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Most traumatic brain injuries (TBIs) during military deployment or training are clinically

“mild” and frequently caused by non-impact blast exposures. Experimental models were

developed to reproduce the biological consequences of high-intensity blasts causing

moderate to severe brain injuries. However, the pathophysiological mechanisms of

low-intensity blast (LIB)-induced neurological deficits have been understudied. This

review provides perspectives on primary blast-induced mild TBI models and discusses

translational aspects of LIB exposures as defined by standardized physical parameters

including overpressure, impulse, and shock wave velocity. Our mouse LIB-exposure

model, which reproduces deployment-related scenarios of open-field blast (OFB),

caused neurobehavioral changes, including reduced exploratory activities, elevated

anxiety-like levels, impaired nesting behavior, and compromised spatial reference learning

and memory. These functional impairments associate with subcellular and ultrastructural

neuropathological changes, such as myelinated axonal damage, synaptic alterations,

and mitochondrial abnormalities occurring in the absence of gross- or cellular damage.

Biochemically, we observed dysfunctional mitochondrial pathways that led to elevated

oxidative stress, impaired fission-fusion dynamics, diminished mitophagy, decreased

oxidative phosphorylation, and compensated cell respiration-relevant enzyme activity.

LIB also induced increased levels of total tau, phosphorylated tau, and amyloid β

peptide, suggesting initiation of signaling cascades leading to neurodegeneration. We

also compare translational aspects of OFB findings to alternative blast injury models.

By scoping relevant recent research findings, we provide recommendations for future

preclinical studies to better reflect military-operational and clinical realities. Overall, better

alignment of preclinical models with clinical observations and experience related to

military injuries will facilitate development of more precise diagnosis, clinical evaluation,

treatment, and rehabilitation.

Keywords: low-intensity blast (LIB), mild traumatic brain injury (mTBI), behavioral abnormalities, diffuse axonal

injury, synaptic alterations, mitochondrial dysfunction, neurovascular impairments, neurodegeneration
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INTRODUCTION

The Department of Defense reported that mild traumatic brain
injuries (mTBIs) comprise 82.3% of TBIs in all military branches
from 2000-2021 (1), owing in large part to improvements in
battlefield medicine (2, 3). Incidence rates of mTBI among
military personnel are much higher than those reported for
civilians (4). Low intensity blast (LIB) exposures are among
the principle causes of mTBIs during military training or
combat, and less frequent in industrial disasters/incidents (5–
12). Service members with blast-induced mTBI have significantly
higher rates of physical and mental health problems compared
to soldiers with other non-neurological injuries. Awareness of
potential consequences of LIB exposures has been raised by
studies reporting the capacity of various types of weaponry
to generate injurious blast overpressures during military and
law enforcement trainings (13–15). LIB-induced mTBI injuries
in Service members and law enforcement personnel have
been associated with chronic subclinical effects (16). Some of
these problems may not appear for months or even years
after injury, resulting in lost opportunities for recognition of
resulting disability and possible treatment (5, 17). Most military
blast injury assessments rely on self-report in the absence of
objective measurements, limiting high-quality data analysis of
validated associations between primary blast exposures and long-
term health effects. Preclinical models that realistically replicate
the clinical pathology are needed to define the underlying
mechanisms and design potential treatments (18).

Our prior narrative review considered blast physics, primarily
based on the relationship between the intensity of blast
overpressure and biological outcomes as analyzed using various
preclinical models. We also introduced key components of
our highly reproducible open field LIB murine model (19).
We categorized non-impact, blast TBI severities into three
levels based on the intensities of blast exposure: LIB impact
(overpressure < 100 kPa), intermediate level blast impact
(overpressure > 100 kPa to 200 kPa), and high-level blast impact
(overpressure > 200 kPa). Furthermore, we demonstrated how
the ground-bounce of a primary shockwave enhances the energy
load by increasing impulse of the shockwave (19, 20). Our present
review focuses on the effects of LIB (< 100 kPa) exposure in
preclinical open-field blast studies aiming to identify research
gaps and guide future research. Ideally, preclinical models
should be well-aligned with clinical findings to provide valuable
information on blast-induced acute and chronic pathological
changes and guide the development of novel diagnostics and
treatment. Figure 1 outlines methods, findings and hypotheses
for preclinical studies of the non-inertial blast injury.

