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Abstract

Motivation: Next generation sequencing technology considerably changed the way we screen for

pathogenic mutations in rare Mendelian disorders. However, the identification of the disease-

causing mutation amongst thousands of variants of partly unknown relevance is still challenging

and efficient techniques that reduce the genomic search space play a decisive role. Often segrega-

tion- or linkage analysis are used to prioritize candidates, however, these approaches require

correct information about the degree of relationship among the sequenced samples. For quality as-

surance an automated control of pedigree structures and sample assignment is therefore highly

desirable in order to detect label mix-ups that might otherwise corrupt downstream analysis.

Results: We developed an algorithm based on likelihood ratios that discriminates between differ-

ent classes of relationship for an arbitrary number of genotyped samples. By identifying the most

likely class we are able to reconstruct entire pedigrees iteratively, even for highly consanguineous

families. We tested our approach on exome data of different sequencing studies and achieved high

precision for all pedigree predictions. By analyzing the precision for varying degrees of relatedness

or inbreeding we could show that a prediction is robust down to magnitudes of a few hundred loci.

Availability and Implementation: A java standalone application that computes the relationships be-

tween multiple samples as well as a Rscript that visualizes the pedigree information is available for

download as well as a web service at www.gene-talk.de.

Contact: heinrich@molgen.mpg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In recent years, high-throughput sequencing approaches have been

successfully applied to identify thousands of novel pathogenic muta-

tions in genetic disorders. However, due to the high variability of the

human genome, there are several hundred variants of unclear signifi-

cance in each individual and the analysis of such high dimensional

data is still challenging. In order to reduce the search space, related

individuals are usually sequenced for filtering purposes or linkage

analysis, when studying unknown disorders. Even in routine diagnos-

tics sequencing of additional family members is common practice,

whenever the disorder is highly heterogeneous and de novo mutations

are the most promising candidates (Veltman and Brunner, 2012).

However, these approaches rely on correct pedigree information

and thus there is a great need for robust and easily manageable
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methods for checking the relationship between samples. So far it is

common practice to infer relatedness with different kinds of genetic

markers and a comprehensive overview of the existing methods is

given by Blouin (2003) and Pemberton (2008).

Most of the approaches that are based on likelihood ratios

(LRs), test different pre-defined relationship models and have al-

ready been thoroughly discussed by others (Aoki et al., 2001;

Brenner, 1997; Marshall et al., 1998). In our work, we study the

effectiveness of pedigree predictions when also rare markers are

used, that become only accessible by direct sequencing.

In general, the accuracy of the prediction increases with the informa-

tion content of the available markers. Microsatellites are very variable

in length and are thus highly informative. With 20–30 unlinked micro-

satellites it is usually possible to achieve accurate predictions about the

relationship between samples. In contrast, SNVs are mostly biallelic and

in exomes their mean heterozygosity is only around 0.3. On the other

hand, large numbers of SNVs are detected in high-throughput sequenc-

ing projects and we will study in this work how the accuracy of pedigree

predictions scales with the number of such markers.

All models that have been developed for the prediction of rela-

tionships also have to account for genotyping errors. Microsatellites

are more difficult to genotype than SNVs (Pompanon et al., 2005).

Additionally, the intrinsically higher rates of mutations can intro-

duce biases in analyses that rely on identity by state, IBS (Hardy

et al., 2003). Due to these technical challenges the evaluation of

microsatellite data requires a high human expertise to avoid false

parentage exclusions as discussed in Dakin and Avise (2004) and it

is also more difficult to automate these methods computationally.

In most approaches that are used to predict relationships, marker

sets are defined prior to screening the samples. In order to maximize

the probability that a marker is informative, SNPs or SSRs with a

high heterozygosity are therefore usually chosen. However, certainly

bi-allelic markers with a high population frequency may also be IBS

by pure chance.

With whole exomes and other types of reference-guided rese-

quencing data, there is no need for choosing marker loci a priori, as

variant calls are plentiful. Instead we can simply consider all pos-

itions where the genotype of at least one of the samples differs from

the reference sequence. The potential of such rare SNVs for pedigree

prediction has not been studied so far.

Most existing methods that work with genome data rely on

haplotype reconstruction and can certainly achieve high precision

(He et al., 2013). Unfortunately, for exome data and other enrich-

ment based Next generation sequencing (NGS) data sets, the deriv-

ation of long haplotypes is often not possible.

