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Abstract: Oxidative stress is the cause and consequence of redox metabolism in various physiological
and pathological conditions. Understanding the molecular pathways underlying oxidative stress and
the role of antioxidants could serve as the key to helping treat associated diseases. Allergic rhinitis
is a condition that deteriorates the daily function and quality of life of afflicted individuals and is
associated with a high socioeconomic burden and prevalence. Recent studies have focused on the
role of oxidative stress and antioxidants in allergic rhinitis. This review discusses animal and clinical
studies on oxidative markers and the potential therapeutic dietary antioxidants for allergic rhinitis.
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1. Introduction

Oxidative stress is the cause of a variety of physiological and pathological conditions.
An increase in the levels of oxidants may be overwhelming to the natural antioxidant
system, leading to direct cellular damage or aberrations in molecular signaling pathways [1].
As scientific research has focused on identifying the molecular pathways underlying
oxidative stress, several potential therapeutic antioxidants have been studied. These
antioxidants are drawing attention because conventional medical therapies have been
inefficient in completely curing a number of diseases.

In that sense, oxidative stress has been studied in conditions such as asthma, one of
the respiratory tract inflammatory diseases, severe cases of which are difficult to treat by
conventional medical therapies. The role of various biomarkers of oxidative stress, such as
nitrotyrosine (Tyr-NO2) and nuclear factor erythroid 2-related factor 2 (Nrf2) in asthma,
has been investigated [2,3]. Meanwhile, it is believed that upper and lower airway diseases
such as allergic rhinitis, chronic rhinosinusitis, and asthma often co-exist (the “one airway
concept”) [4]. The majority of asthma patients have allergic rhinitis, and many patients
with rhinitis have asthma [5–7]. Considering that allergic rhinitis and asthma may share
similar pathophysiology, a theory investigated in asthma is often studied in allergic rhinitis.

Allergic rhinitis is a common health problem characterized by watery rhinorrhea,
nasal obstruction, nasal pruritus, and sneezing [8]. It is reported to occur in a great number
of people worldwide, which is more than 500 million people across the globe, including
approximately 30% of the population in Western countries, and its high prevalence con-
tinues to grow [5,8–10]. Allergic rhinitis causes a considerable economic burden, with an
estimated annual cost of approximately 2–5 billion USD in the United States alone [11]. It
is a risk factor for asthma exacerbation [12]. Allergic rhinitis is a critical illness that exerts a
negative impact not only on socioeconomic costs but also on an individual’s functioning in
school or work, sleep, and quality of life [13,14].

Considering the negative influence on health, high prevalence, and socioeconomic
cost of allergic rhinitis, its efficient management and control of the disease are crucial.
According to the Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines, manage-
ment of allergic rhinitis includes patient education, medical therapy, and allergen-specific
immunotherapy [8]. However, pharmacotherapy for allergic rhinitis, including oral antihis-
tamines and intranasal corticosteroid sprays, is limited in effect, and up to 29% of children
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and 62% of adults report partial or poor relief with medical therapy alone [15,16]. While
treatments such as immunotherapy are reported to be effective in reducing symptoms
and the requirement for rescue medication in patients with allergic rhinitis, data on their
long-term effectiveness are lacking [17].

Given the current situation in the management of allergic rhinitis, several comple-
mentary and alternative medicines have been investigated for the treatment of allergic
rhinitis [8]. Antioxidant therapy has recently been applied for allergic rhinitis treatment. As
the role of oxidative stress and antioxidants in the pathophysiology of asthma has drawn
attention for research, oxidative stress in allergic rhinitis has also been studied because
allergic rhinitis is linked to asthma. These studies are expected to improve our understand-
ing of allergic rhinitis and encourage the development of novel therapeutic options. In this
article, we have reviewed the current knowledge on the molecular pathways of oxidative
stress and antioxidants in allergic rhinitis and the potential therapeutic options with dietary
antioxidants for allergic rhinitis.