CHARACTERISTICS AND IMPACT OF
BLAST-RELATED mTBI IN SERVICE
MEMBERS AND VETERANS

Extensive interagency governmental efforts support research
to investigate clinical effects of military mTBI. These include

Abbreviations: LIB, Low-intensity blast; OFB, Open-field blast.

the Long-Term Impact of Military-Relevant Brain Injury
Consortium-Chronic Effects of Neurotrauma Consortium
(LIMBIC-CENC) and the Translational Research Center for TBI
and Stress Disorders (TRACTS) (21, 22). These initiatives and
others confirm that Veterans and Service members with mTBI
often develop psychiatric disorders, including posttraumatic
stress disorder (PTSD), depression, and anxiety (22–26).
Numerous clinical studies described functional impairments
in participants exposed to blast(s) years before the onset
of debilitating pain, increased headaches, impaired sleep,
poor motor skills, and cognitive dysfunction including reduced
abilities in intelligence processing speed, visual motor integration
and executive functioning (22, 24, 26–28).

A study including 178,779 Veterans showed that mTBI
without loss of consciousness associated with an over two-
fold increased risk of dementia (29). Other studies have also
implicated chronic development of neurodegenerative diseases,
as well as cognitive and behavioral declines as a result of military-
related mTBI (30–33). Thus, linkages between the characteristics
of blast environment (intensity, number of exposure), severity
of blast-induced mTBI, and chronic neurodegenerative changes
continue to energize clinical and preclinical research.

Subtle transient neurologic effects following most mTBIs
pose assessment difficulties in clinical practice (34). Around
50% of Veterans with blast-related mTBI report they never
experienced immediate loss of consciousness, altered mental
status, or temporary amnesia (22). These features of TBI
are required for certain clinical assessments including the
Glasgow Coma Scale, or scores on the Repeatable Battery for
Neuropsychological Status (RBANS) test to classify severity
of neurologic injury (35). To better understand underlying
mechanisms of mild blast injury, it requires the development
of “scalable, realistic, reproducible, and controllable” military-
relevant preclinical models (18, 36–39). Preclinical models
capable of mimicking the neurological basis of affective and
cognitive disabilities in a reproduceable and reliable fashion
offers the promise of improving understanding of mTBI as a
spectrum disorder. This, in turn, would prompt the development
of improved diagnostics and treatments. So far, after four decades
of research, this promise has yet to materialize. The need exists
to develop more focused and standardized scientific approaches
for preclinical modeling of specific mechanisms of injury and
resulting human pathology.

INVESTIGATING INJURIOUS BLAST
FORCES

It is critical to delineate the physics of explosions and how
physical characteristics of the generated blast relate to specific
neurobehavioral and pathological outcomes of blast-induced
TBI. Blast waves are formed by a sudden release of energy
generated during the detonation of high-power explosives, such
as trinitrotoluene (TNT) and composition 4 (C4), among others
(40–42). The blast wave travels faster than sound from its center
as a sphere of compressed and rapidly expanding gases. It
displaces an equal volume of surrounding air at high velocity and
subsequently compresses it. This overpressure phase of the blast
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FIGURE 1 | Schematic diagram of the pathophysiology and behavioral impairments in LIB-induced mTBI. Traumatic brain injury induced by primary low-intensity blast

(LIB) results in cellular and subcellular deficits, including diffuse axonal injury, mitochondrial dysfunction, synaptic alteration, neurovascular impairment, and chronic

neurodegeneration. These pathophysiological abnormalities lead to neurobehavioral dysfunctions, such as cognitive deficits, anxiety-related disorder, sociability deficit,

and motor function impairment. The ongoing efforts targeting on these pathophysiological abnormalities to advance development of preventive and therapeutic

solutions and specific biomarkers for diagnosis, prognosis and treatment.

wave is followed by a short period of negative pressure (40). As
the near-spherical initial shockwave propagates, it interacts with
the surrounding environment including the ground (“ground
bounce”); these interactions cause reflective / refractive waves
that can enhance the impulse intensity of primary shockwave
(40, 41, 43).

Blast injuries are classified into four types, e.g., primary,
secondary, tertiary, and quaternary (12). Primary blast injuries
occur due to direct energy transfer of the shockwave (12,
18, 19, 40, 44). Preclinical blast-induced mTBI models were
designed to simulate various aspects of complex blast-induced
injury scenarios, including open field exposure, blast tubes using
explosives, or shock tubes using compressed air or gas (38,
45, 46). Further refinement and standardization of preclinical
models ideally should isolate specific aspects of primary blast
components. This entails ensuring absence of head movement,
burns, or impact of debris from the explosion such as occur
during non-inertial or higher energy blast exposures. Open
field models likely provide the most realistic blast conditions
mimicking combat or military training environments. The
present open-field, LIB model reproduces an operationally
relevant environment including a “ground-bounce,” in addition
to the standard Friedlander waveforms. The “ground-bounce”
effect occurs when the explosion detonates above ground level
and the shockwave hits the ground prior to impacting the
subject (41, 47). This model has provided reliable and consistent
findings demonstrated in previous studies (20, 41, 43, 48–
50). Briefly, anesthetized mice were placed on platforms in
naturally forward-facing prone position, and the LIB exposure
was generated by detonating 350 grams of military-grade C4

