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Natural products remain a crucial source of drug discovery for accessible and affordable
solutions for healthy aging. Centella asiatica (L.) Urb. (CA) is an important medicinal plant
with a wide range of ethnomedicinal uses. Past in vivo and in vitro studies have shown that
the plant extract and its key components, such as asiatic acid, asiaticoside, madecassic
acid and madecassoside, exhibit a range of anti-inflammatory, neuroprotective, and cognitive
benefits mechanistically linked to mitoprotective and antioxidant properties of the plant.
Mitochondrial dysfunction and oxidative stress are key drivers of aging and neurodegenerative
disease, including Alzheimer’s disease and Parkinson’s disease. Here we appraise the
growing body of evidence that the mitoprotective and antioxidative effects of CA may
potentially be harnessed for the treatment of brain aging and neurodegenerative disease.
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INTRODUCTION

Centella asiatica (L.) Urb. (CA) is a medicinal plant commonly consumed in salads or juices in
several countries, including Malaysia, India, Sri Lanka, Indonesia and China (Hashim, 2011;
Maulidiani et al., 2012; Bachok et al., 2014; Singh et al., 2014). CA has a wide range of
ethnomedical applications, including treatment of gastrointestinal disorders, skin diseases, fever,
and cognitive and memory problems (Gohil et al., 2010; Jahan et al., 2012; Sabaragamuwa et al.,
2018). Studies of the plant extract and its bioactive compounds have revealed a broad range of
pharmacological and therapeutic effects, including anti-ulcer (Zheng et al., 2016), anti-microbial
(Idris and Nadzir, 2017), cytoprotective (Choi et al., 2016; Tewari et al., 2016), anti-inflammatory
(Choi et al., 2016; Park et al., 2017; Ho et al., 2018), anti-oxidant (Zhao et al., 2014; Dewi and
Maryani, 2015; Intararuchikul et al., 2019) and mitoprotective (Gray et al., 2017; Zhang et al., 2017;
Gray et al., 2018c) properties. The bioactive components of CA readily cross the blood brain barrier
and exert beneficial neuroactive effects in a range of models of aging (Zweig et al., 2021) and
neurodegenerative disease including Alzheimer’s disease (AD) (Gray et al., 2018c; Matthews et al.,
2019) and Parkinson’s disease (PD) (Gopi and Arambakkam Janardhanam, 2017; Teerapattarakan
et al., 2018). Recent studies have associated these neuroprotective and anti-inflammatory effects with
increased expression of proteins essential for mitochondrial bioenergetics and antioxidant genes
(Gray et al., 2018c; Lu et al., 2021; Zweig et al., 2021). Mitochondria play a pivotal role in aging and
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FIGURE 1 | Antioxidative and mitoprotective activities of Centella asiatica and its main components. Mitochondrial dysfunction in regulating energy metabolism in
response to changing bioenergy demands is closely associated with neuroinflammation in aging and neurodegenerative diseases. The antioxidative and mitoprotective
activities of CA targeting mitochondrial and oxidative functions may confer neuroprotective benefits that could potentially be harnessed to treat aging and
neurodegenerative diseases and improve functional behavioral outcomes. ARE, antioxidant response element genes; MC-I, mitochondrial complex I; MMP,
mitochondrial membrane potential; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; NLRP3, NLR family pyrin domain containing three; Nrf2, NF-
E2-p45-related factor 2; Sirt1, Sirtuin 1. Figure created with BioRender.com.
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neurodegeneration, regulating energy metabolism, immune
responses and cell death pathways (Moreira et al., 2010;
Rizzuto et al., 2012; Mills and O’Neill, 2016; Sun et al., 2016;
Shah et al., 2019). Hence, this review focuses on the potential
therapeutic application of CA for the treatment of brain-aging
and neurodegenerative disease through restoration of
mitochondrial function and inhibition of oxidative damage.

