Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Di- μ-chlorido-bis[chloridobis(dimethyl sulfoxide- κ O)tin(II)]

Ioana Barbul, Richard A. Varga* and Cristian Silvestru

Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos Str. No. 11, RO-400028 Cluj-Napoca, Romania
Correspondence e-mail: richy@chem.ubbcluj.ro

Received 3 March 2011; accepted 16 March 2011

Key indicators: single-crystal X-ray study; $T=297 \mathrm{~K}$; mean $\sigma(\mathrm{S}-\mathrm{C})=0.009 \AA$; R factor $=0.050 ; w R$ factor $=0.097$; data-to-parameter ratio $=20.5$.

The structure of the title compound, $\left[\mathrm{Sn}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{4}\right]$, contains dimers formed through weak $\mathrm{Sn} \cdots \mathrm{Cl}$ [3.691 (2) A] interactions, resulting in a planar $\mathrm{Sn}_{2} \mathrm{Cl}_{2}$ core with an inversion center at the centre of the four-membered ring. The $\mathrm{Sn}^{\mathrm{II}}$ atoms are pentacoordinated and have a distorted octahedral Ψ $\mathrm{SnCl}_{3} \mathrm{O}_{2}$ coordination geometry. The O atoms from the dimethyl sulfoxide molecules occupy trans positions, while the Cl atoms exhibit a meridional arrangement.

Related literature

For related tin chlorides, see: Kisenyi et al. (1985); Kiriyama et al. (1973). For the structure of free DMSO, see: Viswamitra \& Kannan (1966).

Experimental

Crystal data
$\left[\mathrm{Sn}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{4}\right]$
$M_{r}=691.70$

$$
Z=2
$$

Monoclinic, $P 2_{1} / c$
$a=11.1449$ (17) \AA
$b=13.349$ (2) A
$c=8.4394$ (13) \AA
$\beta=103.728(2)^{\circ}$

$$
V=1219.7(3) \AA^{3}
$$

Mo $K \alpha$ radiation
$\mu=2.84 \mathrm{~mm}^{-1}$
$T=297 \mathrm{~K}$
$0.28 \times 0.25 \times 0.23 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD area detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.469, T_{\text {max }}=0.523$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.097$
$S=1.18$
2148 reflections

8630 measured reflections 2148 independent reflections 1853 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.062$

105 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.57 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.72 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right.$).

$\mathrm{Cl} 1-\mathrm{Sn} 1$	$2.4767(19)$	$\mathrm{O} 1-\mathrm{Sn} 1$	$2.382(5)$
$\mathrm{Cl} 2-\mathrm{Sn} 1$	$2.4886(19)$	$\mathrm{O} 2-\mathrm{Sn} 1$	$2.371(5)$
$\mathrm{O} 2-\mathrm{Sn} 1-\mathrm{O} 1$	$166.36(17)$	$\mathrm{O} 2-\mathrm{Sn} 1-\mathrm{Cl} 2$	$84.94(14)$
$\mathrm{O} 2-\mathrm{Sn} 1-\mathrm{Cl} 1$	$86.61(13)$	$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{Cl} 2$	$84.15(13)$
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{Cl1}$	$85.99(13)$	$\mathrm{Cl} 1-\mathrm{Sn} 1-\mathrm{Cl} 2$	$93.86(7)$

Data collection: SMART (Bruker, 2000); cell refinement: SAINTPlus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg \& Putz, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank the National Centre for X-Ray Diffraction, ClujNapoca, for support of the X-ray structure determination.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VN2005).

References

Brandenburg, K. \& Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Kiriyama, H., Kitahama, K., Nakamura, O. \& Kiriyama, R. (1973). Bull. Chem. Soc. Jpn, 46, 1389-1395.
Kisenyi, J. M., Willey, G. R. \& Drew, M. G. B. (1985). Acta Cryst. C41, 700-702. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Viswamitra, M. A. \& Kannan, K. (1966). Nature (London), 209, 1016-1017.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2011). E67, m486 [doi:10.1107/S1600536811009895]

I. Barbul, R. A. Varga and C. Silvestru

Comment

In an attempt to perform an oxidative addition of SnCl_{2} to an organic halide, the title compound was isolated as a by-product.

