
Galgonek et al. J Cheminform (2016) 8:31
DOI 10.1186/s13321-016-0144-4

SOFTWARE

Advanced SPARQL querying in small
molecule databases
Jakub Galgonek1*, Tomáš Hurt2, Vendula Michlíková2, Petr Onderka2, Jan Schwarz2 and Jiří Vondrášek1

Abstract 

Background:  In recent years, the Resource Description Framework (RDF) and the SPARQL query language have
become more widely used in the area of cheminformatics and bioinformatics databases. These technologies allow
better interoperability of various data sources and powerful searching facilities. However, we identified several defi-
ciencies that make usage of such RDF databases restrictive or challenging for common users.

Results:  We extended a SPARQL engine to be able to use special procedures inside SPARQL queries. This allows the
user to work with data that cannot be simply precomputed and thus cannot be directly stored in the database. We
designed an algorithm that checks a query against data ontology to identify possible user errors. This greatly improves
query debugging. We also introduced an approach to visualize retrieved data in a user-friendly way, based on templates
describing visualizations of resource classes. To integrate all of our approaches, we developed a simple web application.

Conclusions:  Our system was implemented successfully, and we demonstrated its usability on the ChEBI database
transformed into RDF form. To demonstrate procedure call functions, we employed compound similarity searching
based on OrChem. The application is publicly available at https://bioinfo.uochb.cas.cz/projects/chemRDF.

Keywords:  Resource Description Framework, SPARQL query language, Database of small molecules

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Databases of small molecules play a key role in many areas
of cheminformatics and bioinformatics research and appli-
cations. There are many kinds of small molecule databases
[1]—one of the most comprehensive is the ChemSpider
database, which offers access to approximately 44 million
compounds [2]. Some databases are general purpose; oth-
ers are focused on a specific area of research, such as drugs
and their targets or metabolites found in the human body.
The vast majority of these databases are publicly available.
Many companies build their own proprietary databases as
well, which demonstrates the large range of utilization and
different foci of such databases [3, 4].

Such databases should fulfill criteria for simple and
effective searching. Most small molecule databases
assume that users know the name or structure of the

compound of interest. The structure or name can then be
used as a database query to obtain additional information
stored in the database. Alternatively, the search can be
based on specifying desired properties of the compound
in a fixed query form. These approaches are sufficient in
many cases, but they are insufficient if new information
needs to be derived from existing data, for example, to
find compounds according to their complex interactions
with other compounds or biological entities.

For more powerful database searching, a user needs to
know the data model used and the corresponding query
language. Query languages are typically defined on the
logical database level, which describes data organization
in terms of the database paradigm used to store data.
These can cause confusion for common users, who intui-
tively think about data on the conceptual database level,
which is focused on ontological description of data. For
example, one of the most well-known query languages
is SQL, which is defined for the relational data model. In
this model, data are represented by tables. To be able to
write SQL queries, it is essential to know how the data
are organized into tables. However, the organization is

Open Access

*Correspondence: jakub.galgonek@uochb.cas.cz
1 Institute of Organic Chemistry and Biochemistry, Academy of Sciences
of the Czech Republic, Flemingovo nám. 2, 166 10 Prague 6, Czech
Republic
Full list of author information is available at the end of the article

https://bioinfo.uochb.cas.cz/projects/chemRDF
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-016-0144-4&domain=pdf

Page 2 of 14Galgonek et al. J Cheminform (2016) 8:31

determined by various requirements and conditions that
are mostly irrelevant from a common user’s point of view.
To make a search easier and more intuitive, it is appropri-
ate to use a technology for which the differences between
the conceptual and logical models are not so distinct.
The Resource Description Framework (RDF) and the
SPARQL query language can be used in such cases [5].
The RDF model defines organization of data on a logical
level, but it is also related to some conceptual modeling
approaches.

Data interoperability is another important criterion.
Usage of data coming from different data sources can be
complicated if the sources describe data in incompatible
ways. This issue is also addressed by RDF, which allows
description of vocabularies defining unique identifiers
and meanings that are used for data description. More-
over, SPARQL supports federated queries; this means
that one query can employ data from different sources
(SPARQL endpoints) managed by different organizations.

In recent years, the RDF framework and the SPARQL
language have become more widely used in the area of
cheminformatics databases [6]. Chem2Bio2RDF focuses
on linking data from different sources using RDF [7].
Well-known PubChem data are available for download in
RDF format, which allows the user to import them into
a personal RDF storage and query them using SPARQL
[8]. ChemSpider also allows users to download com-
pound data in RDF format [9]. A SPARQL endpoint
that allows users to submit queries on ChemSpider data
is in development and should be finished soon. In addi-
tion, the European Bioinformatics Institute (EMBL-EBI)
serves SPARQL endpoints to many of its databases [10].
Another database that uses SPARQL to support advanced
searching is the neXtProt database, which focuses on
human proteins [11].

In our work, we focus on the use case in which a data-
base is accessible through a web interface that allows the
user to submit SPARQL queries. Although the RDF plat-
form is already widely used in many cheminformatics
areas, we identify several deficiencies that make usage of
RDF databases restrictive or non-user-friendly:

1.	 Special procedures are not supported. Not all kinds
of data can be precomputed simply and stored
directly in a database. Instead, they are computed
from given parameters on demand. A typical exam-
ple is a list of compounds that are similar to a given
compound. In relational databases, compound
similarity is supported by a chemical cartridge [4].
This defines stored procedures called from SQL
that return required similar compounds. However,
SPARQL does not contain support for calling stored
procedures, and many RDF storages lack a propri-

etary extension. For this reason, similarity searches
and other useful functions are not typically sup-
ported by chemical databases based on RDF storage.

2.	 Writing SPARQL queries is prone to errors. A query
written in SPARQL may not respect the data ontol-
ogy but can still be considered valid. This means, for
example, that a query can contain an identifier that
is not included in the database (and is therefore not
described in the ontology) or that it is possible to use
identifiers in a nonsense combination from an ontol-
ogy point of view. In such cases, an empty result is
returned, and the user is not informed about the
source of the problem. This makes query debugging
troublesome.

3.	 Presentation of results is either stern or inflexible.
In the simplest approach, a query result is presented
as a table of raw values. In this manner, for example,
found compounds are presented only by their data-
base identifiers. Additional information (e.g., com-
pound names or human readable identifiers) have to
be retrieved explicitly by the query. This approach is
used, for example, by EBI, which uses a general pur-
pose SPARQL endpoint to submit queries. On the
other hand, in neXtProt, found entities are presented
together with some details. However, the system is
limited to present only one class of entities.

In this paper, we present our proposals to develop
a small molecule RDF database that addresses these
issues. We extended a SPARQL engine to allow query-
ing of data that cannot be stored directly in a RDF data-
base. We designed an algorithm that performs check of
a query against data ontology to identify possible user
errors. In addition, we introduced an approach to visual-
ize retrieved data in a user-friendly way. To integrate all
features of our approaches, we developed a simple web
application, and we demonstrated its overall functionality
on data retrieved from the ChEBI database [12].