2. Oxidative Stress Pathways
2.1. Overview of Oxidative Stress

Oxidative stress arises from oxidation-reduction (redox) homeostasis. The global
concept of oxidative stress is defined as “an imbalance between oxidants and antioxidants
in favor of the oxidants, leading to a disruption of redox signaling and control and/or
molecular damage” [1,18]. The concept of ranging oxidative stress in terms of intensity
was introduced [19,20]. When the balance between oxidants and antioxidants is main-
tained in a steady-state redox balance, in which stress from oxidants does not overweigh
antioxidants, it is of a reversible and physiological state and thus called “oxidative eustress”
(Figure 1a) [1]. Oxidative eustress is an important concept in redox control, and it acts as
physiological redox signaling [21]. In contrast, when the balance between oxidants and
antioxidants deviates to the direction of oxidants, due to excessive and supraphysiological
exposure of oxidants or malfunction of antioxidant defense mechanism, aberrant redox
signaling or molecular damage occurs, which is termed “oxidative distress”.

In oxidative stress, free radicals such as reactive oxygenated species (ROS) are gener-
ated by different sources. Despite the complexity in understanding the molecular pathways
and biochemical components involved in redox signaling and stress response to oxidants,
different sources of oxidants have been identified. As depicted in Figure 1b, diverse en-
dogenous sources of oxidants operate in cells and produce reactive species as normal
cellular metabolism, which, in adequate quantity, are essential in cell homeostasis, gene
expression, and signal transduction [22]. Opposite to oxidants are antioxidants, which
can be categorized into either enzymatic or nonenzymatic [23]. The antioxidant system is
associated with counteracting the effects of oxidants. When the endogenous or exogenous
source of oxidants is produced in greater quantity or the antioxidant defense mechanism is
decreased, oxidative distress occurs. For example, among exogenous sources of oxidants,
cigarette smoke is known to contain free radicals, including superoxide and nitric oxide,
thus capable of inducing oxidative stress injury in airway epithelium [24].
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Cellular injury as an effect of oxidative stress can be classified into three categories:
damage to nucleic acids, proteins, or lipids (Figure 1c). Oxidation of deoxyribonucleic
acids (DNA) can contribute to instability of the genome. One of the examples of DNA
oxidation, guanine, among the DNA bases, is most susceptible to oxidative stress [25]. It
is transformed into a mutagenic lesion, 8-oxoguanine, after oxidative damage. Instead of
paring with cytosine, 8-oxoguanine base pairs with adenine, thus producing transversion
mutation when replicated. This oxidatively modified biomolecule is capable of causing
mitochondrial dysfunction and tumorigenesis [26].

Oxidation of protein generates oxidation products of amino acid side chains [27].
ROS is capable of causing peptide chain fragmentation, change of electrical charge of
proteins, and oxidation of specific amino acids [23,28]. This means proteins are susceptible
to degradation by proteases, and the oxidatively modified enzymes show decreased activi-
ties [29]. Especially among the amino acids, cysteine and methionine are more susceptible
to oxidation, and enzymes with metal elements are more sensitive to metal-catalyzed
oxidation.

One of the oxygen-derived free radicals is peroxyl radicals (ROO–•); it acts in the
peroxidation of fatty acids [23]. Free radicals trigger chain reactions of lipid peroxidation,
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generated lipid radical reacts with oxygen, and peroxyl radicals are produced. Then,
peroxyl radical transforms polyunsaturated fatty acids into lipid hydroperoxides, which
are unstable and disintegrated into unsaturated aldehydes or malondialdehydes (MDAs).
MDAs are one of the commonly used oxidative stress markers [2,30], and are capable of
forming cross-linkages of proteins and thus inactivating them [31]. The lipid peroxidation
counteracts cell membrane integrity itself, disrupting the membrane lipid bilayer and
downregulating membrane receptors and enzymes.

