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Abstract 

Background:  In recent years, the Resource Description Framework (RDF) and the SPARQL query language have 
become more widely used in the area of cheminformatics and bioinformatics databases. These technologies allow 
better interoperability of various data sources and powerful searching facilities. However, we identified several defi-
ciencies that make usage of such RDF databases restrictive or challenging for common users.

Results:  We extended a SPARQL engine to be able to use special procedures inside SPARQL queries. This allows the 
user to work with data that cannot be simply precomputed and thus cannot be directly stored in the database. We 
designed an algorithm that checks a query against data ontology to identify possible user errors. This greatly improves 
query debugging. We also introduced an approach to visualize retrieved data in a user-friendly way, based on templates 
describing visualizations of resource classes. To integrate all of our approaches, we developed a simple web application.

Conclusions:  Our system was implemented successfully, and we demonstrated its usability on the ChEBI database 
transformed into RDF form. To demonstrate procedure call functions, we employed compound similarity searching 
based on OrChem. The application is publicly available at https://bioinfo.uochb.cas.cz/projects/chemRDF.
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Background
Databases of small molecules play a key role in many areas 
of cheminformatics and bioinformatics research and appli-
cations. There are many kinds of small molecule databases 
[1]—one of the most comprehensive is the ChemSpider 
database, which offers access to approximately 44 million 
compounds [2]. Some databases are general purpose; oth-
ers are focused on a specific area of research, such as drugs 
and their targets or metabolites found in the human body. 
The vast majority of these databases are publicly available. 
Many companies build their own proprietary databases as 
well, which demonstrates the large range of utilization and 
different foci of such databases [3, 4].

Such databases should fulfill criteria for simple and 
effective searching. Most small molecule databases 
assume that users know the name or structure of the 

compound of interest. The structure or name can then be 
used as a database query to obtain additional information 
stored in the database. Alternatively, the search can be 
based on specifying desired properties of the compound 
in a fixed query form. These approaches are sufficient in 
many cases, but they are insufficient if new information 
needs to be derived from existing data, for example, to 
find compounds according to their complex interactions 
with other compounds or biological entities.

For more powerful database searching, a user needs to 
know the data model used and the corresponding query 
language. Query languages are typically defined on the 
logical database level, which describes data organization 
in terms of the database paradigm used to store data. 
These can cause confusion for common users, who intui-
tively think about data on the conceptual database level, 
which is focused on ontological description of data. For 
example, one of the most well-known query languages 
is SQL, which is defined for the relational data model. In 
this model, data are represented by tables. To be able to 
write SQL queries, it is essential to know how the data 
are organized into tables. However, the organization is 
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determined by various requirements and conditions that 
are mostly irrelevant from a common user’s point of view. 
To make a search easier and more intuitive, it is appropri-
ate to use a technology for which the differences between 
the conceptual and logical models are not so distinct. 
The Resource Description Framework (RDF) and the 
SPARQL query language can be used in such cases [5]. 
The RDF model defines organization of data on a logical 
level, but it is also related to some conceptual modeling 
approaches.

Data interoperability is another important criterion. 
Usage of data coming from different data sources can be 
complicated if the sources describe data in incompatible 
ways. This issue is also addressed by RDF, which allows 
description of vocabularies defining unique identifiers 
and meanings that are used for data description. More-
over, SPARQL supports federated queries; this means 
that one query can employ data from different sources 
(SPARQL endpoints) managed by different organizations.

In recent years, the RDF framework and the SPARQL 
language have become more widely used in the area of 
cheminformatics databases [6]. Chem2Bio2RDF focuses 
on linking data from different sources using RDF [7]. 
Well-known PubChem data are available for download in 
RDF format, which allows the user to import them into 
a personal RDF storage and query them using SPARQL 
[8]. ChemSpider also allows users to download com-
pound data in RDF format [9]. A SPARQL endpoint 
that allows users to submit queries on ChemSpider data 
is in development and should be finished soon. In addi-
tion, the European Bioinformatics Institute (EMBL-EBI) 
serves SPARQL endpoints to many of its databases [10]. 
Another database that uses SPARQL to support advanced 
searching is the neXtProt database, which focuses on 
human proteins [11].