explosive in open field. Consequently, mice positioned at a 3-
m distance 1-m above ground, were exposed to 46.7 kPa (6.7
PSI) peak overpressure with a maximal impulse of 60 kPa ×

ms, and a primary shockwave velocity of 409 m/s (41, 43).
Highly focused videography has documented the absence of head
motion, which confirmed primary blast injury in the absence of
tertiary blast effects (41, 43). These experimental settings replicate
operationally relevant combat scenarios by providing reliable
information about the key blast parameters including primary
peak overpressure, maximum impulse, positive phase duration,
and shockwave velocity (18, 43).

A hypothesis concerning the biologically damaging effects of
the blast-body interaction posits that as blast-induced pressure
waves travel through brain tissue there is excitation of the
phonon continuum in brain water followed by decomposition
into specific low-frequency acoustic wave oscillations (51). These
oscillations surpass the tensile strength of water in the brain,
resulting in rupture of subcellular structures at nanometer levels
(20, 41, 51).

Our previous gross anatomical and microscopic studies of
primary blast injury have shown absence of macroscopic and
cell damage, including necrosis or hemorrhages in the brain
after LIB exposure (19, 41). However, transmission electron
microscopy (TEM) clearly delineated nanoscale neuropathology,
including ultrastructural myelin sheath defects, abnormalities
of myelinated axons, asymmetric synapses, neuronal soma, and
dendrites (20, 41, 50). These nanoscale intracellular changes
were anticipated based on the calculations of blast-induced
phonon decay in brain water (51). Deployment-related open-
field LIB models have reproduced other molecular alterations
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and behavioral abnormalities showing imputed correlations with
ultrastructural findings and clinical abnormalities (52–58).

TRANSLATIONAL CONSIDERATIONS OF
BEHAVIORAL IMPAIRMENTS

Anxiety-Related Disorders
Veterans returning from recent military conflicts may suffer
from comorbidities of blast-related mTBI and PTSD, including
impulsivity, anxiety, and risk-taking behaviors. These play crucial
roles in premature mortality among military personnel (22–
24, 26, 59). Studies conducting structured clinical interviews for
the TRACTS longitudinal cohort with 450 participants from the
Operation Enduring Freedom (OEF)/Operation Iraqi Freedom
(OIF)/Operation NewDawn (OND) Deployments approximated
a prevalence of anxiety disorder of 22.5% in blast-related military
TBI, only 2.4% more than Veterans with no military TBI (22).
Another multi-center clinical study from the CENC longitudinal
cohort reported that a staggering 86.5% of Veterans with blast-
related mTBI had been diagnosed with anxiety; this was 15%
more than non-blast related individuals and 28.2% more than
those with no mTBI (26). Regardless, both studies demonstrated
those impacted by blast-induced neurotrauma tend to suffer
from anxiety.

In our model, LIB-exposed mice (46.7 kPa) showed anxiety-
like behavior in open field assessment at 3- and 6-days post injury
and when tested using the light-dark box test at 5 days post-
injury (41). Another study on unanesthetized rats exposed to a
95 kPa blast resulted in anxiety-like behavior assessed by elevated
plus maze and acoustic startle response tests at 38- and 62 days
post injury (60). However, many other preclinical studies failed
to detect anxiety-like behavior, possibly due to different blast
intensities or timepoints. For example, mice exposed to a 17.2 kPa
blast showed no anxiety-like activity in the elevated plus maze 2
weeks after injury (54). Similar negative findings were reported
in mice exposed to a 68 kPag blast by open field assessment
at one- or two-weeks post-injury (61) or in mice exposed to
25 kPa blast and assessed by the elevated plus maze test as
well (62). Possible reasons for differing behavioral data includes
differing levels of experimenter-induced animal stress caused
by handling before and during testing, duration of testing, and
exposure to new testing arenas. We believe optimal evaluation of
anxiety following experimental blast exposures in murine models
likely resides in automated behavioral screening using home-cage
monitoring approach to minimize human interference and limits
animal stress.

