 729 77 499 53
Negative 224 14 159 8
Not Evaluated 49 0 43 0

PR Status Positive 625 72 434 48
Negative 325 19 221 13
Indeterminate 4 0 2 0
Not Evaluated 48 0 44 0

HER2 Status Positive 150 14 81 7
Negative 512 49 353 34
Indeterminate 12 0 12 0
Equivocal 157 22 118 18
Not Evaluated/Available 171 6 137 2

Pam50 subtype LumA 498 63 366 43
LumB 197 11 132 9
Her2 78 4 44 1
Basal 178 12 126 7
Normal 39 1 33 1
NA 12 0 0 0
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(71 patients), validation set (10 patients), and test set (10 patients).
We did hyperparameter tunning for the 3DU-net on stride, learn-
ing rate, and dropout ratio. The best hyperparameter combination
was then used in the final model. After 1000 epochs, the perfor-
mance of the segmentation task measured by Dice similarity coef-
ficient (DSC). Given a reference segmentation Slab, the DSC of a
predicted segmentation Spred is defined as.
Fig. 3. The structure of explainable 3DU-Net. The modality of the input is set to 8, whic
8 DCE-MRI volumes, the positions with absent volumes are set to empty. The output is th
features. Two explanation tools (Gradient map and Gradient*image map) are used to in
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DSC ¼ 2jSpred \ Slabj
jSpredj þ jSlabj ð1Þ

Then the well-trained 3DU-net was applied to the whole 91
patients for DLR feature extraction. We then performed pair-wise
correlation analysis among all DLR features to see if they are corre-
lated with each other.
h is the maximum number of volumes a patient can have. If a patient has fewer than
e tumor segment annotation. The last hidden layer of the encoder phase is the DLR
crease the explainability of the 3DU-net.
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2.3. BTF for multi-genomic feature extraction

Using the R package ‘‘tensorBF” [35], we implemented the BTF
algorithm to extract latent factors (patient-directional projection
matrix) from the gene expression, CNV, and DNA methylation data
for the 762 patients from TCGA-BRCA. More details of the BTF algo-
rithm can be found in Supplementary Fig. 1. We did GSEA using the
gene-directional projection matrix to further explore the potential
key biological functions of each latent factor. Three-level gene
expression features were generated as the baseline, including
196 BC risk genes identified by previous studies [36,37], 182 path-
way activities calculated using the Single Sample Gene Set Enrich-
ment Analysis (ssGSEA) function [38] which was implemented in
the GenePattern toolkit [39], and 6 commercialized BC gene signa-
tures calculated using R package ‘‘genefu” [40]. We then performed
pair-wise correlation analysis among all BTF features and all three-
level gene expression features to see if they are correlated with
each other.

2.4. Leveraging strategy for radiogenomic feature imputation

To perform a biomarker-orientated radiogenomic research, ide-
ally, we need to have matched medical images, genomic profiles,
and clinical outcomes measured on the same set of patients, in
which we can first identify radiomic biomarkers associated with
clinical outcomes (e.g., prognosis), then we can associate the radio-
Fig. 4. Image data and explanation saliency visualization. The first column is the raw
columns are two kinds of saliency map generated using gradient method and gradient*
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mic biomarkers with patients’ genomic profiles to illustrate their
biological mechanisms. However, in the majority of cases, we only
have one or two sets of data sources measured on the same
patients. To solve the challenge, we used a leverage strategy [41].
We first focused on the paired part of the radiogenomic dataset,
where we have the paired genomic data and medical image data
for 61 patients. we trained lasso models [42] to predict each radio-
mic feature yi using the genomic features x (2, 3).

yi ¼ b0 þ b1xi1þb2xi2þ � � � þ bgxig þ e ð2Þ

dblasso ¼ argmin
b

XN
n¼1

1
2

yn � bxnð Þ2 þ k
Xg

j¼1

bj

�� �� ð3Þ

The 61 samples were randomly split to train set (43 samples)
and test set (18 samples). Prediction performances were evaluated
using Root Mean Square Error (RMSE). Then we turned to the
unpaired part of the radiogenomic dataset, where we only have
the genomic data and patients’ clinical outcomes without medical
images for 762 patients. We applied the predictive models which
were well-trained in the previous step to get the predicted radio-
mic features from the genomic features. In this way, we could
get a completed paired dataset for further analysis. We also gener-
ated radiogenomic correlation map between the radiomic features
and the genomic features to explore the potential biological expla-
nations for the relationship of them.
images. The second column is the predicted tumor segments. The third and fourth
input method separately.
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2.5. Survival analysis for radiogenomic biomarker identification