Resource Description Framework overview
In the RDF data model, information is expressed as
simple statements about entities (called resources in
RDF terminology) [5, 13]. Each statement is formed as
a triple: subject, predicate, and object. The statement
expresses a relation between two resources—the subject
and the object. Specifically, it expresses that the subject
has a property identified by the predicate, which has the
object as its value. For public identification of resources,
the International Resource Identifier (IRI) is employed.
Because IRIs can be very long, namespace prefixes can be
defined. The namespace prefix represents an initial sec-
tion of IRIs that can be replaced by a prefix. Predicates
are identified by IRIs as well. A predicate IRI can appear

Page 3 of 14Galgonek et al. J Cheminform (2016) 8:31

in the subject or object position in other triples, so it is
possible to make statements about the property. This
is very useful for description of data ontology. If public
identification of resource is not needed, blank nodes,
which have only local meanings, can be used. Special
classes of resources are literals (e.g., text, date, numbers)
that express simple property values and can be used only
in the object position in a triple.

The Web Ontology Language (OWL) can be used to
describe data ontology [14–16]. OWL describes classes of
resources and their properties. The most important fea-
ture of classes is their subclass hierarchy. Properties are
described separately, and their most important features
are domains and ranges. Properties also can be arranged
in a hierarchy. For example, mass or charge properties
can be defined as subproperties of the common chemical
property. The ontology itself is stored with regular data
in the form of triples. This allows users to query ontology
information in the same way as they query regular data.

One of the most important features of RDF databases is
the ability to infer triples that are not physically stored in
the database. This is especially useful in conjunction with
the ontology description. For example, if the resource
S has property P1 with value V, and property P1 is sub-
property of property P2, then it is inferred that resource S
has property P2 with value V. This is particularly impor-
tant and useful for querying because it allows for simple
query construction.

The SPARQL query language has been introduced
as a means to query data [17]. The basic concept of the
language is based on a triple pattern that has the same
form as an RDF triple but can contain variables in arbi-
trary positions (i.e., in the subject, predicate, or object
position). During query evaluation, solution mappings—
mappings from the pattern variables to resources for
which triples exist in a database—are returned as results.
The map between the variable and the value is binding,
and the variable is said to be bound to the value. Note
that SPARQL allows grouping of multiple triple patterns
that have common parts into a single pattern. Patterns
can be combined to express more powerful and complex
patterns. For example, the union pattern can be used to
describe variants; the optional pattern describes parts
that are not mandatory; and the minus pattern subtracts
some unwanted solutions. SPARQL 1.1 also introduces
property paths, which extend classical triple patterns.
This allows combination of multiple predicates into one
triple pattern. Single predicates represent binary relations
between resources. These relations can be combined
into complex relations by various operators, includ-
ing the inverse path operator (denoted by the symbol ^
and defined as the inverse relation), the sequence path
operator (denoted by / and defined as the composition of

binary relations), the alternative path operator (denoted
by | and defined as the union of binary relations), and the
one or more path operator (denoted by + and defined as
the transitive closure of a relation).

In most cases, RDF data are managed and processed by
complex frameworks. The most widely used frameworks
are Apache Jena [18] and Sesame [19]. These frameworks
contain their own RDF storages. Other storages typically
contain providers that allow connections to be made
through these frameworks. RDF storages are often based
on relational databases (Oracle [20], OpenLink Virtuoso
[21]) or focused directly on storing RDF triples (Ontotext
GraphDB [22]).

Most RDF storages do not support calling general
procedures from SPARQL queries. The most general
mechanism to call procedures is included in Jena. This
extension is called property functions, and it allows to
call special procedures to retrieve data by methods other
than the usual pattern matching [23, 24]. In a SPARQL
query, a property function is represented by a special IRI
that is registered in the Jena SPARQL engine. If the IRI
is used in the predicate position of a triple pattern, the
registered Java method is invoked by the engine, and the
subject and the object of the triple pattern are passed as
the method parameters. Based on the parameters, the
methods return solution mappings that represent a result
of the triple pattern.

Implementation
To develop our proposed system, we decided to use
OpenLink Virtuoso [21], a database server with very
good performance that is used by various bioinformatics
and cheminformatics projects. However, Virtuoso does
not support calling general procedures from SPARQL
queries. Although this support is included in Jena, its
performance is not sufficient for our purpose.

Procedure call extension
We designed our own extension to call procedures from
SPARQL queries. One of the main requirements for the
procedure call extension was that it should not change
the syntax of the SPARQL language. This requirement is
important for the possibility to use third-party compo-
nents that work with SPARQL queries without modifying
these components. Thus, only existing valid triple pattern
syntax can be used to call a procedure. We also require
only minimal changes in semantics. The extension should
have no or minimal effect on existing language con-
structs. Also, the semantics should be maximally trans-
parent for users; results returned by a procedure call
should be the same as in the case in which data are stored
in the database and triple patterns representing the pro-
cedure call are regular patterns.

Page 4 of 14Galgonek et al. J Cheminform (2016) 8:31

To avoid affecting the syntax, we used an approach
very similar to that used in Jena [23]. A procedure call
is expressed as a triple pattern using a special predicate
IRI that identifies the procedure. The advantage of this
approach is that it is transparent from a user’s point of
view. It works the same way as in the case that triples
representing procedure parameters and corresponding
results are stored in the database. In our solution, the
object of the triple pattern always represents param-
eters, and the subject of the triple pattern always rep-
resents results of the procedure call. However, the way
the parameters are passed is a little bit different than in
Jena. In our approach, the object of the triple pattern
representing the procedure call must be a blank node
expressed in abbreviated form (i.e., by using []). Proper-
ties of the blank node are then understood as procedure
parameters. Objects of these properties have to be con-
stant values or bound variables. During evaluation, these
values are then passed into the procedure as parameters.
IRIs of the parameters are part of the procedure call defi-
nition. If a specified property is not used inside blank
node abbreviated form, the default value can be used (if
it is specified).

To pass multiple parameters from the object positions,
Jena allows use of RDF collections (i.e., a list of resources
enclosed in parentheses). Compared with Jena, our
approach has several advantages. Passed parameters are
always connected with their names (with property IRIs of
the blank node). This allows specification of parameters
in arbitrary order, definition of default values of param-
eters, and better descriptions of parameters by database
ontology.

Results of a procedure call are represented by the sub-
ject of the triple pattern. In a simple case, the subject is
a variable that is bound to procedure results. In some
cases, it can be useful to be able to return structured
result values consisting of more individual values (e.g.,
compounds that are similar to the given query structure
along with their similarity scores). To make this possible,
we defined a multi-value form of a procedure call. We
used an approach similar to that used to pass parameters
of procedures. In this form, the subject of the procedure
call pattern is also expressed as a blank node in abbrevi-
ated form. Individual properties of the blank node then
identify result value components. Objects of such prop-
erties are typically variables that are bound to result val-
ues during evaluation of the procedure call. If the object
of a property is constant, it works as a filter on result val-
ues. Examples of complex queries using procedure calls
are shown in Figs. 1 and 2.

Although the syntax of the language is not affected, to
add procedure call support, the parser of the language

has to be extended to recognize procedure call patterns
(together with associated blank nodes expressed in abbre-
viated form) and process them in a special way. To extend
the language semantics, one only needs to extend the way
in which the so-called GraphGraphPattern (i.e., graph that
sequentially contains other patterns) is processed [17].