Sociability Deficits
Although sociability deficits occur in Servicemembers withmTBI
and in blast-exposed Veterans, preclinical studies addressing this
issue are inconclusive (39, 63). Shultz et al. provides an overview
of social interaction testing in the context of TBI, emphasizing
the need for increased use of automated tracking capable of
detecting social behaviors (64). Sociability in preclinical studies
is measured by the duration of an animal’s interaction with
an unfamiliar animal of the same species. For example, mice
exposed to ∼103 kPa blast overpressure (single or repetitive)

demonstrated no significant differences using a home-cage social
interaction test at 3 days and 8 weeks post-injury (65). Similarly,
rats exposed to higher overpressure (e.g., 150 kPa) showed no
changes in social interaction-times over one-week post-injury
and intact social recognition over 2 weeks post-injury (66). By
contrast, mice exposed to a mild blast with only 25 kPa peak
overpressure (almost five times less than in the Nonaka et al.
study) displayed social interaction deficits using a two-chamber
social interaction test in an open field arena at one-week post-
injury (62). Interestingly, LIB-exposed mice to 68 ± 8 kPag
overpressure showed stepwise development of social recognition
deficits with no significant differences in social interactions
during the first trial of a social recognition test at one-week
post-injury. However, impaired social recognition occurred
in a subsequent trial, and these deficits approached normal
functioning 2 weeks post-injury (61). Further preclinical studies
on the mechanisms underlying social dysfunction following LIB
exposure would require delineation of methods assessing social
engagement and category of responses (e.g., aggressive, or neutral
behavioral responses). Such studies could use an open field arena
using three-point monitoring (head, trunk, and tail) of two freely
movingmice. Detailed analysesmight provide better insights into
treatment for post blast clinical anxiety, which seems to vary over
time in affected individuals.

Cognitive Functions
Military personnel with mTBI have impaired cognitive
functioning, including poorer scores on the Weschler Adult
Intelligence Scale IV coding (on processing speed), as well as
worsened visual-motor integration and executive functioning
(demonstrated by the Trail Making Test-B) (24). Veterans
with blast-related mTBI also demonstrate slower processing
speed using the National Institutes of Health (NIH) Toolbox
Cognition Battery for Pattern Comparison (67). A study with 180
participants, who provided self-report measures and completed
a computer-based cognitive assessment, revealed that Service
members with mTBI fared worse than their control group (68).
A link between self-reported PTSD and decline in executive
function also occurs in Veterans with blast-related mTBI (69).

Learning and memory tests to assess cognitive impairments
after blast-inducedmTBI differ significantly in preclinical studies.
In our initial study using a LIB model (46.7 kPa), we identified
characteristic spatial learning and memory deficits using the
Barnes maze (41). Numerous studies using differing levels of
overpressure (39–142 kPa) showed spatial and visual recognition
memory deficits from acute phase up to 2 months after blast
exposures (60, 61, 70–76).

Rubovitch et al. exposing mice to 17.2 and 37.9 kPa, found
spatial learning and memory deficits assessed in Y-maze 7 days
after injury; these deficits persisted longer in mice exposed to
higher overpressure at 37.9 kPa at 30-days post injury. Visual
memory deficits measured by novel object recognition test also
occurred at 7- and 30-days post-injury for both levels of blast
exposure (52). A follow-up study, focusing on 17.2 kPa exposure
and measured neurological outcomes 2 weeks after injury,
revealed deficits of visual memory (novel object recognition
test), but not spatial memory (Y-maze) or non-spatial memory
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(passive avoidance paradigm) (54). Since clinical observations
describe cognitive impairments that develop months, years, and
even decades after mTBI, preclinical research should encompass
chronic time points post-injury.

Motor Functions
Some of the Service members with mTBI demonstrate a variety
of motor deficits measured by the Community Balance and
Mobility Scale (77). This scale was designed based on the
expertise of physical and occupational therapists to assess motor
skills such as postural control during multitasking, crouching,
walking sequences, dodging, running, and stopping control (78).
Worsened visuomotor integration (by Trail Making Test TMT-
B) has been reported in Service members and Veterans with
mTBI (24). A separate study, using the Sensory Organization
Test, reported chronic development of balance deficits and
projected more frequent or severe deficits in Veterans with
repetitive mTBI, as compared to those with single mTBI
exposure (79).