We further applied the function ‘‘surv_cutpoint” and ‘‘surv_cat-
egorize” in the R package ‘‘survminer” [43] to select the optimized
cut-off of each radiogenomic feature to categorize the patients into
high and low-risk groups. For each radiogenomic feature,
‘‘survminer” looks for the cut-off where the log-rank test for sur-
vival analysis can produce the maximum statistic (lowest p-
value). We classified the patients into the high-risk group and
the low-risk group based on the cut-off for each radiogenomic fea-
ture. Then, we utilized the Kaplan-Meier (KM) plot to show the
survival difference between the high-risk group and the low-risk
group.

2.6. Mediation analysis

The complexity of DL models and their low reproducibility have
weakened their applications in clinical practice [44]. Hence, to
enhance the biological interpretation of the DLR biomarkers, medi-
ation analysis [45] between the genomic features and the BC prog-
nosis through the identified radiogenomic biomarkers are
implemented to reason on these radiogenomic biomarkers both
biologically and statistically. By testing and estimating the media-
tion effects of the identified radiogenomic biomarkers on the rela-
tionship between genomic features and patient survival, biological
interpretation of these radiogenomic biomarkers could be well
made. We first regressed the survival outcome variable ys against
each genomic feature xg (4). The effect bte is the total (direct and
indirect) effect of the genomic feature on the survival outcome.
Then, we regressed the mediator (identified radiogenomic biomar-
ker) magainst xg (5). The effect bg is the effect of a genomic feature
on a mediator. Lastly, we regressed the survival outcome ys against
both m and xg (6). bcme is the indirect effect of the genomic feature
on the survival outcome that goes through the radiogenomic bio-
Table 2
Key enriched pathways for the multi-genomic Bayesian tensor factors.

BTF Key pathways NES p-value FDR Key pathway genes

1 Chemokine signaling
pathway

1.57 0.0059 0.25 CXCL5|CXCL1|CCL8|C
CCL3|RAC2|RELA|PPB

2 Cytokine receptor
interaction

1.96 <0.001 <0.001 CCL21|CCL19|CCL14|
CCL23|IL21R|CCL13|A
IL11RA|CXCL6|CTF1|C

3 Huntington’s disease �2 <0.001 0.0029 DNALI1|DNAI1|COX7
4 Natural killer cell

mediated cytotoxcity
�2 <0.001 0.0024 IFNA7|KIR2DL1|NCR1

5 Hematopoietic cell
lineage

2.13 <0.001 <0.001 MS4A1|CR2|FCER2|CD

6 Starch and sucrose
metabolism

�1.93 0.0029 0.03 PYGL|UGT2B10|UGT2

7 Cell cycle �1.83 0.0047 0.08 CCNA1|ANAPC10|CCN
8 Retinol metabolism 1.76 0.0063 0.16 ADH1C|UGT2B11|UG

UGT2A1|ALDH1A1
9 Steroid hormone

biosynthesis
�1.65 0.0011 0.05 UGT2B11|CYP7B1|HS

10 Leukocyte trans
endothelial migration

1.92 <0.001 0.04 MSN|CXCL12|CYBA|C

11 VEGF signaling pathway 1.63 0.02 0.22 PTGS2|PLA2G10|CHP
12 Olfactory transduction �1.76 <0.001 0.10 OR51V1|OR2W1|OR1

OR10H5|OR11A1|OR
13 Oocyte meiosis 1.46 0.05 0.39 ADCY8|MOS|YWHAQ
14 Drug metabolism

cytochrome
2.32 <0.001 <0.001 GSTM1|UGT2B11|UG

UGT1A10
15 Endocytosis 1.81 0.0048 0.09 DNAJC6|CBLC|PSD2|C

ARAP3|RAB5A
16 Antigen processing and

presentation
1.47 <0.001 0.0097 CD74|HSPA1A|PSME1

17 Metabolism of
Xenobiotics by
cytochrome

2.16 <0.001 0.0010 UGT2A1|CYP2C9|UGT
UGT1A1|UGT1A9|UG
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marker. bde is the direct effect of the genomic feature on the sur-
vival outcome.