2.2. Oxidative Stress and Possible Therapeutic Antioxidants in Diseases

A great amount of health and disease states have been covered in the literature
regarding the field of molecular pathways of oxidative stress. Biomarkers of oxidative
stress, either protein, lipid, or DNA, have been analyzed in numerous diseases in humans.
Some studies examined if specific oxidative markers are related to specific diseases, and
cluster analysis was performed to compare the clinical relevance of oxidative stress markers
and the correspondence among diseases [2]. Among them, studies regarding asthma
are worth attention. As for biomarkers of oxidative stress in asthma, in a recent study,
oxidative stress and antioxidant capacity were measured in asthma patients and healthy
individuals [32]. MDA and protein carbonyl (PC) levels were significantly increased in
asthma patients, but glutathione (GSH) levels were decreased (Figure 2).
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erythroid 2-related factor 2; MDA, malondialdehyde; PC, protein carbonyl; GSH, glutathione; SOD,
superoxide dismutase; oxLDL, oxidized low-density-lipoprotein; MMPs, matrix metalloproteinases;
NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells.

Asthma is a relatively common disease characterized by airway hyperresponsiveness
and airway inflammation and remodeling. The pathogenesis of asthma involves activation
of various inflammatory cell infiltration and production of different cytokines [33]. In the
pathogenesis of asthma, intracellular signaling cascades involving Toll-like receptors (TLRs)
and transcription factors such as nuclear factor kappa-light-chain-enhancer of activated
B cells (NF-κB) are important [34]. Potent exogenous oxidants such as cigarette smoke
and ozone increase the expression of TLRs and contribute to the redox balance in the
lungs [35,36]. Furthermore, as a redox-sensitive transcription factor, NF-κB is activated by
ROS to result in chromatin remodeling and expressing proinflammatory mediators [37,38].
Another transcription factor, Nrf2, regulates antioxidant response, including maintenance



Antioxidants 2021, 10, 1266 5 of 15

of epithelial barrier integrity and proliferation in smooth muscle cells in the airway, and
was found to exert aberrant activity in asthma [39,40].

While conventional therapy of asthma comprises inhaled or systemic corticosteroids,
inhaled β2-adrenoceptor agonists, and leukotriene receptor antagonists [41], the effective-
ness of these conventional treatment methods is rather unsatisfactory in patients with
severe asthma [42,43]. The need for a novel alternative therapeutic option could be met
by targeting the signaling pathways of oxidative stress in asthma [34]. Among the studies
on antioxidants in asthma, yielding relatively strong antioxidant properties are dietary
flavonoids. Flavonoids have antioxidant activities to regulate cellular signaling pathways
involving transcription factors such as NF-κB. Examples of flavonoids are quercetin and
kaempferol, and especially the latter showed to alleviate airway inflammation in an animal
allergic asthma model [44]. A limited number of clinical trials have been promoted for
flavonoids in asthma patients and showed improvements in serum leukotriene levels, peak
expiratory flows, or asthma symptom scores [45,46]. As allergic rhinitis shares similar
pathogenesis as asthma in terms of airway inflammation, encouraging results of studies
about antioxidants in asthma gives a direction of research for allergic rhinitis.

As for other diseases known to be associated with oxidative stress, Alzheimer’s dis-
ease is one of the most prevalent neurodegenerative diseases. It shows symptoms of
dementia, impaired spatial memory, and cognitive deficits [47]. It has been reported that
DNA damage, lipid peroxidation, and protein nitration are increased in Alzheimer’s dis-
ease [48]. Another significant neurodegenerative disease is autism. Autism spectrum
disorders are neurodevelopmental disorders with impairments in social interaction, lan-
guage, perception, and behaviors. Mitochondrial dysfunction represented by decreased
expression of electron transport complexes and superoxide dismutase (SOD) in mitochon-
dria was noted, leading to elevated production of ROS [49]. Possible antioxidant treatment
to reduce oxidative stress and improve mitochondrial function includes ascorbic acid and
N-acetylcysteine [50,51].