In our work, we focus on the use case in which a data-
base is accessible through a web interface that allows the 
user to submit SPARQL queries. Although the RDF plat-
form is already widely used in many cheminformatics 
areas, we identify several deficiencies that make usage of 
RDF databases restrictive or non-user-friendly:

1.	 Special procedures are not supported. Not all kinds 
of data can be precomputed simply and stored 
directly in a database. Instead, they are computed 
from given parameters on demand. A typical exam-
ple is a list of compounds that are similar to a given 
compound. In relational databases, compound 
similarity is supported by a chemical cartridge [4]. 
This defines stored procedures called from SQL 
that return required similar compounds. However, 
SPARQL does not contain support for calling stored 
procedures, and many RDF storages lack a propri-

etary extension. For this reason, similarity searches 
and other useful functions are not typically sup-
ported by chemical databases based on RDF storage.

2.	 Writing SPARQL queries is prone to errors. A query 
written in SPARQL may not respect the data ontol-
ogy but can still be considered valid. This means, for 
example, that a query can contain an identifier that 
is not included in the database (and is therefore not 
described in the ontology) or that it is possible to use 
identifiers in a nonsense combination from an ontol-
ogy point of view. In such cases, an empty result is 
returned, and the user is not informed about the 
source of the problem. This makes query debugging 
troublesome.

3.	 Presentation of results is either stern or inflexible. 
In the simplest approach, a query result is presented 
as a table of raw values. In this manner, for example, 
found compounds are presented only by their data-
base identifiers. Additional information (e.g., com-
pound names or human readable identifiers) have to 
be retrieved explicitly by the query. This approach is 
used, for example, by EBI, which uses a general pur-
pose SPARQL endpoint to submit queries. On the 
other hand, in neXtProt, found entities are presented 
together with some details. However, the system is 
limited to present only one class of entities.

In this paper, we present our proposals to develop 
a small molecule RDF database that addresses these 
issues. We extended a SPARQL engine to allow query-
ing of data that cannot be stored directly in a RDF data-
base. We designed an algorithm that performs check of 
a query against data ontology to identify possible user 
errors. In addition, we introduced an approach to visual-
ize retrieved data in a user-friendly way. To integrate all 
features of our approaches, we developed a simple web 
application, and we demonstrated its overall functionality 
on data retrieved from the ChEBI database [12].

Resource Description Framework overview
In the RDF data model, information is expressed as 
simple statements about entities (called resources in 
RDF terminology) [5, 13]. Each statement is formed as 
a triple: subject, predicate, and object. The statement 
expresses a relation between two resources—the subject 
and the object. Specifically, it expresses that the subject 
has a property identified by the predicate, which has the 
object as its value. For public identification of resources, 
the International Resource Identifier (IRI) is employed. 
Because IRIs can be very long, namespace prefixes can be 
defined. The namespace prefix represents an initial sec-
tion of IRIs that can be replaced by a prefix. Predicates 
are identified by IRIs as well. A predicate IRI can appear 
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in the subject or object position in other triples, so it is 
possible to make statements about the property. This 
is very useful for description of data ontology. If public 
identification of resource is not needed, blank nodes, 
which have only local meanings, can be used. Special 
classes of resources are literals (e.g., text, date, numbers) 
that express simple property values and can be used only 
in the object position in a triple.

The Web Ontology Language (OWL) can be used to 
describe data ontology [14–16]. OWL describes classes of 
resources and their properties. The most important fea-
ture of classes is their subclass hierarchy. Properties are 
described separately, and their most important features 
are domains and ranges. Properties also can be arranged 
in a hierarchy. For example, mass or charge properties 
can be defined as subproperties of the common chemical 
property. The ontology itself is stored with regular data 
in the form of triples. This allows users to query ontology 
information in the same way as they query regular data.

One of the most important features of RDF databases is 
the ability to infer triples that are not physically stored in 
the database. This is especially useful in conjunction with 
the ontology description. For example, if the resource 
S has property P1 with value V, and property P1 is sub-
property of property P2, then it is inferred that resource S 
has property P2 with value V. This is particularly impor-
tant and useful for querying because it allows for simple 
query construction.