ys ¼ btexg þ et ð4Þ

m¼ bgxg þ eg ð5Þ

ys ¼ bdexg þ bcmemþ em ð6Þ
These mediation analyses are done using R package ‘‘mediation”

[46]. The significance of the estimated effects was tested and cor-
rected using Benjamini-Hochberg multiple testing method [47].
3. Results

3.1. Radiomic and genomic features

The hyperparameter tunning for the 3DU-net could be found in
Supplementary Table 1. The best hyperparameter combination was
stride = 1, learning rate = 0.001, dropout ratio = 0.2. The segmenta-
tion performance DSC of the well-trained 3DU-net on the test set is
0.44. The explanation saliency maps are shown in Fig. 4 and 36 DLR
features were extracted from the well-trained 3DU-net. According
to the saliency maps, the important pixels fall into and around the
tumor regions, which means our DL model made a certain segmen-
tation decision mainly based on the tumor as well as surround-
tumor regions. Using BTF algorithm, 17 multi-genomic factors
were acquired. Their key biological functions identified by GSEA
are shown in Table 2. These key functions range from cell division,
blood vessel formation, immune response, intercellular signal
transmitting, and so on, which quite fit the well-accepted cancer
hallmark hypothesis [2]. This means that the multi-omics BTF
method captures cancer heterogeneity very well. The pair-wise
correlation analysis among radiomic features and genomic features
XCL3|CCL13|PRKX|CXCL6|CCL8|CXCL2|CCL5|CCL2|CCL4|CCL25|ADCY3|GNB4|
P|CCL23|CCL24|ROCK2|ITK
CXCL14|IL17B|CXCL2|CD40LG|CXCL12|TSLP|TNFSF11|CNTFR|CXCL1|CCL5|TPO|
CVRL1|IL12B|CCL11|PDGFRB|CCL2|CD70|CCL16|CCL18|CCL4|IL7|CSF1R|TNFSF4|
XCL3|EPOR|EDA2R|CCL3
B|CREB3|CLTA|NDUFS3|UQCRC1|COX6A1|AP2S1|NDUFA2|COX5B|NDUFA7|BBC3
|ULBP1|ULBP2|RAC2|ZAP70|CD244|VAV1|KIR2DL4|CD48|GZMB|

5|CD2|CR1|CD1E|CD1B|CD1C|CD1D|CSF1R|CD33|IL7|TPO|CD1A|IL5RA

B11

D2|CDKN1B|ANAPC7|CDC23|PTTG1|CDK1|CDC25C|ESPL1
T2B10|UGT1A6|UGT1A7|UGT1A9|RPE65|CYP1A2|CYP2C19|ADH4|UGT1A8|

D17B7|CYP11B2|CYP11B1

YBB|JAM2|MYL2|CTNND1|SIPA1|CLDN22

2|PLA2G4E|PLA2G2F
2D2|OR2T5|OR7D4|OR10G7|OR2A2|PRKX|OR10G8|OR1I1|GUCA1C|OR14J1|
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Fig. 5. The radiomic feature correlation analysis and genomic feature correlation analysis. A: The pairwise DLR feature correlations. Columns and rows are 32 DLR
features. The darker colors represent the higher correlations. B: The pairwise SAR feature correlations. Columns and rows are 36 SAR features. The darker colors represent the
higher correlations. As we can see, some of the SAR features are correlated with each other. C: The canonical correlations of the two radiomic feature matrices (DLR and SAR).
The x-axis is the canonical dimensions, while the y-axis is the correlation of the correlations between the DLR features and SAR features in each dimension. It is telling us,
these two feature matrices are highly correlated with each other, which also means, the DLR features are able to capture the majority of information that the SAR features
captured. D: The scalar plot of the first two dimensions of DLR features and SAR features. Blue ones are the SAR features, while red ones are the DLR features. DLR features may
capture more information than the SAR features because the red dots are more widely spread. E: The pairwise BTF multi-genomics feature correlations. Columns and rows are
17 BTF features. The darker colors represent the higher correlations. F: The pairwise three-level gene expression feature correlations. Columns and rows are 197 (risk gene
expressions) + 182 (pathway activities) + 6 (gene signatures) = 385 gene expression features. The darker colors represent the higher correlations. According to the results, we
could see that BTF features are more independent than the baseline three-level gene expression features. G: The canonical correlations of the two genomic feature matrices
(BTF and three-level gene expression features). The x-axis is the canonical dimensions, while the y-axis is the correlation of the correlations between the BTF features and
three-level gene expression features in each dimension. H: The scalar plot of the first two dimensions of BTF features and three-level gene expression features. Blue ones are
the three-level gene expression features, while red ones are the BTF features. The BTF feature matrix and the three-level gene expression feature matrix are highly correlated
with each other, which also means, the BTF features are able to capture the majority of information that the three-level gene expression features captured. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Performance of predictive LASSO models for each DLR feature.