Moreover, the proposed extension has to be sufficiently
flexible and general-purpose. For this reason, a set of sup-
ported procedure calls cannot be fixed and hardwired into
the source code of the extension. Instead it is configured
by a configuration file that describes the procedure calls.
It allows adding support for new procedure calls into a
system without changing the extension source code.

Algorithm for procedure call translation
Although the semantics are minimally affected, we
decided not to modify the existing Virtuoso code. Instead,
we used the fact that Virtuoso can combine SQL and
SPARQL queries and designed a preprocessor that trans-
lates extended SPARQL queries into SQL/SPARQL. If
a query does not contain a procedure call, the query is
translated directly into SPARQL language. Otherwise,
parts are translated into SPARQL where possible, and rest
of the query is translated into SQL. We tried to keep as
many parts as possible in SPARQL, which allows Virtuoso
to make SPARQL optimizations. The translation phase
is straightforward. For a given query, the parser pro-
duces a syntax tree that represents the query according
to SPARQL grammar. It also identifies procedure call pat-
terns and removes syntactic sugar. Our parser is based on
ANother Tool for Language Recognition (ANTLR) [25].
The syntax tree is translated from the leaves to the root.
If all subnodes of a tree node are translated into SPARQL,
the node is translated into SPARQL; otherwise, it is trans-
lated into SQL. An exception is a node representing a pro-
cedure call, which is always translated into the appropriate
SQL procedure call specified in the configuration file.

Ontology checking of queries
Based on the ontology, the most important following
potential errors can be checked:

1.	 Existence of a property IRI. If the IRI used in the
predicate position of a triple pattern does not exist in
the ontology, the warning is emitted, because such a
triple pattern has no solution if we assume that data
are fully described by the ontology.

2.	 Correctness of a literal value. The predicate IRI of
the triple pattern can be used to determine the range
of the property. This information then can be used
to check whether constant literal value in the object
position is an instance of the appropriate range class.

Page 5 of 14Galgonek et al. J Cheminform (2016) 8:31

3.	 Correctness of a property path. Individual parts of a
property path have to be correctly interconnected.
This means that the range of one part and the domain
of a following part cannot be disjoint classes. Other-
wise, the triple should have no solution.

4.	 Consistency of used variables. If a variable is used in
a triple pattern, the ontology can be used to deter-
mine to which class of resources the variable will be
bound. Information determined for the variable from
other parts of the query has to be consistent; other-
wise, the query has no solution.

Checking for the first three error types is simple
because they are local; no query context and no other
information except the ontology are needed to per-
form such checks. Checking the consistency of used
variables (error type no. 4) is more complicated because
information obtained from various parts of a query has
to be taken into account. If a triple pattern contains a
variable in the subject or object position, the ontology
can be used to obtain information about the class of
resources to which variables will be bound. Information
retrieved from different parts of the query and relating
to the same variable has to be consistent. As an exam-
ple, assume that a query employs a group pattern that
contains two triple patterns using the same variable. If
the first triple pattern contains the variable in the subject
position, we can use the predicate IRI of the triple pat-
tern to obtain the domain of the property identified by
the IRI. This domain specifies the class of resources to
which the variable should be bound. If the second triple
pattern contains the variable in the object position, we
can use the predicate IRI of the triple pattern to obtain
the range of the property, also specifying the class of
resources to which the variable can be bound. If these
two classes are denoted as disjoint by the ontology, then
it logically follows that the query cannot have a solution,
because the query does not make sense with respect to
the given ontology. Nevertheless, relative positions of
variable occurrences have to be taken into account. This
can be demonstrated by a case in which the same varia-
ble occurs in different branches of a union pattern; these
occurrences are independent, and thus they cannot ever
be considered a source of conflict.

Variable consistency checking algorithm
The variable consistency checking algorithm works with
classes of resources to which variables can be bound.
Basic classes are represented by IRIs and described by
the ontology stored in a database. A query can contain
complex patterns, therefore the basic classes may not be
sufficient to describe classes of resources to which vari-
ables can be bound. For this reason, the algorithm has
to be able to work with unions and intersections of the
classes. Two classes are considered to be consistent if
they are not disjoint classes. For basic classes, the infor-
mation about whether the classes are disjoint is obtained
directly from the ontology according to the values of the
owl:disjointWith property. Otherwise, the consistency of
the classes is checked recursively according to the union
and intersection operators.

Briefly, the algorithm checks whether information
obtained for a variable from one specific position in the

Fig. 1  SPARQL query using similarity search. This example SPARQL
query uses a procedure call named orchem:similaritySearch to identify
compounds that are similar to a given structure. The task of the query
is to select all compounds that are not annotated as antibiotics, but
that are similar to a compound that is annotated as an antibiotic. In
addition to the compounds, the query also returns similarity scores
to the most similar antibiotics. The first triple pattern (line 6) binds the
ATB variable to compounds that are annotated as antibiotics (identi-
fied by ChEBI ID 33281). The following triple pattern (line 7) binds the
MOLFILE variable to the MOL structures of these compounds. The
procedure call is identified by the orchem:similaritySearch IRI and is
represented by the triple pattern on lines 10–14. The blank node used
in the object position (lines 12–14) represents parameters of the pro-
cedure call. The query structure is denoted by the orchem:query IRI,
and its value is specified by MOLFILE. Other parameters are constant.
The type of the query structure is denoted by the orchem:queryType
IRI, and the cutoff similarity score is denoted by the orchem:cutoff IRI.
The blank node used in the subject position (line 10) represents multi-
value results of the procedure call. The COMPOUND variable is bound
to the similar compounds found (identified by the orchem:compound
IRI), and the SCORE variable is bound to their appropriate similarity
score (identified by the orchem:score IRI). The minus pattern (lines
17–21) eliminates all identified compounds (to which COMPOUND
is bound) that are annotated as antibiotics. Finally, the results are
grouped by COMPOUND (line 23), and the compounds (COMPOUND
variable) and their maximal similarity scores to some antibiotics (MAX-
SCORE variable) are returned as the final result (line 3)

Page 6 of 14Galgonek et al. J Cheminform (2016) 8:31

checked query is consistent with information obtained
for the same variable from different parts of the query.
The algorithm works with the syntax tree of the checked
query that is produced by the same parser that is used for
query translation. For each node of the syntax tree, two
kinds of information are recursively computed:

• • The class registry contains maps between variable
names and classes of resources to which variables
can be bound (which are denoted classes of the vari-
ables). The registry represents classes of resources
that are inferred from the whole pattern represented
by the node.

• • The location registry collects all variables and their
locations that occur in the pattern that have to be
checked for consistency. Together with the name of

the variable and its location in the query, the class of
the variable inferred from the variable occurrence is
also stored.