Some preclinical studies using the staircase test and
neurological severity score failed to find motor deficits after
LIB-induced mTBI (52, 80). However, Huber et al. showed
transient motor deficits in balance and gross motor coordination
in mice exposed to 82-108.9 kPa overpressure, 1 h after injury;
these deficits persisted until 24 h (81). Motor deficits were also
observed in studies with higher blast intensities (70, 82, 83).
Rats exposed to 126 kPa demonstrated motor deficits in beam-
walking up to 3 days after injury (70). Mice exposed to 68
kPa displayed motor deficits assessed by rotarod test 1 and
2 weeks after injury. However, open field testing at 1 and 2
weeks after exposure did not show motor deficits (61). Mice
exposed to 46 kPa overpressure traveled less distance during
open field testing 3 days after injury, and in light-dark box 5
days after injury (41). Rats exposed to 39 and 110 kPa traveled
less in open field at 4- and 30-days post injury (74), while rats
exposed to higher overpressure (142 kPa) presented transient
motor deficits in elevated plus maze. These impairments reached
significance later at 44 days but not at 15- and 66-days after
injury (72).

Differing approaches of generating blast conditions and
differing methods for measuring neurological function and
behavior could lead to contradictory preclinical findings.
As already mentioned, experimenter-induced animal stress
caused by handling before and during testing, duration of
testing, and exposure to new testing arenas may contribute
to conflicting findings. Implementing automated behavioral
assessments using home-cage monitoring with minimal human
interference and animal stress appears to offer more consistent
results (84).

Behavioral alterations following blast-induced mTBI associate
with a variety of pathophysiological changes. Our militarily-
relevant LIB model showed that acute-phase affective and
cognitive changes clearly associated with ultrastructural and
biochemical alterations in axons, mitochondria, synapses, and
ultimately neurodegeneration (19, 20, 41, 43, 48, 50). We will
further consider relevant pathophysiological findings and how
these may align with post blast clinical disorders.

PATHOPHYSIOLOGY OF BLAST-INDUCED
mTBI

Diffuse Axonal Injury
Some hypothesize that blast causes cranial deformation with
compression and tension of brain tissue. These mechanical forces
then generate shear forces and diffuse axonal injury (DAI)
(85). In preclinical studies, axonal/myelin degeneration has been
reported at overpressures> 100 kPa (83, 86, 87). In mice exposed
to 46.7 kPa, silver staining revealed degenerating axon terminals
in the corpus callosum, entorhinal cortex, cerebral peduncle,
and fornix at 7 days, with recovery at 30 days post-injury
(41). Ultrastructural axonal damage, including myelin sheath
abnormalities, degeneratingmicrotubules, and increased number
of vacuoles have been found in the cortex up to 1-month post-
injury (20, 41). Using systems biology analysis of gene expression,
changes related to axonal and white matter degeneration were
identified at 48.9 and 77.3 kPa exposures at 1-, 7-, and 30-days
post-blast (88).

These findings closely align with clinical findings using
diffusion tensor imaging (DTI) to identify abnormalities within
white matter. DTI images showed reduced fractional anisotropy
(FA) in the cerebellar peduncles, cingulate bundles, and
orbitofrontal white matter in the brain of Service Members with
mTBI early after injury (89). Later observations showed reduced
FA in the cerebellar peduncles 2–4 years following injury (90).

Mitochondrial Dysfunction
Mitochondria were found to be among the most vulnerable
cellular organelles affected by blast exposure, although most
studies used conditions of high blast intensities (91). It has
been suggested that proteins involved in programmed cell death
or apoptosis may cause mitochondrial swelling and exacerbate
cellular injury by the cascade of pro-apoptotic pathways, such
as release of cytochrome c, Bcl-2, and caspases (49, 92,
93). Mitophagy is responsible for the selective degradation
of mitochondria (94). Dysregulation of mitophagy has been
accompanied with TBI pathophysiology (95, 96). Mitophagy is
also well implicated in Alzheimer’s disease, Parkinson’s disease,
cerebral ischemia, multiple sclerosis, diabetes, and obesity with
involvements of Dynamin-1-like protein (Drp1) (97–99). In our
studies using proteome analysis of brain tissue, we reported that
overpressure of 46.7 kPa caused dysregulation of fission-fusion
processes underlying mitophagy, evidenced by decreased Drp1,
and changes in fission protein (Fis1), inner membrane fusion
protein (OPA1) and outer membrane fusion protein (mitofusin
2) at 7- and 30-days post-blast (50). Confirmatory findings
included changes in mitochondria-related proteins involved in
oxidative stress and mitochondrial volume-regulation. These
molecular changes occurred in parallel with mitochondrial
ultrastructure abnormalities, including swollen and degenerating
mitochondria, at 7- and 30-days post-blast (41).