Radiomic feature Gene expression feature BTF feature

RMSE MAE MAPE RMSE MAE MAPE

DLR_1 83.08 68.11 0.4 57.22 35.87 0.75
DLR_2 71.6 47.31 0.26 49.81 27.36 0.76
DLR_3 65.16 53.33 0.82 21.08 17.65 0.1
DLR_4 60.55 49.51 0.71 22.72 16.18 0.09
DLR_5 61.45 46.26 0.3 16.64 11.69 0.07
DLR_6 60.13 44.88 0.25 28.14 24.48 0.15
DLR_7 53.99 40.35 0.24 50.74 35.39 0.43
DLR_8 54.66 44.39 0.25 53.93 40.58 1
DLR_9 107.26 87.58 4.36 80.61 60.65 3.52
DLR_10 98.83 79.18 2.85 25.76 25.51 0.13
DLR_11 45.66 34.04 0.23 12.01 12.01 0.06
DLR_12 24.76 17.26 0.12 30.44 13.04 0.12
DLR_13 27.85 18.32 0.13 30.63 13.29 0.13
DLR_14 27.52 18.57 0.13 33.67 20.68 0.16
DLR_15 104.52 81.16 4.08 69.06 50.32 2.26
DLR_16 89.73 65.58 2.42 53.86 33.54 1.74
DLR_17 102.34 85.94 0.51 44.35 36.26 0.3
DLR_18 77.37 60.19 0.49 47.01 31.37 0.59
DLR_19 58.2 46.47 0.77 27.88 26.51 0.15
DLR_20 62.56 42.71 0.22 22.39 17.25 0.11
DLR_21 37.11 27.53 0.15 32.35 26.22 0.19
DLR_22 64.53 51.65 0.3 25.29 18.7 0.09
DLR_23 50.77 37.48 0.24 29 23.1 0.15

(continued on next page)
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Fig. 6. Prognostically significant DLR features and SAR features. A: The sorted p-values of survival analyses. DLR features showed overall lower p-values than SAR
features. B: The most prognostically significant SAR feature. Maximum enhancement has the lowest p-value (2.45e-05) among all SAR features in the survival analyses. C:
The most prognostically significant DLR feature. DLR-8 has the lowest p-value (5.97e-06) among all DLR features in the survival analyses.

Table 3 (continued)

Radiomic feature Gene expression feature BTF feature

RMSE MAE MAPE RMSE MAE MAPE

DLR_24 57.25 45.85 0.27 52.08 33.93 1.14
DLR_25 63.32 49.08 1.14 70.53 38.77 2.57
DLR_26 22.65 17.78 0.1 12.98 9.12 0.05
DLR_27 21.42 12.33 0.09 4.84 4.84 0.02
DLR_28 32.88 16.05 0.17 3.03 3.03 0.02
DLR_29 7.35 5.67 0.03 0.01 0.01 0
DLR_30 17.17 13.57 0.07 2.79 2.79 0.01
DLR_31 60.98 44.31 0.95 17.77 16.69 0.09
DLR_32 94.82 76.64 2.78 53.41 41.07 1.59
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Table 4
The significant results of mediation analyses of the identified biomarkers.