In cardiovascular diseases, elevated production of ROS leads to oxidative damage and
is known to worsen ischemia-reperfusion injury in myocardial infarction [52]. Atheroscle-
rosis, as the leading cause of mortality from cardiovascular disease, is also affected by
inflammatory mechanisms derived from oxidative stress [53]. Oxidized cholesterol, or oxys-
terol, including oxidatively modified low-density lipoprotein (oxLDL) molecules, activates
endothelial cells by releasing bioactive phospholipids, and then circulating monocytes dif-
ferentiate into macrophages, which is an important pathogenesis in atherosclerosis [54,55].
Additionally, protein biomarkers, such as high sensitivity C-reactive protein (hsCRP) or ma-
trix metalloproteinases (MMPs), and transcriptional factors such as NF-κB, are well-known
in the pathogenesis of atherosclerosis; hsCRP binds to oxLDL and promotes endothe-
lial dysfunction [56]. As for therapeutic antioxidants, there is still controversy about
whether antioxidants are an effective treatment modality in cardiovascular diseases. Recent
reviews and meta-analyses showed results of reduced mortality due to cardiovascular dis-
eases by supplementing antioxidants such as flavonoids, green teas, or the Mediterranean
diet [57–59]. Experimental studies identified that oxidant and proinflammatory mediators
such as ROS and H2O2 are produced in cardiac tissues and murine macrophages, and the
antioxidant resveratrol reduced the production of the oxidants [60].

In terms of malignancy, various redox-oriented cancer therapies have been evaluated
in clinical settings [61,62]. One of the agents with potential redox activity that showed
a promising result with US Food and Drug Administration (FDA) approval for acute
promyelocytic leukemia is arsenic trioxide [63]. Vitamin C was studied in colon cancer; at
high doses, it acts as an oxidant, yielding potential anticancer activity [64]. Other anticancer
drugs with potential clinical activities were covered in a recent review [65].
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3. Allergic Rhinitis and Oxidative Stress
3.1. Pathophysiology of Allergic Rhinitis

Allergic rhinitis is an immunoglobulin E (IgE)-mediated inflammation of the nasal
mucosa induced by allergen inhalation [8,66]. A variety of components involving cells of
the nasal cavity and inflammatory cells, cytokines, mediators, and cell adhesion molecules
participate in the process of allergic rhinitis. As depicted in Figure 3a, the pathogenesis
of allergic rhinitis begins with allergen sensitization [12,67]. Inhaled allergens in the nasal
epithelium are captured by dendritic cells, which act as antigen-presenting cells, and are
presented as allergenic peptides to T lymphocytes [68]. This induces T helper 2 (Th2) cells,
which secrete Th2 type cytokines such as interleukin (IL)-4, IL-5, IL-10, and IL-13. This
process converts B lymphocytes into allergen-specific IgE-producing plasma cells. The
released allergen-specific IgE molecules bind to tissue mast cells and circulating basophils.
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Upon allergen reexposure, the same allergen binds to the surface IgE on mast cells and
basophils and activates the cells. Various kinds of neuroactive and vasoactive mediators,
such as histamine and leukotriene, are released from the cells. Typical allergic rhinitis
symptoms, such as nasal congestion, rhinorrhea, or itching, are produced by substances
that act on vessels and glands of the nose. In addition, Th2 lymphocytes are activated
by dendritic cells, and consequently release cytokines and chemokines, which mediate
the recruitment of inflammatory cells such as T cells, B cells, eosinophils, basophils, and
neutrophils to the nasal mucosa, further progressing allergic rhinitis reactions.

3.2. Oxidative Stress and Allergic Rhinitis

Most disease states include redox component at some degree or stage, and it is
important to understand the complex multifactorial concept of oxidative stress that in
a disease state, oxidant and antioxidant factors could act at the same time, leading to
oxidative eustress or distress depending on which factor is stronger [1]. It also helps to
note that the antioxidant system can operate in a paradoxical way from what was expected,
according to its quantity, stage, or tissue [69,70].

Due to its complexity and multifactorial components in understanding the molecular
pathways and signals of oxidative stress, and since allergic rhinitis is a relatively less
explored topic for studying oxidative stress, recent studies regarding oxidative stress in
allergic rhinitis have focused on identifying the change of the quantity of known oxidants
and antioxidants in allergic rhinitis states and after treatment with dietary antioxidants.
After reviewing the literature on oxidative stress pathways and the potential therapeutic
antioxidants in allergic rhinitis, we combined the results of the studies with previously
known molecular pathways of oxidative stress, as schematically shown in Figure 3.