CENTELLA ASIATICA (L.) URB. (CA): THE
MEDICINAL PLANT
Botany and Geographical Distribution of
Centella asiatica (L.) Urb.
CA is commonly known by several names, including gotu kola in
Sinhala, pegaga in Malay, ‘léi g�ong g�en’ in Chinese and Asian or
Indian Pennywort in English (Jahan et al., 2012; Orhan, 2012;
Singh et al., 2014; Gajbhiye et al., 2016). CA belongs to the
Apiaceae family, which is native to Asian countries and parts of
China as well as several other parts of the world, such as northern
Australia and the Western Pacific. The plant grows horizontally,
with long, slender and tender prostrate stolons that can extend up
to 2 m and are characterized by long internodes and nodes. Each
node of the stem bears one to three leaves that are about 2–6 cm
in length and 1.5–5 cm in width with a slightly cupped circular-
reniform shape and palmately netted veins. CA is odorless and
flowers from April to June with fascicled umbels that consist of
three to four sessile flowers. These flowers bear 4-mm-long fruits
that range in shape from oval to globular. Found up to 1800 m
above sea level, CA grows in a wide range of habitats, such as open
sunny areas, swamps, paddy fields as well as along the banks of
lakes and ponds and on stone walls and rocks (Roy et al., 2013;
Singh et al., 2014; Sirichoat et al., 2015; Gajbhiye et al., 2016).

Centella asiatica (L.) Urb. and its Major
Phytochemical Constituents
CA contains amino acids, alkaloids, carbohydrates, vitamins,
minerals, terpenes of various categories (such as
monoterpenes, sesquiterpenes, diterpenes, triterpenes and
tetraterpene) and phenolic compounds (such as the flavonoids,
tannins and other constituents). The phytochemistry of CA has
previously been comprehensively reviewed by Brinkhaus et al.
(2000), Gray et al. (2018a) and Torbati et al. (2021) therefore will
only be summarized briefly here. Terpenes are the dominant
group of chemical constituents of CA, with triterpenes being the
major and most important component of CA, serving as a marker
constituent for quality control analyses (Rafi et al., 2018). The
triterpenes (Figure 1) found in CA are mostly pentacyclic
triterpenic acids (sapogenins), such as the asiatic acid
(PubChem CID: 119034, National Center for Biotechnology
Information, 2021a) and madecassic acid (PubChem CID:
73412, National Center for Biotechnology Information, 2021b),
and their respective triterpenoid glycosides (saponins, with a
trisaccharide moiety linked to the aglycones), such as asiaticoside
(PubChem CID: 52912190, National Center for Biotechnology
Information, 2021c) and madecassoside (PubChem CID:

131801373, National Center for Biotechnology Information,
2021d) (Azerad, 2016; Rafi et al., 2018).

CA extract has been widely studied in the form of ethanolic
(Sari et al., 2014; Sari and Rochmah, 2015; Binti Mohd Yusuf
Yeo et al., 2018; Suri et al., 2018; Wong et al., 2019; Wong et al.,
2020), methanolic (Veerendra Kumar and Gupta, 2003; Arora
et al., 2018) and aqueous (Mitha et al., 2016; Gray et al., 2018c;
Chintapanti et al., 2018) extract as well as leaf juice (Rao et al.,
2007; Thirawarapan et al., 2019). Of these different
preparations of CA, it was found that the ethanolic extract
retained the highest amount of the triterpenes asiatic acid and
asiaticoside compared to other solvents (Puttarak and
Panichayupakaranant, 2013; Gajbhiye et al., 2016).