We analyzed systematically likelihood-based approaches to recon-

struct entire pedigrees that also take into account rare markers and we

found that especially rare variants are well suited for assessing second-

order relations. By this means we achieve high precision in pedigree

predictions and present a tool that can easily be integrated in existing

analysis pipelines to ensure quality and avoid sample mix-ups.

2 Approach

We developed a method to reconstruct and visualize complex pedi-

gree structures for any given number of individuals that is based on

likelihood ratios of different models of relationship types for any

combination of two samples (dyad). For any possible dyad we test

the following models of kinship:

0 unrelated

1 technical/biological replicates (or identical twins)

2 full siblings

3 parent–child

4 second-order relationship

The different degrees of relationship reflect the expected values for

the proportion of the genome that is shared between two individ-

uals. This can also be expressed by the coefficient of relationship

which defines the probability that an allele at an arbitrary locus in

the genome originates from the same common ancestor (Wright,

1922). For instance, we would expect that a parent and a child as

well as siblings share 50% of their genetic material and thus the

same coefficient of relationships. In second order relationships as

e.g. in a grandparent–grandchild, or uncle-nephew dyad only 25%

of the alleles are identical by descent (IBD), in an outbred popula-

tion. On the contrary, in highly inbred populations and consanguin-

eous marriages the expected coefficients of relationship of 0.5 and

0.25 may deviate upwards substantially. In the following we will

also use the coefficient of relationship to discriminate between dif-

ferent degrees of kinship and refer to parent–child and full siblings

as first-order relationship and classify half-siblings, grandparent–

grandchild and aunt/uncle-nephew/niece as second-order relation-

ships. Additionally we are defining the model technical/biological

replicates to identify samples that have a relationship coefficient

close to 1, which is either the case if the same sample has been pro-

cessed twice or if two samples are from identical twins. For each

possible dyad all these models are tested and compared to a null

hypothesis that assumes the individuals are unrelated, which is ex-

plained in more detail in the next section. The computation of the

probabilities of all hypotheses requires knowledge about the ex-

pected allele frequencies in a population. In this work, if an allele

was observed at least once in the 1000 genomes project (Altshuler

et al., 2010; The 1000 Genomes Project Consortium, 2012) we use

the respective frequency. The most likely relatedness class is then

identified by the largest likelihood ratio among all hypotheses for

one dyad. We provide a tool for our algorithm that works on geno-

type data presented in VCF format (Danecek et al., 2011) and that

generates an intermediate output that we refer to as extended ped

format: for each individual the most likely relationships to the re-

maining individuals are recorded. In addition to mother and father,

also children and sibling relationships are listed (see Supplementary

Materials). An R Script takes the predicted classes of relationship as

input and visualizes the result in a pedigree graph. We tested our

method on family exome data from the 1000 genomes project

(referred to as 1KG data in the following), as well as on in-house

data. For the systematic analysis of performance at different degrees

of inbreeding as well as increasing degrees of error rates we also

simulated samples based on sequencing data from real individuals.

The java application, as well as the visualizing R script, is inte-

grated in GeneTalk (Kamphans et al., 2013), and also available as a

standalone application at www.gene-talk.de/vcf2ped. We analyzed

the performance of our approach for a decreasing number of exo-

mic and genomic markers. For exomic markers that are mostly un-

linked we achieved high accuracy for all relationships (first and

second order) with a minimum of 10 000 markers. The same ac-

curacy can be achieved with a comparable number of genomic

markers when randomly distributed over the genome (data not

shown).
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3 Materials and methods

3.1 Data processing and simulation of technical

replicates
The implementation was tested on publicly available data of the

1KG project as well as on data that had been sequenced in-house

over the past years with the approval of the ethical Board of the

Charité. All in-house samples were sequenced on an Illumina HiSeq

2000 and the resulting reads were mapped to the hg19 reference

genome using BWA-MEM (Li, 2013). Multi-sample variant calling

was performed on 39 families with different population back-

grounds, downloaded from the ftp server of the 1KG project, as well

as on in-house families, including three families which show a high

degree of consanguinity within the pedigree, with GATK (Mckenna

et al., 2010) (version 2.7-2) using standard Best Practices recommen-

dations (DePristo et al., 2011). To guarantee a fair comparison be-

tween all analyzed sequencing samples we restricted all variant calls

to the pilot 3 consensus exonic target region defined by the 1KG

project. We defined a minimum coverage of five reads per base in a

homozygous state and a minimum of 5 reads per allele for heterozy-

gous variants.