The tin(II) dichloride crystallizes with two dimethylsulfoxide molecules which coordinate to the metal center in a trans fashion through the oxygen atoms $\left[\mathrm{O} 1 — \mathrm{Sn} 1-\mathrm{O} 2=166.36(17)^{\circ}\right]$ (Figure 1). The molecular units are connected in dimers through weak $\mathrm{Sn} \cdots \mathrm{Cl}$ interactions $\left[\mathrm{Sn} 1 \cdots \mathrm{Cl1} 1^{\mathrm{i}}=3.691\right.$ (2) \AA; symmetry code (i): $\left.-x,-y+2,-z\right]$ trans to a $\mathrm{Sn} 1 — \mathrm{Cl} 2$ bond [Cl2$\left.\mathrm{Sn} 1 \cdots \mathrm{Cl} 1^{\mathrm{i}}=164.85(6)^{\circ}\right]$. This results in a planar $\mathrm{Sn}_{2} \mathrm{Cl}_{2}$ core with an inversion centre in the middle of the four-membered ring (Figure 2). The chlorine bridges are asymmetric and the endocyclic angles around chlorine atoms $\left[\mathrm{Sn} 1-\mathrm{Cl} 1-\mathrm{Sn} 1^{\mathrm{i}}=\right.$ $\left.101.11(5)^{\circ}\right]$ are larger than the endocyclic angles around $\operatorname{tin}\left[\mathrm{Cl1}-\mathrm{Sn} 1-\mathrm{Cl1}^{\mathrm{i}}=78.90(6)^{\circ}\right]$.

In the dimer unit the tin atom is pentacoordinated in a distorted pseudo-octahedral coordination geometry, with the two chlorine atoms from the same molecular unit in cis positions [Cl1— $\left.\mathrm{Sn} 1 — \mathrm{Cl} 2=93.86(7)^{\circ}\right]$ and a bridging chlorine atom trans to the free position. In contrast, in SnCl_{4}.2DMSO (Kisenyi et al., 1985) the tin atom is hexacoordinated, with the oxygen atoms from the dimethylsulfoxide in cis position, while the structure of $\mathrm{SnCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ is described as pyramidal (Kiriyama et al., 1973) with only one water molecule bonded to the metal center.

The $\mathrm{Sn}-\mathrm{O}$ bond lengths (Table 1) are similar to those found in $\mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ [2.331 (5) \AA], but larger than in SnCl_{4}.2DMSO [2.110 (9) and 2.110 (8) \AA]. The $\mathrm{Sn}-\mathrm{Cl}$ bonds follow the same pattern; those in SnCl_{4}.2DMSO [range: 2.369 (3) - 2.406 (3) \AA] are larger than in the title compound $[\mathrm{Sn} 1-\mathrm{Cl} 1=2.4767$ (19) $\AA, \mathrm{Sn} 1-\mathrm{Cl} 2=2.4886(19) \AA]$ and $\mathrm{SnCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ [2.500(2) and $2.562(2) \AA$. This is consistent with the fact that SnCl_{2} is a weaker Lewis acid than SnCl_{4}.

The $\mathrm{S}-\mathrm{O}$ bonds $[\mathrm{S} 1-\mathrm{O} 1=1.531(5) \AA, \mathrm{S} 2-\mathrm{O} 2=1.519(5) \AA]$ show a decrease of multiplicity from the $\mathrm{S}=\mathrm{O}$ bond in the free ligand $[\mathrm{S}=\mathrm{O}=1.471 \AA$], due to the oxygen-tin interaction. The $\mathrm{S}-\mathrm{C}$ bond lengths vary between 1.727 (11) and 1.779 (8) \AA, which are similar with those from the free DMSO molecule (Viswamitra \& Kannan, 1966).

In the strucure the dimers are stacked along the a axis and form layers stacking along the b axis, with alternate arrangement of the dimeric units in consecutive layers (Figure 3).

Experimental

The title compound was isolated as a by-product after the workup of the reaction between SnCl_{2} to an organic halide performed in hot dimethyl sulfoxide (DMSO).

supplementary materials

Refinement

All hydrogen atoms were placed in calculated positions using a riding model, with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and with $U_{\text {iso }}=1.5 U_{\text {eq }}$ (C) for methyl H .

The data collection was done with 2 second irradiation time per frame over the complete sphere for a total data collection time of 2 hours. An earlier attempt to measure a crystal with a 10 second irradiation time per frame resulted in crystal decay after approximately 3 hours.

Figures

Fig. 1. : View of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms as spheres of arbitrary radii.

Fig. 2. : Intermolecular interactions (represented with dashed lines) showing the formation of dimers in crystal structure of the title compound. Symmetry codes as in Table 1.