As mitochondria play a vital role in energy metabolism, these
findings have translational correlates. [18F]-fluorodeoxyglucose
(FDG)-positron emission tomography in Veterans with
blast-induced TBI showed significantly reduced metabolic
rate of glucose metabolism in the amygdala, hippocampus,

Frontiers in Neurology | www.frontiersin.org 5 January 2022 | Volume 12 | Article 818169

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Siedhoff et al. Perspectives on Non-inertial Blast mTBI

and thalamus (100). These findings suggest mitochondrial
dysfunction and impaired bioenergetics may underly
neurological impairments (101), potentially serving as a
therapeutic target for early intervention and prevention.

Synaptic Alterations
Glutamate-dependent excitotoxicity and subsequent
neurotoxicity are among most important mechanisms causing
impaired homeostasis after blast exposures. However, studies on
glutamatergic synapses after LIB provide conflicting data. Using
TEM, we observed that LIB increased the number of excitatory
synapses in the hippocampus. By contrast, structural synaptic
changes were decreased in the cortex of LIB-exposed mice (46.7
kPa) at 7- and 30-days after blast (20). Deficits in hippocampal
short-term plasticity and synaptic excitability have been induced
by 103 kPa blast exposure at 21 days post-blast (102). In
comparison, repetitive exposures of 100 kPa overpressure caused
increased synaptic excitability in mice at 1-day post-injury
(103). A study exposing rats to repetitive blasts at 74.5 kPa
showed behavioral deficits, which were successfully mitigated by
a metabotropic glutamate receptor antagonist (104).

In vitro studies assessing synaptic dysfunction in hippocampal
slice cultures exposed to 39 and 92.7 kPa blasts showed reduced
long-term potentiation (LTP), which might underlie impaired
learning and memory (105, 106). This in vitro finding was
supported by an in vivo mouse study showing reduced LTP 2
weeks to 1 month after a single exposure to a 77 kPa blast
(107). In contrast, another study using a 103 kPa exposure
showed no impairments in LTP measured at 21 days after
blast (102). These contradictory findings may be attributed
to differing experimental methods, various levels of blast
exposures, experimental conditions, and time points of outcome
measurements. Future studies aim to define dynamic changes in
glutamatergic synapses to develop interventions to mitigate such
pathologic changes. Ideally, such experiments would employ a
multiple time-point electrophysiological measurement at acute
and chronic time points using a standard open field blast model.

Neurovascular Impairments
Decreased cerebral blood flow with associated poor white
matter integrity has been described in Veterans with mild-
to-moderate TBI several months after blast injury (108).
Others have reported altered vascular remodeling. For instance,
Veterans with chronic blast-related mTBI demonstrated altered
microRNA involved in vascular remodeling (VEGF signaling)
(109). Another study found significantly increased plasma levels
of vascular endothelial growth factor-A in Veterans with blast-
related mTBI that correlated with reduced glucose metabolism
and poor cognitive inhibition (110). Overall, cerebrovascular
dysfunction leading to cerebral blood flow reduction following
blast-related mTBI appears capable of degrading neurovascular
integrity, causing detrimental effects on neurons, and resulting
neurodegeneration (111, 112).

Numerous preclinical studies have investigated the structure
and functions of the neurovascular unit (NVU), which is
comprised of a network of endothelial cells, extracellular
matrix, pericytes, astrocytes, and neurons (113). Several studies

characterized the blast-induced pathology of NVU by swollen
astrocytic end feet, disrupted pericytes and endothelial cells, and
abnormally shaped lumen or capillaries. For example, Sosa and
colleagues (107, 114, 115) described significant vascular changes
in rats exposed to repetitive LIB (75 kPa) 1 day and 6–10 months
after injury. They showed that 17% of repetitive LIB-exposed
rats had blood in the lateral ventricles several months later.
They suggested that the presence of blood in the ventricles of
LIB-exposed rats, even 10 months post-exposure was caused
by chronic effects of blast on the choroid plexus vasculature.
The resulting vascular fragility and epithelial damage leads to
persistent blood leakage. Acutely increased permeability of the
blood-brain barrier (BBB) induced by the dysregulation of NVU
was reported in mice after single or repetitive exposures to 105
kPa (116). Similar findings were reported by Kawoos et al. (117)
using rats exposed to single and multiple blast exposures at 72
or 110 kPa. The authors reported a significant increase in BBB
permeability in various parts of the brain and a marked increase
in intracerebral pressure (ICP) in all groups except the single
72 kPa blast exposure group. They suggested that the extent of
ICP increase and BBB permeability change depended on intensity
and frequency of blast. These observations suggest a clinical
advantage in measuring and lowering ICP pressure immediately
after blast exposures.