All individuals of the 1KG project are subdivided into single

families of 2, 3 or 4 family members, which are connected via differ-

ent degrees of relationship (siblings, one parent—one child, trio:

two parents—one child, quartet: two parents—two children and se-

cond-order). in-house families can be grouped in trios, quartets and

families ranging over three generations (see Fig. 1), including

second-order relationships. Additionally we simulated technical rep-

licates of one individual of the 1KG project (NA06986) by randomly

reducing the coverage of the original alignment yielding a mean per-

base coverage of 313, 140, 120, 80, 50 and 30 reads.

3.2 Likelihood ratio analysis
Likelihood analysis is used to evaluate the goodness of fit of a

hypothesis Hi relative to another hypothesis Hj; i 6¼ j, (e.g. the null-

hypothesis H0), depending on the same underlying data D. The like-

lihood ratio can be expressed as follows:

LRðHi;HjjDÞ ¼
PrðDjHiÞ
PrðDjHjÞ

For every two individuals (x1 and x2) we consider five different

hypotheses Hi; i 2 I ¼ f0;1; 2; 3;4g:

H0: Sample x1 and x2 are unrelated

H1: Sample x1 and x2 are technical/biological replicates

H2: Sample x1 and x2 are full siblings

H3: Sample x1 is a parent of sample x2

H4: Sample x1 and x2 have a second-order relationship

As already introduced and extended in previous works (including

Aoki et al., 2001; Brenner, 1997; Marshall et al., 1998; Thomas et al.,

2002) we estimate the probability of the combination of two geno-

types of two individuals with the additional use of population data

(Table 1, see Supplemental Materials for a detailed derivation of the

formulas). In this study, we calculated allele frequencies per position

from 2535 unrelated individuals which were recently updated by the

KG project (Altshuler et al., 2010). The likelihood ratios for the com-

binations of genotypes (gt 2 fan; amg; an;m 2 fA;C;G;Tg) for all

variable positions, k 2 K, can be combined for unlinked marker loci.

Due to the small probabilities it is computationally more efficient to

work with logarithms of the likelihood ratios:

1

K
log10LRðHi;HjjDÞ ¼

1

K
log10

Y
k2K

LRkðHi;Hjjgtx1
ðkÞ; gtx2

ðkÞÞ

¼ 1

K

X
k2K

log10

Prðgtx1
ðkÞ; gtx2

ðkÞjHiÞ
Prðgtx1

ðkÞ; gtx2
ðkÞjHjÞ

For some relatedness classes, the probability of having one genotype

in one sample and another genotype in a second sample would be

zero, assuming perfect data quality and no de novo mutations. With

these prerequisites it is, for instance, not possible that a parent has

genotype a1a1 while the child has genotype a2a2 at the same pos-

ition. This could yield infinitely large likelihood ratios. In this case,

we use an additional parameter e ¼ 0.001, accounting for sequenc-

ing errors and de novo mutations.

3.3 Infering relatedness classes from log likelihood

ratios
For each dyad we computed the LRs for all variable positions and

hypotheses Hi versus the null hypothesis (not related). As the num-

ber of variable positions might differ between dyads we used the

mean LR per position for a better comparison (Fig. 2). The violin

plots visualize the distributions of the LRs for different hypothesis

comparisons for unrelated dyads. LR tests for most of the related in-

dividuals (circles) yield positive values and the correct hypothesis

maximizes the likelihood ratio, maxfLRðHi;H0Þgi�0 For large

Fig. 1 Family structure of individuals that were sequenced in-house including

three generations with different degrees of relationship (first- and second-

order). Circles (female samples) and rectangles (male samples) with labels in-

dicate that genotype data was available

Table 1. Likelihood ratios for all subject-query genotype combin-

ations gt for different hypotheses

gtx1
gtx2

H1 � H0 H2 � H0 H3 � H0 H4 � H0 H3 � H2

a1a1 a1a1
1
f 2
1

ðf1þ1Þ2
4f 2

1

1
f1

f1þ1
2f1

4f1

ðf1þ1Þ2

a1a1 a1a2
e

2f 3
1

f2

f1þ1
4f1

1
2f1

2f1þ1
4f1

2
f1þ1

a1a1 a2a2 f 2
1 f 2

2
1
4

e
f 2
1

f 2
2

1
2

4e
f 2
1

f 2
2

a1a2 a1a2
1

2f1f2

1þf1f2

4f1f2

1
4f1f2

4f1f2þf1þf2

8f1f2

1
1þf1f2

a1a1 a2a3
e

4f 2
1

f2 f3

1
4

e
4f 2

1
f2f3

1
2

e
f 2
1

f2f3

a1a2 a1a3
e

8f 2
1

f2 f3

2f1þ1
8f1

1
8f1

4f1þ1
8f1

1
1þ2f1

a1a2 a3a4
e

8f1f2f3 f4

1
4

e
8f1f2f3f4

1
2

e
2f1 f2 f3f4

The frequencies, fn refer to the allele frequency of allele an and are pre-cal-

culated using data from the 1KG project and we assume
P

nfn ¼ 1.