The SPARQL query language has been introduced 
as a means to query data [17]. The basic concept of the 
language is based on a triple pattern that has the same 
form as an RDF triple but can contain variables in arbi-
trary positions (i.e., in the subject, predicate, or object 
position). During query evaluation, solution mappings—
mappings from the pattern variables to resources for 
which triples exist in a database—are returned as results. 
The map between the variable and the value is binding, 
and the variable is said to be bound to the value. Note 
that SPARQL allows grouping of multiple triple patterns 
that have common parts into a single pattern. Patterns 
can be combined to express more powerful and complex 
patterns. For example, the union pattern can be used to 
describe variants; the optional pattern describes parts 
that are not mandatory; and the minus pattern subtracts 
some unwanted solutions. SPARQL 1.1 also introduces 
property paths, which extend classical triple patterns. 
This allows combination of multiple predicates into one 
triple pattern. Single predicates represent binary relations 
between resources. These relations can be combined 
into complex relations by various operators, includ-
ing the inverse path operator (denoted by the symbol ^ 
and defined as the inverse relation), the sequence path 
operator (denoted by / and defined as the composition of 

binary relations), the alternative path operator (denoted 
by | and defined as the union of binary relations), and the 
one or more path operator (denoted by + and defined as 
the transitive closure of a relation).

In most cases, RDF data are managed and processed by 
complex frameworks. The most widely used frameworks 
are Apache Jena [18] and Sesame [19]. These frameworks 
contain their own RDF storages. Other storages typically 
contain providers that allow connections to be made 
through these frameworks. RDF storages are often based 
on relational databases (Oracle [20], OpenLink Virtuoso 
[21]) or focused directly on storing RDF triples (Ontotext 
GraphDB [22]).

Most RDF storages do not support calling general 
procedures from SPARQL queries. The most general 
mechanism to call procedures is included in Jena. This 
extension is called property functions, and it allows to 
call special procedures to retrieve data by methods other 
than the usual pattern matching [23, 24]. In a SPARQL 
query, a property function is represented by a special IRI 
that is registered in the Jena SPARQL engine. If the IRI 
is used in the predicate position of a triple pattern, the 
registered Java method is invoked by the engine, and the 
subject and the object of the triple pattern are passed as 
the method parameters. Based on the parameters, the 
methods return solution mappings that represent a result 
of the triple pattern.

Implementation
To develop our proposed system, we decided to use 
OpenLink Virtuoso [21], a database server with very 
good performance that is used by various bioinformatics 
and cheminformatics projects. However, Virtuoso does 
not support calling general procedures from SPARQL 
queries. Although this support is included in Jena, its 
performance is not sufficient for our purpose.

Procedure call extension
We designed our own extension to call procedures from 
SPARQL queries. One of the main requirements for the 
procedure call extension was that it should not change 
the syntax of the SPARQL language. This requirement is 
important for the possibility to use third-party compo-
nents that work with SPARQL queries without modifying 
these components. Thus, only existing valid triple pattern 
syntax can be used to call a procedure. We also require 
only minimal changes in semantics. The extension should 
have no or minimal effect on existing language con-
structs. Also, the semantics should be maximally trans-
parent for users; results returned by a procedure call 
should be the same as in the case in which data are stored 
in the database and triple patterns representing the pro-
cedure call are regular patterns.
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To avoid affecting the syntax, we used an approach 
very similar to that used in Jena [23]. A procedure call 
is expressed as a triple pattern using a special predicate 
IRI that identifies the procedure. The advantage of this 
approach is that it is transparent from a user’s point of 
view. It works the same way as in the case that triples 
representing procedure parameters and corresponding 
results are stored in the database. In our solution, the 
object of the triple pattern always represents param-
eters, and the subject of the triple pattern always rep-
resents results of the procedure call. However, the way 
the parameters are passed is a little bit different than in 
Jena. In our approach, the object of the triple pattern 
representing the procedure call must be a blank node 
expressed in abbreviated form (i.e., by using []). Proper-
ties of the blank node are then understood as procedure 
parameters. Objects of these properties have to be con-
stant values or bound variables. During evaluation, these 
values are then passed into the procedure as parameters. 
IRIs of the parameters are part of the procedure call defi-
nition. If a specified property is not used inside blank 
node abbreviated form, the default value can be used (if 
it is specified).

To pass multiple parameters from the object positions, 
Jena allows use of RDF collections (i.e., a list of resources 
enclosed in parentheses). Compared with Jena, our 
approach has several advantages. Passed parameters are 
always connected with their names (with property IRIs of 
the blank node). This allows specification of parameters 
in arbitrary order, definition of default values of param-
eters, and better descriptions of parameters by database 
ontology.