Wide chemotypic variations in triterpenoids were found in CA
planted in different growing regions, altitudes and localities (Long
et al., 2012; Singh et al., 2014; Srivastava et al., 2014). Genotypic
and phenotypic variability have been associated with differences
in phytochemicals content of CA including macronutrients,
micronutrients, phenolics, flavonoids, tannin, anthocyanin,
carotenoids and ascorbic acid (Thomas et al., 2010; Singh
et al., 2014; Lal et al., 2017; Chandrasekara et al., 2020). Other
than geographical and genotypical influences, the phytochemical
compositions of CA also vary due to seasonal variations
associated with the cultivation and harvesting procedures, light
conditions, as well as the drying conditions post-harvesting
(Maulidiani et al., 2012; Rahajanirina et al., 2012; Alqahtani
et al., 2015; Plengmuankhae and Tantitadapitak, 2015). This
underlines the potential challenges involved in the study of
CA plant extract, as differences in specific phytochemical
composition may influence the efficacy of the extract.

Neuroactive Effects of Centella asiatica (L.)
Urb.: Crossing the Blood Brain Barrier
Several pharmacokinetic studies have confirmed that bioactive
components of CA can cross the blood brain barrier (BBB) when
administered peripherally, although the transport mechanisms of
these phytochemicals remain largely unknown. For example,
asiatic acid, asiaticoside and madecassoside were found to
accumulate in the brains of animals administered with CA
extract or the respective single components (Yin et al., 2012;
Anukunwithaya et al., 2017a; Anukunwithaya et al., 2017b). A
recent study using primary porcine brain endothelial cells as
in vitro BBBmodel also reported that asiatic acid, asiaticoside and
madecassoside exhibit high permeability across the BBB (Hanapi
et al., 2021). The bioavailability of these phytochemicals in brain
tissue after peripheral administration (Yin et al., 2012;
Anukunwithaya et al., 2017a; Anukunwithaya et al., 2017b)
indicates they cross the BBB at adequate concentrations to
exert neuroactive effects supporting the potential use of these
compounds as neurotherapeutics.

Neuroactive Effects of Centella asiatica (L.)
Urb.: Cognition
Cognitive-enhancing effects of CA extract have been described in
numerous studies, in both normal animals and models of aging
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and neurodegenerative disease (Doknark et al., 2014; Sari et al.,
2014; Sirichoat et al., 2015; Yolanda et al., 2015;Wong et al., 2019;
Sbrini et al., 2020). In early studies, CA extract was found to
improve memory and ameliorate biochemical and mitochondrial
dysfunction in a mouse model of aging (Kumar et al., 2011). In
other studies CA was found to confer protection against
hippocampal dysfunction, a region of the brain that plays a
critical role in learning and memory and is severely affected in
AD (Veerendra Kumar and Gupta, 2003; Giribabu et al., 2014).
Further, key bioactive components of CA have also been shown to
affect learning and memory in models of aging and
neurodegenerative disease. For example, asiaticoside has been
found to enhance cognitive performance in aged animals (Lin
et al., 2013) and a rat model of AD (Zhang et al., 2017). The
cognitive effects of CA extract have been linked to changes in
synaptic plasticity (Lin et al., 2013) and excitatory
neurotransmission (Wanasuntronwong et al., 2018; Wong
et al., 2020) as well as improved neuronal health and survival
in models of aging and disease (Gray et al., 2018b; Gray et al.,
2018c). Here we will examine the evidence that CA and its
phytochemicals provide cognitive benefits in aging and
neurodegenerative disease via mitoprotective and antioxidant
mechanisms (Soumyanath et al., 2012; Chen et al., 2016; Gray
et al., 2016; Gray et al., 2017; Matthews et al., 2019).

TARGETING MITOCHONDRIA IN AGING
AND NEURODEGENERATIVE DISEASE:
ROLE FOR CENTELLA ASIATICA (L.) URB.
Mitochondrial dysfunction is closely associated with aging
(López-Otín et al., 2013; Sun et al., 2016), AD (Moreira et al.,
2010; Yoo et al., 2020) and PD (Yang et al., 2020). Mitochondria
regulate energy metabolism, immune responses and cell-death
pathways through their highly flexible and dynamic network. The
mitochondrial network responds to changing bioenergetic
demands by adjusting the rate of mitochondrial fission and
fusion—a function that was found to be affected in most age-
associated neurodegenerative conditions (Shah et al., 2019).
Studies have shown that age-related toxic protein aggregates,
such as Alzheimer’s beta amyloid (Aβ), induce mitochondrial
dysregulation by binding to mitochondrial proteins. For example,
Aβ has been found to bind to the mitochondrial fission protein
(Drp1), and the mitochondrial voltage-dependent anion channel
(VDAC) (Manczak et al., 2011; Manczak et al., 2018). These
abnormal protein interactions affect mitochondrial biogenesis,
increase mitochondrial fragmentation and induce free radical
production (John and Reddy, 2020).