Independent variable Mediator ACME* ACME_pvalue ADE* ADE_pvalue TE* TE_pvalue

Metabolism of xenobiotics by cytochrome DLR_7 �0.03 0.044 0.21 <2e-16 0.18 0.004
BTF_4 DLR_8 30.38 0.05 �118.63 <2e-16 �88.25 0.026
BTF_7 DLR_2 9.00 0.046 �87.52 0.036 �78.53 0.05

*ACME (average causal mediation effects): indirect effect of the IV on the DV that goes through the mediator.
*ADE (average direct effects): direct effect of the IV on the DV.
*TE (total effect): direct and indirect effect of the IV on the DV.

Q. Liu and P. Hu Computational and Structural Biotechnology Journal 20 (2022) 2484–2494
could be found in Fig. 5. DLR features and BTF features are less
redundant and could capture more information than SAR features
and traditional gene expression features.

3.2. Leveraging strategy for prognostic radiogenomic biomarker
identification

The root mean square error (RMSE) of the radiogenomic predic-
tive lasso models could be found in Table 3 (for DLR feature predic-
tion) and Supplementary table 2 (for SAR feature prediction). A
lower RMSE means a better performance. As we can see, the
multi-genomic BTF features perform overall better in predicting
the DLR features than the baseline gene expression features. The
radiogenomic correlation maps could be found in Supplementary
Fig. 2. Twenty-three DLR features are significant in the survival
analyses, which means we have identified 23 significant prognostic
biomarkers using the proposed method and they have overall
lower log-rank p-values than the SAR features (Fig. 6A). The KM
plots of the most prognostically significant DLR biomarker
(DLR_8) and SAR biomarker (Maximum enhancement) are shown
in Fig. 6BC. Table 4 is showing the significant results of the medi-
ation analyses. The most significant DLR biomarker (DLR_8) is a
significant mediator of the BTF_4 (Natural killer cell mediated
cytotoxicity)’s effect on patient survival.

4. Discussion

Two advancedmathematical methods, BTF and DL, were used to
estimate the multi-level genome and morphological heterogeneity
of BC. BTF plus GSEA successfully provided us with biologically
meaningful multi-genomic features. And their key biological func-
tions are highly related to the known hallmarks of cancer [2],
including signaling, cell cycle, metabolism, and immune related
pathways. BTF features are more advanced than the single-source
genomic features because they not only consider multiple genomic
sources, but also consider the interaction between them. DL could
extract image features automatically and objectively but its
explainability needs to be increased. The proposed workflow
increased the explainability of the DL-based image feature extrac-
tion in two ways, one is by adding two explanation tools into the
model structure, the other is by introducing domain knowledges
to support the extracted image features. According to our experi-
ment, the DLR features performed better than the traditional SAR
features, thus, we believe once the explainability issue is
addressed, DL will have a bright future in healthcare data
analyzing.

Leveraging strategy is often seen in biomedical field [48,49]
because healthcare data is often not easy to get and thus will lead
to the unpaired data problem. This is the first time that the lever-
aging strategy being introduced into DL-based radiogenomics. It
successfully solved the unpaired data problem in this case. Taking
advantage of the estimated radiogenomic features which repre-
senting the multi-level tumor heterogeneity, we successfully iden-
tified several prognostic biomarkers using the proposed workflow.
The most prognostically significant radiogenomic biomarker has a
2493
potential intermediate effect on the causal relationship between
the function of nature killer cells and patient’s survival time. The
identified BC prognostic radiogenomic biomarkers are non-
invasive and effectively representing both medical imaging and
multi-genomic information. They are clinically more feasible
because they could be obtained from medical images only, no need
to perform the invasive biopsy.

In conclusion, we provided a comprehensive radiogenomic
workflow which could overcome major difficulties of current
radiogenomic studies. Our experiments showed that the proposed
workflow could identify non-invasive, objective, automatic, inte-
grated, and explainable BC radiogenomic biomarkers with great
prognostic significance comparing with the baselines. Our results
also uncover genetic mechanisms regulating clinical phenotypes.
Such mechanisms could promote medical imaging as a non-
invasive examination of probing BC molecular status, then support
clinical decisions and ultimately improve patient care.
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