In general, for a given variable name, the algorithm
checks the consistency between variable classes stored in
the location registry and classes stored in the class regis-
try that are derived from the other parts of the checked
query. Nodes of a syntax tree are processed recursively
from leaves to the root:

• • A triple pattern is always located in a leaf of the syn-
tax tree and presents a source of all class information.
If the predicate of the triple pattern is not variable
(i.e., it is a property IRI or a property path contain-
ing IRIs), then the property IRI is used to obtain the
range and domain of the property. If the triple pat-
tern contains a variable in the subject position, the
class of the variable is set according to the obtained
domain. And vice versa, if the triple pattern contains
a variable in the object position, the class of the vari-
able is set according to the obtained range. A triple
pattern using the rdf:type predicate and having a var-
iable in the subject position is a special case denot-
ing that the object is the class of the variable. If the
pattern contains a variable in the predicate position,
the class of the variable is rdfs:Property. All obtained
class information is stored in the class registry of the
node. Similarly, positions of variables used in the tri-
ple and their classes are stored in the location regis-
try of the node.

• • A group pattern collects patterns (enclosed in braces)
that have to all be fulfilled. It is the main place where
the consistency of class information is checked. For
each child pattern of the processed group pattern, the
class registries of all other child patterns are merged
by the class intersection operation. For each vari-
able stored in the location registry of the child pat-
tern, class consistency between the class of the vari-
able and the class of the variable stored in the merged
class registry is checked. If the classes are inconsist-
ent, a warning about incorrect usage of the variable
in the given location is reported. After the check
phase, the class registries of all child patterns are
merged by the class intersection operation into the
class registry of the processed group pattern, and the
child location registries are merged into the location
registry of the processed group pattern.

• • A union pattern joins two child group patterns that
represent independent alternatives. Class registries
of the child group patterns are merged by the union
class operation into the class registry of the pro-
cessed union pattern. Location registries of child pat-

Fig. 2  SPARQL query using substructure search. This example query
demonstrates how to select compounds that contain an antibi-
otic and an antimutagen as substructures. The first triple pattern
(line 7) binds the ATB variable to compounds that are annotated
as antibiotics (identified by ChEBI ID 33281). Substructure search
is then used to determine compounds that contain the given ATB
compounds as substructures. The procedure call is identified by the
orchem:substructureSearch IRI and is represented by the triple pattern
on lines 10–12. The blank node used in the object position (lines
11–12) represents parameters of the procedure call. The query struc-
ture is denoted by the orchem:query IRI, and its value is specified by
another blank node, which represents the structure of a compound
to which the ATB variable is bound. The type of the query structure
is denoted by the orchem:queryType IRI. The COMPOUND variable is
bound to the identified compounds. Compounds that contain an
antimutagen (identified by ChEBI ID 73190) are identified in the same
way (lines 17–22). Because the results of both procedure calls are
represented as the COMPOUND variable, the variable contains the
intersection of the procedure call results at the end. The query returns
the identified compounds (COMPOUND variable) together with the
appropriate antibiotic (ATB variable) and antimutagen (AMG variable)
as the final result (line 3)

Page 7 of 14Galgonek et al. J Cheminform (2016) 8:31

terns are normally merged into the location registry
of the processed pattern.

• • An optional pattern includes only one group pattern
as the child pattern that is considered an optional
part of a query. Because the optional pattern is not
mandatory, its class registry is kept empty. Its loca-
tion registry is set according to the location registry
of its child pattern, because variables used in the
optional pattern still have to be consistent with the
rest of the query.

• • A minus pattern also includes only one group pattern
as the child pattern. It eliminates query solutions that
are not compatible with solutions of the child pat-
tern. For this reason, registries of minus patterns are
kept empty.

An example of how the variable consistency of a query
is checked is shown in Fig. 3.

Presentation of results
The most important requirement for the presentation
layer is that it should not be hardwired directly into the
code. The basic idea is that descriptions how instances
of classes should be visualized are stored in the database
together with the ontology describing the classes. For
practical usage, the visualization of a class is described
in a selected template language, and only the name of
the template is stored in the database. In our project, we
used a simple template language called Apache Velocity
[26]. The task of the template is to generate HTML code
that represents the given instance of the class for which
the template is intended. Velocity templates can con-
tain static text (HTML code in our case) that is directly
passed into the output during template evaluation by the
Velocity template engine. The important parts of a tem-
plate are references that allow representation of dynamic
content, i.e., content that is specific for the represented
instance. Velocity has three types of references. The basic
type of references are Velocity variables (prefixed by a
dollar sign) that can refer to Java objects. References can
have reference properties that represent other type of
references. A property is connected by the dot symbol
with a reference and represents the value of an appropri-
ate Java getter method called on the reference. Another
type of references is called methods, which are similar to
reference properties but contain additional arguments
enclosed in parentheses. The resource that should be pre-
sented by a template is stored in a reference that is set
outside the template engine before the template evalua-
tion is started. The final important parts of the Velocity
template language are directives that control the process
of output generation. Directives include mechanisms
to express conditions, loops, variable assignments, and

others. All directive names are prefixed by a number
sign (#). There are two types of directives. A line direc-
tive is parametrized by data enclosed in parentheses.
A typical example is the #set directive, which assigns a
value to a Velocity variable. In addition to parameters,
a block directive contains also a body enclosed between
the directive name and #end. For example, the body
of the #foreach directive is repeated according to the
parameters of the directive. The possibility to define new
directives is an important feature of Velocity. To allow
presentation of instances by Velocity templates, we define
two special new directives:

• • The #sparql directive is a block directive that allows
submission of a SPARQL query to obtain information
from the database. The query is written in the body
of the directive. The result of the query is stored in
a Velocity variable that is used as a parameter of the
directive and that represents all results of the query.
The Velocity variable can be looped over for all indi-
vidual results using the #foreach directive. Each indi-
vidual result has reference properties that correspond
to SPARQL variables used in the query.

• • The #url directive is a block directive that allows
generation of a hyperlink to a resource. The output
of a template is used inside our web application, and
thus, it should not contain a regular HTML link.
Instead, the #url directive generates a special code
that informs the application that a view of the new
resource is requested. The directive is parametrized
by the linked resource, with the body containing the
text of the link.

An example of usage of these directives is shown in
Fig. 4.

Web application
In the previous sections, we described suggested
approaches for database querying. To examine their
applicability, we developed a simple web application that
allows users to submit queries and visualize results. The
application was developed using Google Web Toolkit
(GWT) [27]. The user interface of the application is
divided into three parts. The left part contains a query
editor that allows users to write SPARQL queries. We
used the third-party component CodeMirror [28] as the
editor, which is interconnected with our checking algo-
rithm. During query typing, the editor sends the written
query to the server for checking, and errors and warnings
are immediately reported in the editor.

The query result is visualized as a table in the cen-
tral part of the application. Each variable used in the
select clause of a query is represented by one column.

Page 8 of 14Galgonek et al. J Cheminform (2016) 8:31

Individual solution mappings forming a single result
are represented by rows. If the value to which a variable
is bound is a resource represented by an IRI or a blank
node, the appropriate item template is used to visualize
the cell. Otherwise, the value itself is used as cell content.

The right part of the application is used to visual-
ize details about the selected resource. The IRI of the
resource can be entered directly by the address bar, or the
resource can be selected from the result table. If details
about the resource are requested, the application uses the
appropriate page template to generate details about the
resource.

The application uses two kinds of templates that are
specified by separated properties. Both properties use
the prefix template: (see Table 1). The item template is
used to generate small items in the result table, and it is
denoted for a class by using the template:itemTemplate
property. The page template is used for the detailed pres-
entation and is denoted by the template:pageTemplate
property.