Di- μ-chlorido-bis[chloridobis(dimethyl sulfoxide-кO)tin(II)]

Crystal data

$\left[\mathrm{Sn}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{4}\right]$
$M_{r}=691.70$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=11.1449$ (17) \AA
$b=13.349$ (2) \AA
$c=8.4394(13) \AA$
$\beta=103.728(2)^{\circ}$
$V=1219.7(3) \AA^{3}$
$Z=2$
$F(000)=672$
$D_{\mathrm{x}}=1.883 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3345 reflections
$\theta=2.4-26.6^{\circ}$
$\mu=2.84 \mathrm{~mm}^{-1}$
$T=297 \mathrm{~K}$
Block, colourless
$0.28 \times 0.25 \times 0.23 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
graphite
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.469, T_{\text {max }}=0.523$
8630 measured reflections

> 2148 independent reflections
> 1853 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.062$
> $\theta_{\max }=25.0^{\circ}, \theta_{\min }=2.4^{\circ}$
> $h=-13 \rightarrow 13$
> $k=-15 \rightarrow 15$
> $l=-10 \rightarrow 10$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.097$
$S=1.18$
2148 reflections
105 parameters
0 restraints
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0208 P)^{2}+2.685 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.57$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.72$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C1	$0.5033(7)$	$0.8276(6)$	$-0.0501(11)$	$0.068(2)$
H1A	0.5258	0.8292	0.0670	0.102^{*}
H1B	0.5703	0.8529	-0.0918	0.102^{*}
H1C	0.4856	0.7598	-0.0864	0.102^{*}

C2	$0.3399(8)$	$0.8695(7)$	$-0.3317(9)$	$0.069(2)$
H2A	0.3327	0.7980	-0.3425	0.103^{*}
H2B	0.4060	0.8924	-0.3775	0.103^{*}
H2C	0.2639	0.9002	-0.3886	0.103^{*}
C3	$0.0141(10)$	$1.1657(9)$	$0.422(2)$	$0.140(6)$
H3A	-0.0474	1.1587	0.3220	0.211^{*}
H3B	0.0195	1.2346	0.4557	0.211^{*}
H3C	-0.0083	1.1254	0.5051	0.211^{*}
C4	$0.2396(11)$	$1.1408(8)$	$0.5967(12)$	$0.101(4)$
H4A	0.1994	1.1045	0.6677	0.152^{*}
H4B	0.2439	1.2105	0.6254	0.152^{*}
H4C	0.3216	1.1150	0.6077	0.152^{*}
C11	$0.1548(2)$	$1.07531(15)$	$-0.0095(3)$	$0.0633(5)$
C12	$0.40441(17)$	$0.95628(17)$	$0.2850(2)$	$0.0614(6)$
O1	$0.2681(4)$	$0.8512(4)$	$-0.0601(6)$	$0.0534(13)$
O2	$0.1396(5)$	$1.0145(4)$	$0.3674(6)$	$0.0600(14)$
S1	$0.37123(18)$	$0.90252(13)$	$-0.1217(2)$	$0.0469(5)$
S2	$0.1554(2)$	$1.12668(15)$	$0.3945(3)$	$0.0617(6)$
Sn1	$0.18486(4)$	$0.91864(3)$	$0.15234(6)$	$0.0448(3)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C 1	$0.054(5)$	$0.064(5)$	$0.090(6)$	$0.006(4)$	$0.025(5)$	$0.007(5)$
C 2	$0.079(6)$	$0.073(6)$	$0.055(5)$	$-0.015(5)$	$0.018(4)$	$-0.008(4)$
C 3	$0.074(8)$	$0.075(7)$	$0.267(19)$	$0.011(6)$	$0.029(9)$	$-0.027(9)$
C 4	$0.139(10)$	$0.070(7)$	$0.080(7)$	$0.004(6)$	$-0.003(7)$	$-0.012(5)$
C 11	$0.0684(13)$	$0.0577(12)$	$0.0648(12)$	$0.0102(10)$	$0.0178(10)$	$0.0151(10)$
Cl 2	$0.0490(11)$	$0.0818(14)$	$0.0511(11)$	$-0.0116(10)$	$0.0073(9)$	$0.0026(10)$
O1	$0.056(3)$	$0.053(3)$	$0.059(3)$	$-0.009(2)$	$0.028(3)$	$-0.010(2)$
O2	$0.079(4)$	$0.045(3)$	$0.062(3)$	$-0.004(3)$	$0.030(3)$	$-0.011(2)$
S 1	$0.0549(11)$	$0.0371(10)$	$0.0520(11)$	$-0.0037(8)$	$0.0194(9)$	$-0.0055(8)$
S 2	$0.0799(15)$	$0.0487(12)$	$0.0594(13)$	$-0.0044(10)$	$0.0225(11)$	$0.0024(9)$
Sn1	$0.0439(4)$	$0.0407(3)$	$0.0514(4)$	$-0.0045(2)$	$0.0147(2)$	$0.0007(2)$