Mitochondria are the primary source of free radicals,
otherwise known as reactive oxygen species (ROS), and ROS
overproduction leads to oxidative damage. Oxidative damage
further affects the mitochondrial respiratory chain function in
generating energy in the form of adenosine triphosphate (ATP)
through oxidative phosphorylation (OXPHOS) (Elfawy and Das,
2019). Perturbations in the electron transport chain function and/
or reduction in the mitochondrial membrane potential lead to a
vicious cycle of mitochondrial stress, which results in decreased

ATP production and increased ROS production (Szalardy et al.,
2015; Zorova et al., 2018). The brain is highly susceptible to both
bioenergetic dysfunction and oxidative damage due to the high
energy demands associated with neurotransmission and a high
lipid content, respectively. The use of antioxidant strategies has
been reported to provide a protective benefit against aging and
neurodegenerative diseases. Further, enhancing mitochondrial
biogenesis and quality control may be an efficient strategy for
preventing mitochondrial disorders (Smith et al., 2012; Suliman
and Piantadosi, 2016; Murphy and Hartley, 2018) and providing
neuroprotection in AD and PD mouse models (Johri and Beal,
2012). Several therapeutic approaches that aim to protect against
neurodegeneration and inflammation by improving brain
bioenergetics, rescuing mitochondrial dysfunction and
reducing oxidative damage are being developed (Cunnane
et al., 2020; Fairley et al., 2021). In this section, we will focus
on the mitoprotective and antioxidative effects of CA and its key
phytochemicals as potential therapeutic agents that can 1)
promote neuronal health and survival, and 2) reduce
neuroinflammation.

Neuroprotective Effects of Centella asiatica
(L.) Urb. and its Major Constituents:
Antioxidative and Mitoprotective Effects
Neuroprotective effects of CA have been described in several
models of neurodegenerative disease and injury, linked to effects
on mitochondrial energy production, oxidative stress and
mitochondrial-induced apoptosis. For example, the CA extract,
asiatic acid has been shown to prevent mitochondrial
morphology abnormalities in a rat model of kainic acid-
induced seizure, which protected synaptic function and
alleviated cognitive deficits (Lu et al., 2021). In a separate
study, the CA phytochemical asiaticoside was found to inhibit
Aβ-induced neuronal apoptosis by restoring and maintaining
mitochondrial membrane potential (Song et al., 2018). Several
potential molecular mechanisms mediating the mitoprotective
effects of CA have been proposed, including increased
conductance and stabilization of VDAC (Tewari et al., 2016).
VDAC plays a critical role in cell survival, transport of substrates
for energy production and maintenance of mitochondrial
membrane potential (Camara et al., 2017), making it a target
of interest in regulating mitochondrial function.