Results and discussion
For application of our proposed system, it is necessary to
select and load data into the database, define their ontol-
ogy, write templates for data visualization, and define

stored procedures that can be called from SPARQL
queries.

Transformation of the ChEBI database
We decided to use the ChEBI database as a data source.
ChEBI is sufficiently large for our purposes, and we have
previously performed an analysis of this database [29].
The ChEBI data are available in a relational database
form, and thus the data needed to be converted into the
form of triples. For this purpose, we defined ad hoc ontol-
ogy to demonstrate our proposed approaches. We used
the prefix chebi: as the base of IRIs used by the ontology
(see Table 1). The main entities in the ChEBI database are
compounds that are stored in the COMPOUNDS table.
Each compound stored in ChEBI is represented as an
instance of the chebi:Compound class in our database.
IRIs that identify compounds use the prefix chebiID: (see
Table 1).

ChEBI stores features of compounds in separate tables.
These features include names (NAMES table), basic
chemical features (CHEMICAL_DATA table), acces-
sions to other databases (DATABASE_ACCESSION
table), and chemical structures (STRUCTURES table).
The tables describing features contain not only the fea-
ture values themselves but also other related information.

a b c
Fig. 3  Example of variable consistency check. This example demonstrates the work of the variable consistency checking algorithm. Part a shows
a simple SPARQL query intended to select resources that belong to the :Dog class or to the :Bird class and also belong to the :Mammal class. The
query has a solution in standard animal ontology. However, the second alternative of the union pattern is inconsistent with the rest of the query
(because birds are not mammals). Therefore, this alternative has no influence on the final result, and the user should be warned. Before checking,
the query is transformed into a syntax tree by the parser. The relevant part of the parser tree is shown in Part b. For better clarity, nodes are identified
by numbers. The tree is then processed by the checking algorithm from the leaves to the root. For each node, the class registry and the location
registry are computed. Contents of the registries are shown in boxes in Part c. The top part of each box contains the class registry, and the bottom
part of the box contains the location registry. A green arrow indicates for which node registries were computed. Triple patterns 4, 6, and 7 simply
denote requested classes of variable X, and this information is written into their registries. Group patterns 3 and 5 contain only one child pattern, so
their registries are the same as registries of these child patterns. After that, union pattern 2 merges information from group patterns 3 and 5. Finally,
group pattern 1 is processed. This pattern contains two child patterns, so the checking phase has to be performed. The location registry of node 7
is compared with the class registry of node 2. Class :Mammal is consistent (is not disjoint) with the union of :Dog and :Bird classes; thus, this part is
correct. And vice versa, the location registry of node 2 is compared with the class registry of node 7. Class :Dog is consistent with :Mammal, but class
:Bird is not consistent with :Mammal. Therefore, the warning is generated for variable X used on line 10

Page 9 of 14Galgonek et al. J Cheminform (2016) 8:31

All tables contain names of sources from which the
original values were taken. For this reason, ChEBI fea-
tures are not represented directly as literal values but as
instances of appropriate classes that are subclasses of the
chebi:CompoundProperty class. These instances are con-
nected with respective compounds by appropriate prop-
erties that are subproperties of the chebi:hasProperty
property. Each such resource representing a ChEBI fea-
ture has an appropriate property suffixed by Value rep-
resenting a value of the ChEBI feature. Moreover, the
resources also have the common property chebi:source,
which determines the name of the original data source.
Other properties can be added depending on the type of
feature.

Chemical relations between compounds are stored
in the RELATION and VERTICE tables. In our data-
base, they are represented in a similar way as other
features. The chemical relations are represented as
instances of appropriate classes that are subclasses of the
chebi:CompoundRelation class. These resources are con-
nected to the respective compounds by appropriate prop-
erties that are subproperties of the chebi:inRelationWith
property. A related compound is specified by the
chebi:inRelationWithValue property. In this case, other
properties can also be specified for resources represent-
ing chemical relations.

The ChEBI database also contains comments (COM-
MENTS table) that are assigned to compounds or fea-
tures. These comments are represented as instances of
the chebi:Comment class and are connected with the
commented resource by the chebi:comment property. An
example showing the basic concept of the conversion is
shown in Fig. 5.

An approach in which ChEBI features and relations
are represented as instances of classes has the advantage
that additional information (source name, comments,
etc.) can be connected. On the other hand, in a SPARQL
query, two properties are needed to obtain a feature
value. If a user wants to obtain the value of a ChEBI
feature of a compound, it is necessary to use a property
connecting the compound with the resource represent-
ing the ChEBI feature, and then to use the property con-
necting this resource with the feature value. To solve this
minor issue, we defined a property chain that allows the
connection of these two properties to be represented as
a single property [16]. The name of the chain property is
the same as the name of the first property in the chain
but with the prefix chebix: (see Table 1) instead of chebi:.
Usage of property chains is also shown in Fig. 5.

The property chains are defined in the ontology. Unfor-
tunately, Virtuoso does not contain support for property
chains. We therefore extended our translation algorithm
to expand property chain IRIs that occur in the predi-
cate position into the property path using the specified
property chain properties. This cannot be considered full
property chain support, but it is suitable for basic usage.

Images of chemical structures were generated from
Structure-Data Files (SDFs) stored in the ChEBI database
with the molconvert tool [30].

Templates
Our application is constructed so that for each class
(or its superclass), two kinds of Velocity templates are

Fig. 4  Example of a velocity template. For a given compound, the
example template generates an HTML list of its chemical or other
roles. Each item in the list is a hyperlink to the represented role. The
visualized compound is referenced by the $entity Velocity variable
that is set by the system before the template is evaluated. The body
of the #sparql directive contains a query that returns the roles of
the compound and their names. The query is parametrized using
the $entity reference. Before the query is submitted, the reference is
replaced by its value. The query results are returned by the database
engine and stored in the $roles Velocity variable specified as a param-
eter of the directive. Individual results are processed by the #foreach
directive. It sequentially stores a result into the $role Velocity variable
and processes its body. The $role Velocity variable is used to access
values of SPARQL variables; the reference to the role entity ($role.
ROLEDEF) and to the name of the role ($role.NAME) are accessible
inside the body. These references are used by the #url directive to
produce links to the roles. The #escapeHTML macro escapes charac-
ters in the name value to be placed into HTML

Table 1  Namespace prefix definitions

The table shows definitions of all namespace prefixes used in our project. The
prefixes are already defined in our SPARQL query engine, and therefore they
need not be explicitly defined in SPARQL queries

Prefix Value

chebi http://bioinfo.uochb.cas.cz/0.9/chebi#

chebix http://bioinfo.uochb.cas.cz/0.9/chebix#

chebiID http://bioinfo.uochb.cas.cz/0.9/chebi/

template http://bioinfo.uochb.cas.cz/0.9/template#

orchem http://bioinfo.uochb.cas.cz/0.9/orchem#

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs http://www.w3.org/2000/01/rdf-schema#

owl http://www.w3.org/2002/07/owl#

xsd http://www.w3.org/2001/XMLSchema#

Page 10 of 14Galgonek et al. J Cheminform (2016) 8:31

ID

1877275

CHEMICAL_DATA

COMPOUND_ID

59968

CHEMICAL_DATA

C12H17NO4

SOURCE

ChEBI

TYPE

FORMULA

ID

59968

COMPOUNDS

NAME

1-(5-carboxypentyl)pyrraline

PARENT_ID

(null)

STATUS

C

STAR

3

ID

816735

NAMES

COMPOUND_ID

59968

NAME

caproyl pyrraline

SOURCE

ChEBI

LANGUAGE

en

TYPE

SYNONYM

ID

748705

RELATION

TYPE

has_functional_parent

INIT_ID

529050

FINAL_ID

651881

STATUS

C

ID

651881

VERTICE

COMPOUND_ID

59968

529050 604731

ID

570

COMMENTS

COMPOUND_ID

59968

TEXT CREATED_ON

14.12.10

DATATYPE

CompoundName

DATATYPE_ID

816735This name has been
used in the literature,
but is a misnomer.