Using an open-field experimental setting to induce low-level
pressure effects (17.2 kPa) to the mouse brain, Rubovitch et al.
detected BBB leakage using T1-weighted MRI 30 days after
exposure (52). Several authors offered suggestions concerning
molecular mechanisms underlying BBB impairment after LIB
exposure(s) (114). These included increased oxidative stress,
MMP activation, inflammatory reaction, and increased glia cell
activity. Combined qualitative and quantitative ultrastructural
analyses may provide better understanding on the altered
homeostasis of NVU following LIB exposure.

Impact of Blast Injury and Related
Neurodegeneration
Blunt impact mTBI increases the risk of chronic development of
tau-dependent neuropathology, a hallmark of neurodegenerative
diseases including Alzheimer’s disease (AD) or chronic traumatic
encephalopathy (CTE) (118). Whether blast-induced mTBI
causes AD or CTE remains to be determined. A small cohort
study including military training personnel revealed lower tau
protein expression in the blood of 29 participants exposed
to over 5 psi (34.47 kPa) at 24 h after exposure, and higher
expression at 72 h post-blast as compared to those exposed to
< 2 PSI (13.78 kPa) (119). A CENC report comparing six
longitudinal studies with nearly 1,500 participants, including
both active duty Service members and Veterans exposed
to sub-concussive and concussive blasts, showed a range of
neuropathological changes related to functional connectivity,
cortical thickness, and levels of peripheral blood tau biomarkers
(120). These studies found that increased incidence of military-
relevant mTBI associates with increased neurodegenerative
biomarkers, including exosomal tau/phosphorylated-tau that
relate to cognitive, affective, and somatic post-concussive
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symptoms (121). Moreover, investigations into tau mechanisms
have demonstrated prion-like properties of tau, where it can
spread to other brain regions (122). This has been demonstrated
in TBI, where regions unaffected by the insult show evidence of
tau spreading (123). Amyloid β peptide (Aβ) is also associated
with progressions of CTE in military Veterans with TBI (124).
Increased Aβ40 and Aβ42 serum levels were reported in military
and law enforcement personnel exposed to LIB (13). It is known
that the combined pathological presence of neurotoxic Aβ and
tau may predict worsened long-term outcomes in blast-exposed
patients, as they have been explained to exacerbate one another;
for instance, with the help of tau, Aβ triggers neurodegeneration
(125). Many aspects of this pathology and related mechanisms
remain unclear in the context of blast exposure, and translational
research is beginning to provide insight using reliable blast
models and transgenic animals.

Our preclinical, open-fieldmousemodel utilizing 46.7 kPa LIB
exposure showed significantly increased tau at 7- and 30-days,
and significantly increased phosphorylated tau (p-tau), Aβ40,
and Aβ42 at 30 days after injury (20). Significantly increased p-
tau and p-tau/tau ratio occurred in the brains of mice exposed
to 82 kPa, measured at 3- and 24-h after injury (48). Elevated
p-tau in the hippocampus of mice exposed to 108.9 kPa at
24 h following exposure has been reported, whereas the aberrant
tau species remained elevated up to 30 days following injury
(81). In a recent study, Garcia et al. subjected APP/presenilin
1 transgenic mice (APP/PS1 Tg) to repetitive low-level blast
exposures (34.5 kPa) for three times per week over 8 weeks;
this experimental model was designed to mimic subclinical blast
exposures (126). They found, paradoxically, that if initiated at 20
weeks of age, repetitive exposures reduced anxiety and improved
cognition and social interactions in APP/PS1 Tg mice, returning
behavioral parameters to normal levels of non-exposed wild type
mice. Repetitive LIB exposure was less effective at improving
behavioral deficits in APP/PS1 Tg mice when administered at
36 weeks of age. While amyloid plaque loads were unchanged,
Aβ42 levels and Aβ oligomers were reduced in the brain of
mice exposed to repetitive LIB exposures initiated at 20 weeks
of age. These levels did not directly correlate with behavioral
parameters in individual animals. These non-intuitive results
suggest unique, age-dependent genetic mechanisms that relate
to blast-induced neuropathology. It is noteworthy that studies
focusing on tau pathology in repetitive concussive TBI mouse
models demonstrated discordant findings (127).

Overall, preclinical studies have provided valuable insights
into the pathogenesis of blast induced TBI. However, more
comprehensive preclinical investigations using standardized
animalmodels are needed to better reproduce the clinical features
and trajectory of human blast-TBI.