Meanwhile, other studies have implicated CA and its bioactive
components in the regulation of important antioxidant response
signaling pathways. In mouse models of AD, CA extract has been
found to promote antioxidative responses, countering Aβ
pathology-driven oxidative stress, mitigating neuronal loss
around the plaques and improving memory function (Gray
et al., 2017; Gray et al., 2018c). CA extract has also been
found to protect rotenone-induced parkinsonism rats against
lipid peroxidation, dopaminergic neuronal death and
locomotor deficit. These protective effects were associated with
increased antioxidant enzyme expression and preservation of
mitochondrial complex I activity, which is responsible for the
rate-limiting step in OXPHOS (Teerapattarakan et al., 2018).
Madecassoside was also found to be effective at ameliorating the
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deficits observed in PD rat models via its antioxidative activities,
maintaining the redox balance (Xu et al., 2013). Similarly,
asiaticoside has been found to reduce oxidative stress induced
by rotenone (Gopi and Arambakkam Janardhanam, 2017;
Subaraja and Vanisree, 2019). Likewise, asiatic acid provided
antioxidative benefits in a drosophila PD model, protecting
mitochondria against rotenone-induced oxidative stress and
apoptosis. The antioxidative properties of asiatic acid are also
thought to mediate neuroprotection and improve spatial memory
function in animals treated with valproic acid (Xu et al., 2012;
Umka Welbat et al., 2016). Outside of the brain, antioxidative
effects of CA are also observed in other organs and systems. For
example, CA extract was found to inhibit lipid peroxidation in
rotenone-treated rats (Intararuchikul et al., 2019) and regulate
lipid metabolism via antioxidant effect (Zhao et al., 2014). These
findings support the notion that the neuroprotective effects of CA
and its bioactive components are at least in part mediated
through enhanced antioxidative responses.

CA-induced antioxidative responses have been linked to the
higher expression of antioxidant response element genes (AREs)
activated viaNrf2 (NF-E2-p45-related factor two, encoded by the
NFE2L2 gene) (Matthews et al., 2019). The Nrf2/ARE signaling
cascade regulates a plethora of cellular activities, including
metabolic reprogramming, mitochondrial physiology and
biogenesis, antioxidant stress response, drug detoxification,
inflammation, autophagy and unfolded protein response and
proteostasis (Dinkova-Kostova and Abramov, 2015; He et al.,
2020). Altered expression of Nrf2-targeted genes is associated
with AD, and previous studies have demonstrated that the
activation of Nrf2 ameliorates Aβ pathology and cognitive
deficits in AD mouse models (Bahn et al., 2019).
Consequently, activation of Nrf2 pathway represents a
promising therapeutic direction for enhancing mitochondrial
quality control and biogenesis in aging and neurodegenerative
diseases (Kerr et al., 2017; Gureev et al., 2019; Gureev and Popov,
2019; Brandes and Gray, 2020; Bento-Pereira and Dinkova-
Kostova, 2021). Subsequent studies found that Nrf2 is a
crucial component of the mitoprotective effects of CA,
whereby long-term CA treatment improved the cognitive
performance of wild type but not Nrf2 deficient mice (Nrf2
knockout) (Zweig et al., 2021). Further, these studies
associated hippocampal mitochondrial dysfunction with
cognitive performance.

In addition to the general ability to induce antioxidant
responses, disease-specific mitoprotective effects of CA have
also been identified in models of PD. For example, CA
components have been shown to block the translocation of
α-synuclein to the mitochondria, therefore maintaining
mitochondrial membrane integrity and ATP production (Ding
et al., 2018). Further, pre-treatment with asiatic acid significantly
decreased mitochondrial ROS production in a 1-methyl-4-
phenyl-pyridine (MPP+)-induced neuroblastoma model of PD
and protected the cells form the loss of mitochondrial membrane
potential (Chen et al., 2019). Additionally, CA and its
triterpenoids may also reduce ROS production (Gray et al.,
2017; Nataraj et al., 2017), thus potentially restoring
mitochondrial function in the central nervous system

(Onyango et al., 2017). For example, madecassic acid inhibited
ROS production in human retinal microvascular endothelial cells
(hMRECs) following hypoxia-induced oxidative stress (Yang
et al., 2016). The molecular targets mediating these effects are
yet to be elucidated and whether they are generalized to other
disease models remains to be determined.