"1-(5-carboxypentyl)pyrraline"@en

"3"^^xsd:integer

"caproyl pyrraline"@en

"ChEBI" "2010-12-14"^^xsd:date

"C12H17NO4"

"CHECKED"

"ChEBI"

"This name has been
used in the literature,
but is a misnomer."

chebi:
Compound

chebi:
Formula

chebi:
PrimaryName

chebi:
Synonym

chebi:
Comment

chebi:
HasFunctionalParent

chebiID:
59968

chebiID:
604731

b RDF form

chebi:comment chebi:text

chebi:createdOn rdf:type

COMMENTS

chebi:source

rdf:type

chebi:nameValue

chebi:synonym

chebi:primaryName chebi:hasFunctionalParent

chebi:source

chebi:inRelationWithValue

rdf:type

chebi:formulaValue

rdf:type

rdf:type

chebi:nameValue

NAMES

VERTICE & RELATION

chebi:star

chebi:status

COMPOUNDS CHEMICAL_DATA

rdf:type

chebi:formula

chebix:formula
chebix:primaryName

chebix:synonym

chebix:hasFunctionalParent

a Original relational form

Fig. 5  Conversion of ChEBI into RDF form. This example demonstrates the conversion of the ChEBI database from relational form into RDF form.
Part a shows selected information about the ChEBI entity with ID 59968. Part b shows the same information coded in RDF form. For better clarity,
it is represented as a connected graph. Each triple is represented as an arc labeled by the predicate IRI leading from the subject to the object. Blue
arcs represent triples stored directly in the database. Green arcs represent triples inferred by property chains. Literals are represented as boxes, IRIs
as rounded boxes, and blank nodes as circles. Dotted line boxes are not parts of the RDF model; they only highlight which table of the relational form
was used to generate triples. In relational form, each table contains a primary key named ID. The basic data about the compound are stored in the
COMPOUNDS table. In RDF form, the compound is identified by IRI chebiID:59968, and belongs to the chebi:Compound class. The basic data are con-
verted directly as appropriate properties (e.g., chebi:star) of the compound. An exception is the compound name, which is converted as an instance
of chebi:PrimaryName. The reason for this is compatibility with representations of other compound names. Other names of compounds are stored
in the NAMES table. The COMPOUND_ID is a foreign key that refers into the COMPOUNDS table. The TYPE column lists the type of the name. In this
case, the name is coded as an instance of the chebi:Synonym class. Comments are stored in the COMMENTS table. The DATATYPE column indicates
which data are commented. In this case, the DATATYPE value is CompoundName, and thus the DATATYPE_ID is a foreign key into the NAMES table.
As an example of other features, the CHEMICAL_DATA table is employed. Similarly as for the NAMES table, COMPOUND_ID is a foreign key into the
COMPOUNDS table, and the TYPE column indicates the type of the stored data. Therefore, the example chemical data is converted as an instance
of the chebi:Formula class. Relations between compounds are stored in RELATIONS tables. Types of relations are listed in the TYPE column. Related
compounds are specified indirectly. The RELATIONS table contains foreign keys (INIT_ID and FINAL_ID) that refer to the VERTICE table that translates
vertex IDs into the appropriate related compound IDs. In this example case, the relation is coded as an instance of chebi:HasFunctionalParent

Page 11 of 14Galgonek et al. J Cheminform (2016) 8:31

defined—the item template for the result table and the
page template for the details. For compounds, the item
template shows the compound name together with a
small image of the compound structure and a 3-star
status that indicates whether the compound has been
checked manually by the ChEBI team. For ChEBI com-
pound features, the value and source of the feature value
are generated by the item template. An example of visu-
alizations generated by the item templates is shown in
Fig. 6. Page templates generate more details, similar to
the ChEBI web server. For ChEBI compound features, the
details for the associated compound are generated, and
the value of the feature is highlighted.

In addition to ChEBI data, our database also contains
ontology data. For this reason, it is also necessary to
define visualization templates for these data. Item tem-
plates visualize classes and properties by their names
specified by the rdfs:label property and by their IRIs.
Page templates generate various detailed information
about their hierarchy and usage.

Use of a chemical cartridge
A large number of chemical cartridges are suitable for
our purpose. We decided to use OrChem, which is also
maintained by EBI [31]. OrChem supports similarity
searches and substructure searches. Both are supported
as specific SQL stored procedures. We mapped these
procedures directly on our system. All IRIs employed for
this mapping used the orchem: prefix (see Table 1).

The similarity search procedure (orchem_simsearch.
search) is represented by the orchem:similaritySearch
property. Its only mandatory parameter is orchem:query,
which specifies the structure used as the query struc-
ture. The orchem:queryType parameter specifies a type
of query structure; the default value is SMILES, which
denotes Simplified Molecular Input Line Entry Speci-
fication [32]. Another supported value is MOL, denot-
ing an MDL mol file [33]. The remaining parameters
restrict the size of the result set. The cutoff similarity
score is specified by the orchem:cutoff parameter (the
default value is 0.8). The maximum number of results
can be set by the orchem:topn parameter (the default
value is −1, which means unlimited). Results of the
procedure have multiple values. Identified compounds
are denoted by the orchem:compound property, and
the appropriate similarity score is denoted by the
orchem:score property. An example is shown in Fig. 1.
There is also a simplified variant of the procedure, called
orchem:similarCompoundSearch. This uses the same set
of parameters but returns identified compounds directly
and not as multi-value results.

The substructure search procedure (orchem_sub-
search.search) was mapped in a similar way and is rep-
resented by the orchem:substructureSearch property. It
uses the parameters orchem:query, orchem:queryType,
and orchem:topn, which have the same meanings as in
the previous case. Moreover, the orchem:tautomers
parameter indicates whether the query structure should
be expanded to its tautomers, and the orchem:exact
parameters control whether only structures that are
equal to the query structure should be returned. The
default values of these additional parameters are false.
Identified compounds are returned directly as the sub-
ject of the procedure call pattern. An example is shown
in Fig. 2.

Limits of the implementations
Although our proposed simple web application works
satisfactorily well, we identified several weaknesses.

Procedure call extension
One of the main requirements for implementation is that
usage of procedure calls should be transparent from the
user’s point of view. Employing triple patterns with spe-
cial meanings fulfills this requirement in general. How-
ever, there are still situations in which this is not entirely
true.