Combinations of genotypes that do not occur for certain relationships

(‘Mendelian error’) could still be observed due to e.g. erroneous genotyping

(e ¼ 0.001).
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sample sizes the likelhood ratio test statistics approximate a v2

distribution and may also be used for a probabilistic interpretation

(Wilks’s theorem).

In families of more than two members and even highly complex

sub-structures, such as shown in Figure 1, the whole pedigree is

reconstructed from the predicted relationships of dyads.

All relationship hypotheses are not directed. This means, when

the parent–child relationship is detected in a dyad we don’t know

who is the father and who is the son. However, the directionality

can be clarified by the relationships of additional family members.

The sex of each individual is determined by the ratio of heterozy-

gous variants versus all variants on the X chromosome and is also

used in the pedigree reconstruction.

4 Results

4.1 Separation efficiency of log likelihood ratios
We tested different hypotheses on related individuals from the 1KG

data (Fig. 2) and used these data to infer correct relatedness states to

families with different substructures (Fig. 2). The comparison of

likelihood ratios of most models show a segmentation of the dyads

corresponding to their kinship coefficients. For instance, in Figure 2,

we see for the comparison H3, H0 technical replicates (H1) with a

kinship coefficient close to 1 at the right end, dyads of siblings (H2)

or parent–child (H3) in the middle- and second-order relationships

(H4) at the left side. Dyads that are not related are visualized as a

gray background distribution (violin plots). An interesting exception

is LRðH3;H2Þ, where two models with the same expected kinship

coefficient (0.5) are compared. This likelihood ratio is well suited

for discriminating between parent–child and sibling relationships.

Since the probability that a parent and a child share the same

allele is the same as in siblings (50%), it is hard to distinguish

between these two relationship states and lead to a low variance in

likelihood ratios, as seen in the likelihood ratios for LRðH3;H2Þ in

Figure 2. A similar kinship coefficient is also the reason why the LR

values for parent–child and full siblings are nearly on the same level

for the comparisons LRðH3;H0Þ and LRðH2;H0Þ. This leads to the

overall rule: the discriminatory power to distinguish between differ-

ent hypotheses gets lower if the underlying assumed relationship

types become more similar.

Especially with increasing error rates the identification of identi-

cal twins/technical replicates becomes more difficult as the expected

kinship coefficient of one drop. Although all simulated replicates

form a distinct cluster in the comparison of LRðH1;H0Þ in Figure 2,

there are three dyads (*) that yield a LR < 0. These false classifica-

tions can be avoided if the error rate e is adjusted appropriately.

4.2 Precision depends on the number of markers and

heterozygosity
We analyzed the effect of the number of variants on the precision of

the classification process by reducing the amount of markers.

Besides restricting to smaller randomly chosen subsets we also

studied the performance for subsets of loci with high heterozygosity.

Such subsets are more similar to the markers used in SNP-arrays and

allow a comparison with existing tools. Heterozygosity is defined as

h ¼ 1�
P

nf 2
n and relates to the information content of a marker.

The average heterozygosity of a SNV in our exome data was 0.3. In

contrast most existing tools use polymorphic sites with considerably

larger h. The positive predictive value (precision) of parent–child

and full sibling comparisons starts to drop when using <500 ran-

domly selected markers (Fig. 3). The correct assignment of second-

order relationships requires substantially more markers for a com-

parable precision. However, the performance for the second-order

classifications is good for whole exome sequencing data comprising

several thousands of variants. Only a reduction to fewer loci, as

encountered in gene panels, will lead to an excess of false positive

predictions and therefore to lower precision values. Especially the

number of unrelated dyads that are erroneously classified as second-

order increases.