Geometric parameters ($\AA,{ }^{\circ}$)

C1-S1	1.764 (8)	C3-H3C	0.9600
C1-H1A	0.9600	C4-S2	1.751 (10)
C1-H1B	0.9600	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9600
C1-H1C	0.9600	C4-H4B	0.9600
C2-S1	1.779 (8)	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	0.9600
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9600	$\mathrm{C} 11-\mathrm{Sn} 1$	2.4767 (19)
C2-H2B	0.9600	$\mathrm{C} 2-\mathrm{Sn} 1$	2.4886 (19)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9600	O1-S1	1.531 (5)
C3-S2	1.727 (11)	$\mathrm{O} 1-\mathrm{Sn} 1$	2.382 (5)
C3-H3A	0.9600	O2-S2	1.519 (5)
C3-H3B	0.9600	O2-Sn1	2.371 (5)

sup-4

supplementary materials

S1-C1-H1A	109.5	S2-C4-H4C	109.5
S1-C1-H1B	109.5	H4A-C4-H4C	109.5
H1A-C1-H1B	109.5	H4B-C4-H4C	109.5
S1-C1-H1C	109.5	S1-O1-Sn1	123.0 (3)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	S2-O2-Sn1	127.5 (3)
H1B-C1-H1C	109.5	O1-S1-C1	105.2 (4)
$\mathrm{S} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5	O1-S1-C2	104.0 (3)
$\mathrm{S} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5	C1-S1-C2	98.7 (4)
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5	O2-S2-C3	103.9 (5)
$\mathrm{S} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5	$\mathrm{O} 2-\mathrm{S} 2-\mathrm{C} 4$	105.6 (4)
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5	C3-S2-C4	97.4 (7)
$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5	O2-Sn1-O1	166.36 (17)
S2-C3-H3A	109.5	$\mathrm{O} 2-\mathrm{Sn} 1-\mathrm{Cl1}$	86.61 (13)
S2-C3-H3B	109.5	O1-Sn1-Cl1	85.99 (13)
H3A-C3-H3B	109.5	$\mathrm{O} 2-\mathrm{Sn} 1-\mathrm{Cl} 2$	84.94 (14)
S2-C3-H3C	109.5	$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{Cl} 2$	84.15 (13)
H3A-C3-H3C	109.5	$\mathrm{Cl} 1-\mathrm{Sn} 1-\mathrm{Cl} 2$	93.86 (7)
H3B-C3-H3C	109.5	Sn1-Cl1-Sn1 ${ }^{\text {i }}$	101.11 (5)
$\mathrm{S} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.5	Cl1-Sn1-Cl1 ${ }^{\text {i }}$	78.90 (6)
S2-C4-H4B	109.5	$\mathrm{Cl} 2-\mathrm{Sn} 1-\mathrm{Cl} 1^{\text {i }}$	164.85 (6)
H4A-C4-H4B	109.5		
$\mathrm{Sn} 1-\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1$	108.4 (4)	S2-O2-Sn1-Cl1	-24.9 (4)
$\mathrm{Sn} 1-\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 2$	-148.3 (4)	$\mathrm{S} 2-\mathrm{O} 2-\mathrm{Sn} 1-\mathrm{Cl} 2$	69.2 (4)
$\mathrm{Sn} 1-\mathrm{O} 2-\mathrm{S} 2-\mathrm{C} 3$	129.3 (7)	$\mathrm{S} 1-\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{O} 2$	-5.1 (10)
$\mathrm{Sn} 1-\mathrm{O} 2-\mathrm{S} 2-\mathrm{C} 4$	-128.7 (5)	S1-O1-Sn1-Cl1	52.2 (3)
$\mathrm{S} 2-\mathrm{O} 2-\mathrm{Sn} 1-\mathrm{O} 1$	32.3 (10)	$\mathrm{S} 1-\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{Cl} 2$	-42.1 (3)

Symmetry codes: (i) $-x,-y+2,-z$.

supplementary materials

Fig. 1

Fig. 2

supplementary materials

Fig. 3