BIOMARKER DEVELOPMENT AND
TREATMENT APPROACHES FOR
BLAST-INDUCED TBI

Numerous overviews on TBI biomarkers provide essential
information on the reliability of quantitative biomarkers and

their diagnostic and prognostic accuracy in different TBI
severities (128–131). Currently, most blood biomarkers target
breakdown products generated by neuronal injury (UCH-
L1, NSE, tau, and NfL), astroglial response (S100B and
GFAP), neurovascular impairment (occludins, claudins, and
von Willebrand factor), and inflammation (proinflammatory
cytokines) (131). A biomarker test that was FDA-approved
in 2018, known as The Brain Trauma Indicator, measures
acute levels of UCH-L1 and GFAP in concussed individuals
and provides the hope of reducing the need for unnecessary
CT scans by prediction of intracranial lesions (132). A less
mainstream approach to identify biomarkers involves the
study of mammalian hair follicles that demonstrated unique
subnetworks of miRNA following mTBI (133). As considerable
inconsistencies exist pertaining to blast TBI, one of the main
research goals of preclinical blast TBI studies is to aid the
development of assays for highly reliable blood biomarkers.
This goal might be achieved using better standardization of
blast models with alignment of human and animal biology
(38, 134). Biomarker research often guides the development and
implementation of therapeutic strategies (135). Consequently,
preclinical studies offer the potential to improve the quality and
reliability of brain-related biomarkers as measures of disease
severity, prognosis, and responses to treatment.

Accumulating data show a need for preclinical models to test
preventive and/or treatment strategies. Several preclinical studies
might serve as steppingstones for future clinical research. For
example, a cannabinoid type-2 (CB2) receptor inverse agonist
(SMM-189), used to treat blast-induced mTBI, significantly
reduced neuronal injury, neurophysiological abnormalities,
and functional deficits (136). Other studies specifically target
glutamate receptors for LIB injury treatment. A study focusing
on comorbid blast-induced mTBI used BCI-838 (MSGS0210),
a Group II metabotropic glutamate receptor (mGluR2/3)
antagonist (BCI-838), which reduced PTSD-like behavior,
anxiety, fearful behavior, and long-term recognition memory
impairment (104). Memantine remains among treatment
options, exhibiting a potential to mitigate neuropathological and
behavioral outcomes in mTBI and lessen PTSD-like behavior
(137–140). As no FDA-approved treatments for TBI exist,
this article provides a preview of opportunities for therapeutic
research using preclinical modeling platforms.

FUTURE DIRECTIONS

Preclinical blast research faces multiple challenges. Among
these are lack of comprehensive data on austere environments
with limited access to clinical data including human autopsy
findings. After decades of research, it remains unclear whether
the neuropathological changes caused by concussive or sub-
concussive blast exposures are injury-specific or identical to
impact / blast-induced TBIs. While preclinical studies show
promising approaches to prevention and treatment of blast
mTBI, we remain far from their clinical translation. A need
exists to develop preclinical TBI common data elements (CDE)
to systematically translate preclinical findings to blast injury in
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human. At the same time clinically relevant health impairments
in Veterans and Service members should guide development of
preclinical models. Using the multiple parameters incorporated
into preclinical TBI CDEs with verification check-points
ensuring clinical relevance will align pre-clinical research with
clinical reality.

Improvement of the currently existing set of preclinical
CDEs could be achieved by advanced technology such as
the neurobehavioral assessment system using home-cage
environment, multi-modal imaging, and high-throughput digital
pathology. One of the methodological challenges in generating
reliable and clinically relevant information about animals’
behavior is use of conventional behavioral assessments on
examining rodent activity during sleep phase. HCM approach,
which captures the animal’s behavior over multiple sleep- and
wake-phases offers important opportunities. Non-invasive,
real-time, in vivo molecular imaging might assume larger role
in measuring brain changes after LIB exposure. Improved
sensitivity of in vivo imaging could delineate demyelination,
axonal/white matter degeneration such as DAI, neurofibrillary
tangles and/or inclusion body formation, energy metabolisms,
and enzymatic proteolysis. The use of transgenic animals might
also offer important possibilities to mimic human susceptibilities.

CONCLUSIONS

LIB exposure is common during military training and combat.
Individuals present with varying clinical disorders and
comorbidities after LIB exposure. Standardized preclinical
animal models enhance insights into biological mechanisms,
neurobehavioral outcomes, and cellular pathology, illustrated
in Figure 1. These models, properly aligned with clinical injury
scenarios, can guide future Veteran and military-centered

clinical research strategies. Continuous feedback between
preclinical research and clinicians is required to achieve
availability of sensitive, specific biomarkers for diagnosis and
prognosis of blast-induced TBI, improved treatments and
rehabilitative strategies.
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