We hypothesized that increasing the heterozygosity of these

small marker sets might improve the precision. When choosing only

loci with a heterozygosity above average, the precision for all rela-

tionship models increased (unfilled shapes in Fig. 3). This is in good

agreement with the results from other studies that achieved a high

precision for predictions that were based on markers with high in-

formation content (Epstein et al., 2000). The most polymorphic site

accessible via exome sequencing is the human leukocyte antigen

(HLA) cluster on chromosome 6 with more than 15 000 different

alleles known up to date (Robinson et al., 2016). Recently, bioinfor-

matics tools became available that allow HLA typing from exome

data and can be used additionally to rule out relatedness in question-

able dyads (Szolek et al., 2014). However, a general comparison be-

tween the predictive power of multiple biallelic markers such as

most SNVs and a single polymorphic marker such as the HLA shows

that the discriminatory power is limited: Assuming equal likelihoods

Fig. 2 Comparison of the mean likelihood ratio LR per position for different re-

lationships between pairs of individuals (dyads). The likelihood for all rela-

tionship models Hi versus the null hypothesis (not related) were computed

for all dyads from the 1000 genomes project and additional family data. LRs

of all dyads that are not related are depicted as background distribution (gray

violin plots) whereas dyads with a relationship are illustrated as circles. The

true relationship is color-coded and maximazes the LR for the correct hypoth-

esis. Exemplarily this is shown for a dyad of each relationship (crosses).

However, misclassifications can occur especially in replicate identification for

low-quality samples with a high genotyping error rate (orange asterix) (Color

version of this figure is available at Bioinformatics online.)
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for all alleles, the information content, IC ¼ �
P

nfn log10fn, of 10

unlinked biallelic markers (n ¼ 2) would be comparable to the IC of

the HLA locus (n ¼ 15 000).

The contributions of the different genotype combinations to the

log-likelihood ratios also depend on the heterozygosity. For instance in

LRðH3;H0Þ, for common variants the major contribution will come

from the genotype combinations a1a2 � a1a2 and a1a1 � a2a2. If H0

is the true hypothesis the later, a1a1 � a2a2, will push LRðH3;H0Þ
below zero (Supplementary Fig. S1d). However, for smaller f1, the

choice of e will influence this result (Supplementary Fig. S1a). On the

other hand, if H3 is true then the ratio 1=2f1 (Table 1 for a1a1 � a1a2)

will shift LRðH3;H0Þ to positive values. The contribution of a1a1

� a1a2 to LRðH3;H0Þ is positive for frequencies f1 < 0:5 and thus in

favor of H3. This combination will more likely occur for small values

of f1 and an disproportionate high occurence of this term will indicate

relatedness.

Interestingly, we found most misclassified second-order relation-

ships within the same sub-populations, after randomly reducing the

number of variants. That also emphasizes the importance of using

rare low-frequency variants, that are specific within families rather

than using polymorphisms that are more suitable to discriminate be-

tween sub-populations.

4.3 Directionality of parent–child relationships
The directionality of a parent–child connection can be solved by con-

sidering additional relationships if more family members are available

(Thomas and Hill, 2000). (Fig. 4a) exemplifies a case where both,

mother and father, are present in the available family tree (referred to

as trio). The clear assignment of mother–child and father–child can

be resolved by the additional information that both parents are not

related. In another example, (Fig. 4b), the directionality between par-

ent and child can be resolved by the additional knowledge, that two

of the three available samples in a pedigree (II1 and II2) have a sibling

relationship. A more detailed description for the pedigree reconstruc-

tion that is based on this rule set, can be found in the supplemental

material and is also encoded in our tool.

From a theoretical point of view, we wondered whether it is pos-

sible to infer the directionality of a parent–child relationship, if only

a dyad is given (Fig. 4c). There is one scenario in which the direc-

tionality can be resolved by data of the dyad itself. If both parents

have a different ethnic background the offspring will show two sets

of population specific SNPs (Fig. 4d). Furthermore the heterozygos-

ity of the offspring will be higher than of each of the parents, which

is illustrated in Figure 4e, where we simulated an offspring of two

1KG individuals from distinguishable populations (CHS and YRI).

The frequency for many polymorphisms differs depending on the

population background. In an offspring from two different ethnic

backgrounds there will be a movement towards the joint mean, simi-

lar to an increasing entropy in thermodynamics when two isolated

systems are mixed (Fig. 4f).

4.4 Influence of inbred structures within complex

families
In highly consanguineous families the prediction of the exact rela-

tionships becomes more difficult as there is a stronger deviation

from the null model that is based on the allele frequencies of an out-

bred population.