ROS production by mitochondria and nicotine adenine dinucleotide phosphate (NADPH)
oxidase was first discovered in phagocytes but later turned out to be present in different
epithelial and inflammatory cells (Figure 3b) [1]. Superoxide anion (O2–•) is produced
by adding one electron to molecular oxygen O2, mediated by the mitochondrial electron
transport system or NADPH oxidase [23,71]. Approximately 1–3% of electrons leak from
the mitochondrial electron transport system and produce superoxide instead of being
reduced [23]. Then, superoxide is converted to hydrogen peroxide (H2O2) by SODs.
Extracellular H2O2 is captured and imported into the cytoplasm by aquaporins (AQPs) [72].
As a major signaling molecule in redox signaling, H2O2 acts as a messenger in a variety
of oxidative eustress (physiologic, health condition) and distress (pathologic condition)
pathways [21]. It is capable of regulating the activity of several transcription factors such
as Nrf2 and NF-κB [73].

As commonly known signaling pathways in oxidative stress, Nrf2/Keap1 (Kelch-like
ECH-associated protein 1) and NF-κB pathways have been covered in allergic rhinitis.
What is known in general is that Nrf2/Keap1 and NF-κB pathways serve as “molecular
redox switches” which control activation or deactivation cycles and modulate system
activities in a broad range of biological conditions [1] (p. 730). In unstressed conditions,
Nrf2 is suppressed in transcriptional function due to ubiquitination and degradation by
Keap1 [74]. Under oxidative stress, Keap1 is modified and no longer capable of ubiquitinat-
ing Nrf2, leading to the release of Nrf2 and its accumulation in the nucleus, which acts as a
transcription factor to induce antioxidant and detoxication enzymes [75]. In this signaling
cascade, thioredoxin reductase 1 (TrxR1) was reported to be a regulator for Nrf2 [76].

For allergic rhinitis, the role of thioredoxin-interacting protein (TXNIP) was evaluated
in oxidative stress [77]. In the ovalbumin (OVA)-induced allergic rhinitis murine model,
expression of TXNIP in nasal mucosa, MDA level, and SOD activity were measured, along
with allergic rhinitis markers such as nasal symptoms of sneezing and nasal rubbing, OVA-
specific IgE and histamine in serum, and OVA-specific IgE, IL-4, IL-5, and tumor necrosis
factor (TNF)-α in the nasal lavage fluid. The outcomes were measured between mice that
received intranasal administration of a TXNIP inhibitor, resveratrol, and those without
treatment. In the untreated allergic rhinitis group, nasal symptoms, TXNIP and OVA-
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specific IgE levels, histamine and cytokine levels, and MDA levels were increased, and
SOD level was decreased, but these results were attenuated in the resveratrol-treated group.
In the nasal tissue, epithelial cells and inflammatory cells were found to be TXNIP-positive.
This result implies that the regulation of transcription factors of oxidative stress pathway
by thioredoxin and TXNIP is relevant in allergic rhinitis, although the understanding of
the exact signaling pathway between the transcription factors and allergic rhinitis markers
such as cytokines, inflammatory cells, and nasal symptoms warrants further research.

Another transcription factor, NF-κB, is also capable of being activated in response to
oxidative stress. After oxidation by H2O2, the inhibitory subunit of the NF-κB inhibitor
(IκB) is released [78]. Then, NF-κB is freed and allowed to enter the nucleus, acting as
a transcription factor and expression of genes involved in inflammatory, immune, or
acute-phase responses [79–81].

In allergic rhinitis, several recent studies covered the activity of the NF-κB pathway
in the allergic rhinitis murine model [82,83]. It was reported in the studies that in the
OVA-induced allergic rhinitis model, oxidative stress markers such as MDA level and Nrf2
and NF-κB pathways are upregulated. They were associated with inflammatory signs such
as cytokine levels and histopathology findings in allergic rhinitis models. After treatment
with an antioxidant, mangiferin, the markers were downregulated.