Anti-Inflammatory Effects of Centella
asiatica (L.) Urb. and its Major Constituents
The mitochondrial and metabolic fitness of the brain’s innate
immune system plays an important role in the
neuroinflammatory responses involved in neurodegenerative
diseases (Paolicelli and Angiari, 2019)—a concept known as
“immunometabolism” (O’Neill et al., 2016). Mitochondrial-
dependent OXPHOS and fatty acid oxidation (FAO) are
associated with anti-inflammatory responses (Mills and
O’Neill, 2016) while, on the other hand, inflammatory
responses are associated with a shift toward non-
mitochondrial erobic glycolysis (Rodríguez-Prados et al., 2010;
Galván-Peña and O’Neill, 2014). This switch toward erobic
glycolysis causes several functional changes: 1) rapid supply of
ATP, 2) proinflammatory cytokine production, 3) rearrangement
of the tricarboxylic acid (TCA) cycle and accumulation of
intermediate metabolites, such as succinate and citrate, and 4)
repurposing of the electron transport chain (ETC) to produce
ROS (Lampropoulou et al., 2016; Millet et al., 2016; Mills et al.,
2016). Furthermore, microglial activation releases neurotoxic
factors, such as mitochondrial-generated ROS, that exacerbate
the neuroinflammation, thus resulting in neuronal death and
neurodegeneration (González et al., 2014; Simpson and Oliver,
2020). Microglia are metabolically plastic and, hence, are
potential therapeutic targets for the treatment of AD using
metabolic reprogramming strategies (Fairley et al., 2021).

CA and its derivatives have also been shown to affect
inflammatory responses through the regulation of
mitochondrial and oxidative functions. Asiatic acid,
asiaticoside and madecassoside have been found to
demonstrate anti-inflammatory effects through a reduction of
cytokine levels and the activation of microglia in stroke models
(Krishnamurthy et al., 2009; Chen et al., 2014; Luo et al., 2014).
Sirtuin 1 (Sirt 1) protein is an important epigenetic regulator for
many physiological processes, modulating downstream pathways
by targeting proteins such as nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) and plays a role in
alleviating oxidative stress (Elibol and Kilic, 2018). In an
immortalized microglial cell line, asiatic acid was found to
prevent LPS-induced neuroinflammation by enhancing Sirt1
expression while suppressing NF-κB activation, attenuated the
production of nitric oxide and the expression of inducible nitric
oxide synthase (iNOS) and reduced the expression and release of
inflammatory cytokines in response to LPS-induced
inflammation (Qian et al., 2018). Asiatic acid was shown to
protect BV2 cells from LPS-induced damage by suppressing
NLRP3 (NLR family pyrin domain containing three)
expression and decreasing mitochondrial ROS, effectively
ameliorating mitochondrial dysfunction (Chen et al., 2019).
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Anti-inflammatory effects have also been reported in models of
AD. In a study that used the intracerebroventricular infusion of toxic
forms of Alzheimer’s Aβ, the neuroprotective effects of asiaticoside
in Aβ-infused rats were suggested as being associated with the anti-
inflammatory properties of asiaticoside, hence mitigating
mitochondrial injuries and regulating the expression of apoptosis
markers (Zhang et al., 2017). The mitoprotective effects of asiatic
acid have been demonstrated in earlier studies that targeted the
regulation of the mitochondrial membrane potential and ROS
production (Xiong et al., 2009; Xu et al., 2012). Taken together,
these findings demonstrate that CA and its major phytochemicals
inhibit ROS production and ameliorate mitochondrial dysfunction,
reducing detrimental inflammatory responses.

CONCLUSION

Plants produce chemically, structurally and molecularly diverse
phytochemicals that determine their evolutionary success. These
compounds represent biological functions and continue to
provide crucial novel pharmacological leads for the treatment
of human diseases. CA and its phytochemicals have wide
ethnopharmacological applications in various cultures, and its

biological effects have been substantiated in numerous studies.
These findings suggest that CA confers pleiotropic
neuroprotective and anti-inflammatory benefits through its
mitoprotective and antioxidative effects, which could
potentially be harnessed for the treatment of aging and
neurodegenerative diseases. Further research is still needed to
determine the synergistic effects, safety, efficacy, bioavailability
and metabolism of these components.
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