The major weakness of our procedure calls support is
that variables used as parameters have to be bound to
values before a procedure call is executed. This require-
ment is a consequence of the manner in which patterns
are evaluated. In general, a pattern is evaluated indepen-
dently of the context in which it occurs, and the result
of the pattern evaluation is combined with results from
other patterns. For this reason, the parameter values can
only be taken from patterns that occur before the pro-
cedure call pattern in the same group of patterns. This
requirement can be a bit counterintuitive in some cases,
as illustrated in Fig. 7.

A minor weakness is that the syntax of procedure calls
requires usage of the abbreviated blank node form to
denote parameters or multi-value results. In this context,
if the abbreviated form is expanded into multiple triples
by using the label blank node form (or by using a vari-
able), the parser is unable to identify these triples as one
procedure call and reports an error message. Another
minor weakness is that a triple pattern is interpreted as
a procedure call only if the predicate of the triple pattern
is the specific procedure call IRI. This means that it is
not possible to use this IRI as part of a complex property
path. Binding a variable to this IRI and using this variable
as the predicate also does not work.

Page 12 of 14Galgonek et al. J Cheminform (2016) 8:31

Ontology checking of queries
Checking focused on the consistency of the variables
used can identify many potential problems. However,
there are still some marginal cases for which no warn-
ing is reported, but it is possible to prove that the query
cannot have a result for a given ontology. Our approach
checks the usage of a variable independent of other vari-
ables. Therefore, it cannot express the fact that instances
to which the variable is bound belong to one class only,
while instances to which another variable is bound
belongs to another class. Such a case is illustrated in
Fig. 8. The query is considered to be correct; neverthe-
less, it is possible to logically infer that the query has no
solution for the given ontology.

Presentation of results
Although the Velocity templates work well for our pur-
pose, we noted several limitations. Because Velocity
contains no special support to produce dynamic HTML
content, the output of a template is typically static HTML
code. This means that all steps needed to produce the
visualization of the given resource are produced by the
Velocity engine on the server side during template evalu-
ation. As a consequence, there is no simple way to write
a template that shows only basic information and allows
for extended information to be loaded from the server
upon user request. This poses a problem, especially in
cases in which details about a resource with a huge num-
ber of properties should be generated. However, in gen-
eral, presentations of other chemical databases are also
static. In the future, this issue can be solved by using a
template engine that will support creation of interactive

content. Nevertheless, for the pilot implementation of
our approaches, we decided to select a simple engine that
is sufficient for our purposes.

Potentially, a number of queries necessary to produce
visual representations may also be a bottleneck. When

CHEBI:26271 proline

Stars:

CHEBI:33704 alpha-amino acid

Stars:

is a

Prolin
Source: ChEBI

Fig. 6  Visualizations generated by item templates. The example
shows three visualizations generated by item templates. At the top
there is the visualization of the compound identified by IRI node che-
biID:26271. Visualizations of blank nodes that represent the values of
compound properties chebi:isA and chebi:synonym are at the middle
and at the bottom, respectively

a

b

c
Fig. 7  Limits of procedure call semantics. The example queries
demonstrate a limitation of procedure call parameters passing. In
general, all example queries should select compounds that have the
role identified by identifier 33281, and optionally should find similar
compounds for each compound. Although procedure calls should
be transparent from the user’s point of view, there is the require-
ment that variables used as parameters of the procedure call must
be bound to values in the same group pattern before the procedure
call is evaluated. For this reason, Query a is not correct, and the
translator will report an error, because the MOLFILE variable is used
as a parameter but is not bound in the same group pattern. It would
seem that Query b solves this issue. However, in this case, variable
ATB is not restricted in the group pattern containing the procedure
call, so the procedure will be called for all structures in the database,
which is very inefficient. Thus, although some patterns are repeated,
only Query c can be considered a proper query

Page 13 of 14Galgonek et al. J Cheminform (2016) 8:31

the result of a user query is returned by the database, the
application cannot assume that all resources to which
a variable is bound belong to the same class. Thus, for
each of these resources, the query to obtain its class and
appropriate template name has to be performed. Because
the obtained templates are evaluated independently, the
queries included in the templates are also performed
independently and cannot be grouped. However, this is
not an issue for the current data used, and we did not
observe any performance problems caused by the queries
submitted from the templates.

Conclusions
We have developed a database system based on RDF
technologies. In recent years, these technologies have
become more widely used in bioinformatics and chemin-
formatics research. However, we discovered some issues
with these databases from the user’s point of view. Our
proposed system addresses the following issues:

1.	 Most RDF-based systems lack support for special
procedure calls. In cheminformatics research, com-
pound similarity search procedures are typical exam-
ples. In our system, SPARQL queries can contain
procedures to solve such special tasks.

2.	 SPARQL queries are prone to user errors, because
queries do not respect the data ontology. In such
cases of user error, the queries return no data but are
considered correct, and no warnings are reported.
For this reason, we developed an algorithm checking
whether a query can have a solution in the given data

ontology. The user is warned about potential errors,
which makes query writing more comfortable.

3.	 Many systems use a general presentation layer that
presents obtained results without much detail. Even-
tually, they present some details, but only for the
selected classes of resources. In our approach, we
developed a general template-based approach allow-
ing presentation of results in a user-friendly manner.

All of these approaches are integrated into a simple
web application, available at https://bioinfo.uochb.cas.
cz/projects/chemRDF. The application uses data derived
from the ChEBI database and employs special similarity
search procedures based on OrChem.

Although the need to learn SPARQL language and
related technologies can take some time, in return, the
user obtains the possibility to submit very powerful que-
ries. The main purpose of our application is not to submit
a simple query similar to full-text searching, as in some
other databases. We assume that usage of our application
will be focused on writing complex queries to solve inter-
esting tasks.

Availability and requirements
Project name: SPARQL for Chemoinformatics.
Project home page: https://bioinfo.uochb.cas.cz/pro-
jects/chemRDF.
Operating system(s): Platform independent.
Programming language: Java.
Other requirements: Modern web browser (tested
with Firefox ESR 38, Chromium 46, and Internet
Explorer 11).
License: GNU AGPL v3.
Any restrictions to use by non-academics: none
other than those specified by the licenses.

Abbreviations
ANTLR: ANother Tool for Language Recognition; ChEBI: Chemical Entities of
Biological Interest; EBI: European Bioinformatics Institute; GWT: Google Web
Toolkit; IRI: International Resource Identifier; OWL: Web Ontology Language;
RDF: Resource Description Framework; SDF: Structure-Data File; SPARQL:
SPARQL Protocol and RDF Query Language; SQL: Structured Query Language.

Authors’ contributions
This project was managed by JG and supervised by JV. PO implemented the
SPARQL parser and stored procedures to connect OrChem. TH implemented
the translator from SPARQL into SQL. VM implemented the query checker.
JS implemented the automated test suite to check the translator and the
checker. JG implemented the presentation layer and the web application, and
performed final modification of the components. The manuscript was drafted
by JG and revised by JV. All authors read and approved the final manuscript.

Author details
1 Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the
Czech Republic, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic. 2 Fac-
ulty of Mathematics and Physics, Charles University in Prague, Malostranské
nám. 25, 118 00 Prague 1, Czech Republic.