In the pathogenesis of allergic rhinitis, antigen presentation by dendritic cells is the
first step in allergen sensitization. It has been reported that physical epithelial barrier
dysfunction in the nasal epithelium may contribute to the uptake of allergens and harmful
exogenous particles in allergic rhinitis (Figure 3c) [84–86]. In allergic rhinitis patients with
house dust mite allergy, epithelial barrier function impairment was found with increased
epithelial permeability and altered occludin and zonula occludens (ZO)-1 expression [87].
This disrupted mucosal integrity could contribute to the decreased response to medical
therapy, making it an important study area for the treatment of allergic rhinitis. Several
studies have investigated the role of oxidative stress in epithelial cell barrier dysfunction in
allergic rhinitis (Figure 3c).

The nasal epithelial cell barrier is made up of cell-to-cell tight junctions, which are
formed with scaffold adaptor proteins ZO-1, ZO-2, and ZO-3 and integral membrane
proteins such as occludin [86,88]. In a recent study, human sinonasal epithelial cells
were used to study epithelial cell barrier function under allergic conditions [89]. After
stimulation with house dust mite, the authors stained epithelial cells for the epithelial cell
junction protein ZO-1 and measured epithelial cell permeability. Stimulation with house
dust mite resulted in global disruption of ZO-1 and increased permeability in sinonasal
epithelial cells.

Another study used the OVA-induced allergic rhinitis mouse model and investigated
various outcomes, including epithelial cell permeability, after administration of a possible
antioxidant, Piper nigrum extract [90]. By enhancing the Nrf2 transcription factor pathway,
anti-inflammation enzyme heme oxygenase (HO)-1 synthesis was increased. As a conse-
quence, ZO-1 and occludin degradation was inhibited, and the epithelial barrier integrity
was enhanced.

According to the previous experimental and clinical studies which we have reviewed
above, several oxidative stress markers were identified and found to be increased in allergic
rhinitis. It is difficult to say that the markers are specific to allergic rhinitis since NF-κB
and Nrf2 pathways are also found in oxidative stress pathways in other inflammatory
disease conditions. Nrf2 is a well-known, clinically relevant biomarker of oxidative stress
in diseases such as chronic obstructive pulmonary disorder, cancer, or Alzheimer’s dis-
ease [91–93]. Because a number of oxidative stress markers are relevant in various diseases
and similar diseases might share the same relevant oxidative stress markers, future re-
searchers can refer to biomarkers of asthma, which share similar pathogenesis to allergic
rhinitis [2].
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3.3. Therapeutic Antioxidants in Allergic Rhinitis

Most of the studies regarding oxidative pathways in allergic rhinitis have focused
on finding potential dietary antioxidants as an alternative pharmacotherapy option for
controlling the disease. Therefore, current literature is somewhat limited in defining the
complex and diverse molecular pathways of oxidative stress specific to allergic rhinitis.
Recent studies which dealt with those dietary antioxidants in allergic rhinitis were reviewed,
and the details, including the natural diet source of each antioxidant, are described in
Table 1 [77,82,83,89,94–98].

Table 1. Recent studies regarding the potential therapeutic antioxidants in relation to oxidative stress in allergic rhinitis.

Exogenous
Antioxidants Diet Source Authors (Year) Study Designs Therapeutic Antioxidant Effects

Sulforaphane Broccoli,
cabbage

Yusin, J. et al.
(2021) [94]

Clinical trial
(double-blind,
randomized,

placebo-controlled)

Clinical measurements (TNSS, PNIF) of AR
patients improved after sulforaphane

supplementation.
In nasal mucus fluid, T2 cytokines such as IL-4,
IL-5, and IL-13 were decreased, but there was

no statistical significance.

London, N.R., Jr.
et al. (2017) [89]

Human study
(tissue-specific)

Human SNECs were harvested and stimulated
with HDM with/without Nrf2 activation with

sulforaphane.
Epithelial cell junction protein ZO-1 was

disrupted with HDM stimulation but increased
when treated with sulforaphane before

stimulation with HDM. Similar beneficial effect
was found with transepithelial electrical

resistance.