In addition to exomes from highly consanguineous families, we

investigated the influence of inbred structures by simulating

Fig. 3 The precision of the prediction of all relationships decreases with the num-

ber of available markers and their heterozygosity. The number of markers was

either randomly reduced or restricted to a subset of highly informative markers.

The positive predictive values for parent–child as well as for full sibling relation-

ships start to drop when using < �500 markers. At a comparable number of

markers, second-order relationships are more difficult to distinguish from unre-

lated controls. The mean heterozygosity of biallelic variants in an exome is 0.3

and represents the information content of a marker. A higher precision can be

achieved when choosing markers with a heterozygosity above this average (un-

filled shapes) (Color version of this figure is available at Bioinformatics online.)

(a)

(d)

(e) (f)

(b) (c)

Fig. 4 The parent–child directionality can be resolved with at least three avail-

able samples, either due to the knowledge that both parents are unrelated (a) or

with additional information about siblings (b). If just two sequenced samples

are available in the analysis, the directionality cannot be resolved (c). Panel (d)

shows an illustrated example of two different populations (Nos. 1 and 2) with

two exemplarily chosen individuals (mother and father). The shading colors (or-

ange and green) are illustrating the population specific variants that do not ap-

pear in the other group respectively. Ideally, an offspring of two members of

these distinguishable groups would share half of the population specific vari-

ants of the mother and half of the father. A simulated offspring of two individ-

uals with different ethnic backgrounds, YRI (orange) and CHS (green), has an

increased proportion of heterozygous variants (e) and the mean minor allele fre-

quency (MAF) is located between the MAF of the parents (f) (Color version of

this figure is available at Bioinformatics online.)
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offspring from related 1KG dyads. For each related pair, we ran-

domly chose one allele from each of both assumed parents to create

a new genotype at each autosomal position. We used the individual

inbreeding coefficients, f, for each offspring, to quantify the extent

of consanguinity.

The inbreeding coefficient is defined as the ratio of the genome

that is IBD (Wright, 1922) and was computed as described by Gazal

et al. (2014). As expected, the simulated offspring with closely

related parents show higher individual inbreeding coefficients.

These higher inbreeding factors correlate with lower likelihood

ratios between relationship models of the same order, such as par-

ent–child versus siblings (Fig. 5).

When using entire exome data sets a correct classification was

still possible for all tested cases, even for families with a high degree

of consanguinity.

5 Discussion

In this work, we analyzed the performance of reconstructing family

structures with genotype data that become available in NGS studies,

including rare variants. We were able to derive pedigrees with high

precision for publicly available samples of families, as well as for in-

house data, even for as little as a few hundred markers. Our method is

based on comparisons between likelihood ratios for different kinship

classes and—as expected—the closer the coefficients of relationship

were between two models, the more difficult it became to differentiate

between them. The most challenging discrimination is between unre-

lated individuals in a highly inbred population and samples that are

related by second-order relationship. So far highly polymorphic

marker loci such as microsatellites have been used in paternity testing

and to detect distant relationships. However, ancestry can also

effectively be identified with the use of rare and family specific single

nucleotide variants. We observed the biggest variance in likelihood

ratios for all dyads for the comparison of the hypothesis H3, H0 (par-

ent–child � unrelated). One drawback of our approach is that differ-

ent quality levels of the data are not considered. We simulated

technical replicates with a high error rate by decreasing the coverage

per base in the alignments and studied the influence on the classifica-

tion process. Some replicates with a large difference in coverage and

quality were misclassified as full siblings instead of technical replicates,

as visualized in Figure 2 (violet dots for LRðH1;H2Þ). With decreasing

coverage, the error rates—especially for heterozygous calls—increase.

However, the site-specific error probabilities that are reported by

standard genotype callers are usually vastly underestimated for rare

variants. Allegedly small error rates pose a problem especially in the

identification of replicates. Another approach to estimate genotyping

errors on exome variant lists, that also considers allele frequencies

from population studies, reported a mean genotyping error rate of e ¼
0.001 as more accurate for most current exomes (Heinrich et al.,

2013).This error rate also yielded the best performance in our tests

and is therefore suggested as a default setting. The consequences of an

unsuitable choice of this parameter on the likelihood ratios are dis-

cussed in more detail in the supporting information.

In summary, we have shown that genotype data from NGS stud-

ies can also be used to deduce pedigree information with high preci-

sion. Our approach doesn’t require any additional generation of

data and will thus be easy to integrate into existing analysis pipe-

lines. This will help to identify sample mix-ups at an early stage and

improve the overall quality in the diagnostic procedure.
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