Fig. 8  Limits of the variable consistency checking. This example
query shows a marginal case in which the query is considered correct
by the checking algorithm, but nevertheless, it can be deduced that
it has no solution. Consider that all classes used in the example are
mutually disjoint. For both union patterns, our checking algorithm
observed that the class of variable X is the union of the ex:ClassA and
ex:ClassC classes. Variable Y is handled in a similar way, and thus, the
query is considered correct. However, it can be logically deduced that
the query has no solution. The first union pattern denotes that the
class of variable X is ex:ClassA only if the class of variable Y is ex:ClassB.
Concurrently, the second union pattern denotes that the class of vari-
able Y is ex:ClassB only if the class of variable X is ex:ClassC. However,
classes ex:ClassA and ex:ClassC are disjoint, so the query cannot have
a solution

https://bioinfo.uochb.cas.cz/projects/chemRDF
https://bioinfo.uochb.cas.cz/projects/chemRDF
https://bioinfo.uochb.cas.cz/projects/chemRDF
https://bioinfo.uochb.cas.cz/projects/chemRDF

Page 14 of 14Galgonek et al. J Cheminform (2016) 8:31

Acknowledgements
This work was supported by the Institute of Organic Chemistry and Bio-
chemistry, Academy of Sciences of the Czech Republic (Research Project
No. Z40550506). Access to computing and storage facilities was provided by
ELIXIR CZ and the National Grid Infrastructure MetaCentrum, administered
under the programme “Projects of Large Infrastructure for Research, Develop-
ment, and Innovations” (Projects LM2015047 and LM2010005).

Competing interests
The authors declare that they have no competing interests.

Received: 6 November 2015 Accepted: 25 May 2016

References
	1.	 Williams AJ (2008) Public chemical compound databases. Curr Opin Drug

Discov Dev 11:393–404
	2.	 ChemSpider. http://www.chemspider.com
	3.	 Gobbi A, Lee M-L (2011) Handling of tautomerism and stereochemistry in

compound registration. J Chem Inf Model 52:285–292
	4.	 Martin E, Monge A, Duret J-A, Gualandi F, Peitsch MC, Pospisil P (2012)

Building an R&D chemical registration system. J Cheminform 4:11
	5.	 RDF 1.1 Primer. http://www.w3.org/TR/2014/

NOTE-rdf11-primer-20140624/
	6.	 Williams AJ, Harland L, Groth P, Pettifer S, Chichester C, Willighagen EL,

Evelo CT, Blomberg N, Ecker G, Goble C, Mons B (2012) Open PHACTS:
semantic interoperability for drug discovery. Drug Discov Today
17:1188–1198

	7.	 Chen B, Dong X, Jiao D, Wang H, Zhu Q, Ding Y, Wild DJ (2010) Chem-
2Bio2RDF: a semantic framework for linking and data mining chemog-
enomic and systems chemical biology data. BMC Bioinform 11:255

	8.	 PubChemRDF release notes. http://pubchem.ncbi.nlm.nih.gov/rdf/
	9.	 ChemSpider Linked Data. http://rdf.chemspider.com
	10.	 RDF Platform. http://www.ebi.ac.uk/rdf/

	11.	 neXtProt—exploring the universe of human proteins. http://www.next-
prot.org

	12.	 De Matos P, Alcántara R, Dekker A, Ennis M, Hastings J, Haug K, Spiteri I,
Turner S, Steinbeck C (2010) Chemical entities of biological interest: an
update. Nucleic Acids Res 38(Database issue):D249–D254

	13.	 RDF 1.1 Concepts and abstract syntax. http://www.w3.org/TR/2014/
REC-rdf11-concepts-20140225/

	14.	 OWL Web Ontology Language reference. http://www.w3.org/TR/2004/
REC-owl-ref-20040210/

	15.	 OWL 2 Web Ontology Language document overview, 2nd edn. http://
www.w3.org/TR/2012/REC-owl2-overview-20121211/

	16.	 OWL 2 Web Ontology Language primer, 2nd edn. http://www.w3.org/
TR/2012/REC-owl2-primer-20121211/

	17.	 SPARQL 1.1 Query language. http://www.w3.org/TR/2013/
REC-sparql11-query-20130321/

	18.	 Apache Jena. http://jena.apache.org
	19.	 Sesame. http://rdf4j.org
	20.	 Murray C (2012) Oracle® database semantic technologies developer’s

Guide 11g Release 2 (11.2)
	21.	 OpenLink Virtuoso. http://virtuoso.openlinksw.com
	22.	 Ontotext GraphDB. http://ontotext.com/products/ontotext-graphdb/
	23.	 Apache Jena: Extensions in ARQ. http://jena.apache.org/documentation/

query/extension.html#property-functions
	24.	 Apache Jena: ARQ—writing property functions. http://jena.apache.org/

documentation/query/writing_propfuncs.html
	25.	 Parr T (2013) The definitive ANTLR 4 reference. Pragmatic Bookshelf
	26.	 The Apache Velocity project: user guide. http://velocity.apache.org/

engine/releases/velocity-1.5/user-guide.html
	27.	 Google Web Toolkit. http://www.gwtproject.org
	28.	 CodeMirror. http://codemirror.net
	29.	 Galgonek J, Vondrášek J (2014) On InChI and evaluating the quality of

cross-reference links. J Cheminform 6:15
	30.	 ChemAxon JChem. http://www.chemaxon.com/products/jchem-base/
	31.	 OrChem. http://orchem.sourceforge.net
	32.	 Weininger D, Weininger A, Weininger JL (1989) SMILES. 2. Algorithm for

generation of unique SMILES notation. J Chem Inf Comput Sci 29:97–101
	33.	 Accelrys (2011) CTfile Formats

http://www.chemspider.com
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
http://pubchem.ncbi.nlm.nih.gov/rdf/
http://rdf.chemspider.com
http://www.ebi.ac.uk/rdf/
http://www.nextprot.org
http://www.nextprot.org
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/
http://www.w3.org/TR/2012/REC-owl2-primer-20121211/
http://www.w3.org/TR/2012/REC-owl2-primer-20121211/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://jena.apache.org
http://rdf4j.org
http://virtuoso.openlinksw.com
http://ontotext.com/products/ontotext-graphdb/
http://jena.apache.org/documentation/query/extension.html%23property-functions
http://jena.apache.org/documentation/query/extension.html%23property-functions
http://jena.apache.org/documentation/query/writing_propfuncs.html
http://jena.apache.org/documentation/query/writing_propfuncs.html
http://velocity.apache.org/engine/releases/velocity-1.5/user-guide.html
http://velocity.apache.org/engine/releases/velocity-1.5/user-guide.html
http://www.gwtproject.org
http://codemirror.net
http://www.chemaxon.com/products/jchem-base/
http://orchem.sourceforge.net

	Advanced SPARQL querying in small molecule databases
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Resource Description Framework overview
	Implementation
	Procedure call extension
	Algorithm for procedure call translation
	Ontology checking of queries
	Variable consistency checking algorithm
	Presentation of results
	Web application

	Results and discussion
	Transformation of the ChEBI database
	Templates
	Use of a chemical cartridge

	Limits of the implementations
	Procedure call extension
	Ontology checking of queries
	Presentation of results

	Conclusions
	Availability and requirements
	Authors’ contributions
	References