Resveratrol
Grapes,
berries,
peanuts

Zhang, W. et al.
(2020) [77]

Animal study
(OVA-induced

murine AR model)

After resveratrol treatment, TXNIP, MDA, SOD,
inflammatory cytokines, eosinophil numbers,

and nasal symptoms were significantly altered
compared to untreated AR mice.

Lv, C. et al. (2018)
[95]

Clinical trial
(double-blind,
randomized,

placebo-controlled)

AR patients treated with resveratrol showed
reduction in nasal symptoms, serum IgE, IL-4,

TNF-α, and eosinophil levels.

Mangiferin Mango

Piao, C.H. et al.
(2020) [82]

Animal study
(OVA-induced

murine AR model)

Mangiferin treatment led to reduction of nasal
symptoms, nasal mucosa inflammation,

inflammatory cell infiltration, and epithelial
disruption in histopathology.

In NALF, MDA level reduced, SOD activity
increased, and Nrf2/HO-1 expression was

upregulated, while expression of NF-κB was
decreased.

Wang, Y. et al.
(2020) [83]

Animal study
(OVA-induced

murine AR model)

After administration of mangiferin, MDA level
was decreased, and NF-κB pathway was

prevented, which led to downregulation of
TNF-α and IL-1β.

In histopathology, ciliary loss and eosinophil
infiltration were decreased.

Piper nigrum
extract Black pepper Bui, T.T. et al.

(2020) [90]

Animal study
(OVA-induced

murine AR model)

After Piper nigrum extract treatment, mast cells
histamine release, nasal symptoms in early

phase reaction, and eosinophil accumulation in
nasal lavage fluid and nasal tissue were

decreased.
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Table 1. Cont.

Exogenous
Antioxidants Diet Source Authors (Year) Study Designs Therapeutic Antioxidant Effects

Quercetin Onions, red
wine, tea

Edo, Y. et al.
(2018) [97]

Human study
(tissue-specific)
Animal study
(OVA-induced

murine AR model)

Human SNECs showed increased TRX
production in ELISA when treated with

quercetin.
In animal model, quercetin was orally

administered, and the nasal symptoms were
inhibited. In NALF, TRX levels were increased.

Taurine Scallops, tuna,
octopus

Zhou, J. et al.
(2020) [98]

Human study
(serum marker)
Animal study
(OVA-induced

murine AR model)

In AR patients compared to healthy controls,
after treatment of taurine, serum SOD3 level

was decreased.
In animal model, AR symptoms, inflammatory

cytokines (TNF- α, IL-4, and IL-6), and
eosinophil and mast cell infiltration in nasal

mucosa were decreased. SOD3 production was
increased.

Abbreviations: TNSS, total nasal symptom score; PNIF, peak nasal inspiratory flow; AR, allergic rhinitis; IL, interleukin; SNEC, sinonasal
epithelial cell; HDM, house dust mite; Nrf2, nuclear factor erythroid 2-related factor 2; ZO-1, zonula occludens-1; OVA, ovalbumin; TXNIP,
thioredoxin-interacting protein; MDA, malondialdehyde; SOD, superoxide dismutase; IgE, immunoglobulin E; TNF-α, tumor necrosis
factor-α; NALF, nasal lavage fluid; HO-1, heme oxygenase-1; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; ELISA,
enzyme-linked immunosorbent assay; TRX, thioredoxin.

In several studies, the effect of sulforaphane was evaluated. A study in 2017 evaluated
nasal epithelial cell barrier function after administration of sulforaphane [89]. In allergic
rhinitis condition with house dust mite, epithelial junction protein, zonula occludens
(ZO)-1 was decreased but restored after Nrf2 activation by sulforaphane. This was the
first study to show that nasal epithelial cell barrier dysfunction in allergic rhinitis can be
inhibited by activation of the Nrf2 pathway by sulforaphane treatment. Additionally, in a
double-blinded, randomized, placebo-controlled clinical trial, sulforaphane showed effects
in decreasing T2 cytokines such as IL-4, IL-5, and IL-13 in nasal cavity mucus of allergic
rhinitis patients [94]. Subjective and objective parameters of allergic rhinitis such as total
nasal symptom score (TNSS) and peak nasal inspiratory flow (PNIF) were improved after
3 weeks of sulforaphane treatment.

As mentioned in the previous section, the allergic rhinitis animal model study showed
the effectiveness of resveratrol in reducing oxidative stress markers such as MDA [77].
TXNIP level was positively correlated with MDA levels but negatively correlated with
SOD activities, implying that resveratrol treatment might decrease TXNIP levels, leading
to attenuation of oxidative stress. Resveratrol was tested in a double-blinded, randomized,
placebo-controlled study; patients who were administered with resveratrol showed a
decrease in nasal symptoms, serum IgE, IL-4, TNF- α, and eosinophil levels, compared to
the placebo group [95]. The clinical effect of resveratrol in decreasing nasal symptoms has
been reported before [99].

A mango extract, mangiferin, has also been the target in some studies. In the OVA-
induced murine allergic rhinitis model, mice that were administered with mangiferin
showed fewer nasal symptoms and nasal mucosa inflammation, and inflammatory cell
infiltration and epithelial disruption were reduced in histopathology. In nasal lavage
fluid (NALF), after mangiferin treatment, MDA level was reduced, SOD activity was
increased, and Nrf2/HO-1 expression was upregulated, while expression of NF-κB was
decreased [82]. In another recent study with an allergic rhinitis animal model, after admin-
istration of mangiferin, MDA generation after allergen exposure was decreased. NF-κB
signaling pathway activation was prevented, leading to the downregulation of inflam-
matory cytokines such as TNF-α and IL-1β. In histology, allergic rhinitis-related nasal
epithelial changes such as ciliary loss and eosinophil infiltration were attenuated [83].

As described above, the study with a potential therapeutic antioxidant Piper nigrum
extract evaluated the effect in the OVA-induced allergic rhinitis murine model [90]. The
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mice were orally administered with either Piper nigrum extract or dexamethasone. In mice
treated with Piper nigrum extract, histamine release from mast cells, nasal symptoms, and
eosinophil infiltration in nasal lavage fluid and nasal tissue were decreased. The result
suggested that the antioxidant treatment promoted the cytoprotective function of the Nrf2
and heme oxygenase (HO)-1 signaling pathway, which resulted in inhibiting the disruption
of tight junction proteins in the allergic rhinitis model.

Quercetin, a flavonoid, is known to yield a strong antioxidant property compared
to other natural antioxidants. In allergic rhinitis patients, sinonasal epithelial cells were
harvested and used to find their effectiveness [97]. In the study, after quercetin treatment,
thioredoxin (TRX) production was increased in ELISA in response to H2O2 stimulation.
Additionally, in OVA-sensitized mice, quercetin administration led to inhibition of nasal
symptoms in allergic rhinitis mice. In nasal lavage fluids obtained 6 h after allergen
challenge, TRX levels were increased.

Lastly, taurine was studied in allergic rhinitis patients and in the OVA-induced murine
allergic rhinitis model [98]. Taurine administration showed a decrease in SOD3 level, nasal
symptoms, inflammatory cytokine production, and inflammatory cell infiltration.

4. Conclusions

To study the effect of oxidative stress, transcriptional factors such as Nrf2 and NF-κB
have been investigated in murine models of allergic rhinitis as well as nasal mucosa epithe-
lial cells of patients with allergic rhinitis. Several possible therapeutic antioxidants that are
abundant in natural dietary sources have been studied and have shown promising results
by inhibiting several oxidative stress pathway markers. As limitations exist with currently
used treatment methods in allergic rhinitis patients, a more detailed understanding of
oxidative stress and antioxidants in allergic rhinitis would lead to better control of the
disease. Future studies with therapeutic antioxidants could focus on clinical studies of
allergic rhinitis patients based on previous literature.
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