Results of a procedure call are represented by the sub-
ject of the triple pattern. In a simple case, the subject is 
a variable that is bound to procedure results. In some 
cases, it can be useful to be able to return structured 
result values consisting of more individual values (e.g., 
compounds that are similar to the given query structure 
along with their similarity scores). To make this possible, 
we defined a multi-value form of a procedure call. We 
used an approach similar to that used to pass parameters 
of procedures. In this form, the subject of the procedure 
call pattern is also expressed as a blank node in abbrevi-
ated form. Individual properties of the blank node then 
identify result value components. Objects of such prop-
erties are typically variables that are bound to result val-
ues during evaluation of the procedure call. If the object 
of a property is constant, it works as a filter on result val-
ues. Examples of complex queries using procedure calls 
are shown in Figs. 1 and 2.

Although the syntax of the language is not affected, to 
add procedure call support, the parser of the language 

has to be extended to recognize procedure call patterns 
(together with associated blank nodes expressed in abbre-
viated form) and process them in a special way. To extend 
the language semantics, one only needs to extend the way 
in which the so-called GraphGraphPattern (i.e., graph that 
sequentially contains other patterns) is processed [17].

Moreover, the proposed extension has to be sufficiently 
flexible and general-purpose. For this reason, a set of sup-
ported procedure calls cannot be fixed and hardwired into 
the source code of the extension. Instead it is configured 
by a configuration file that describes the procedure calls. 
It allows adding support for new procedure calls into a 
system without changing the extension source code.

Algorithm for procedure call translation
Although the semantics are minimally affected, we 
decided not to modify the existing Virtuoso code. Instead, 
we used the fact that Virtuoso can combine SQL and 
SPARQL queries and designed a preprocessor that trans-
lates extended SPARQL queries into SQL/SPARQL. If 
a query does not contain a procedure call, the query is 
translated directly into SPARQL language. Otherwise, 
parts are translated into SPARQL where possible, and rest 
of the query is translated into SQL. We tried to keep as 
many parts as possible in SPARQL, which allows Virtuoso 
to make SPARQL optimizations. The translation phase 
is straightforward. For a given query, the parser pro-
duces a syntax tree that represents the query according 
to SPARQL grammar. It also identifies procedure call pat-
terns and removes syntactic sugar. Our parser is based on 
ANother Tool for Language Recognition (ANTLR) [25]. 
The syntax tree is translated from the leaves to the root. 
If all subnodes of a tree node are translated into SPARQL, 
the node is translated into SPARQL; otherwise, it is trans-
lated into SQL. An exception is a node representing a pro-
cedure call, which is always translated into the appropriate 
SQL procedure call specified in the configuration file.

Ontology checking of queries
Based on the ontology, the most important following 
potential errors can be checked:

1.	 Existence of a property IRI. If the IRI used in the 
predicate position of a triple pattern does not exist in 
the ontology, the warning is emitted, because such a 
triple pattern has no solution if we assume that data 
are fully described by the ontology.

2.	 Correctness of a literal value. The predicate IRI of 
the triple pattern can be used to determine the range 
of the property. This information then can be used 
to check whether constant literal value in the object 
position is an instance of the appropriate range class.
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3.	 Correctness of a property path. Individual parts of a 
property path have to be correctly interconnected. 
This means that the range of one part and the domain 
of a following part cannot be disjoint classes. Other-
wise, the triple should have no solution.

4.	 Consistency of used variables. If a variable is used in 
a triple pattern, the ontology can be used to deter-
mine to which class of resources the variable will be 
bound. Information determined for the variable from 
other parts of the query has to be consistent; other-
wise, the query has no solution.

Checking for the first three error types is simple 
because they are local; no query context and no other 
information except the ontology are needed to per-
form such checks. Checking the consistency of used 
variables (error type no. 4) is more complicated because 
information obtained from various parts of a query has 
to be taken into account. If a triple pattern contains a 
variable in the subject or object position, the ontology 
can be used to obtain information about the class of 
resources to which variables will be bound. Information 
retrieved from different parts of the query and relating 
to the same variable has to be consistent. As an exam-
ple, assume that a query employs a group pattern that 
contains two triple patterns using the same variable. If 
the first triple pattern contains the variable in the subject 
position, we can use the predicate IRI of the triple pat-
tern to obtain the domain of the property identified by 
the IRI. This domain specifies the class of resources to 
which the variable should be bound. If the second triple 
pattern contains the variable in the object position, we 
can use the predicate IRI of the triple pattern to obtain 
the range of the property, also specifying the class of 
resources to which the variable can be bound. If these 
two classes are denoted as disjoint by the ontology, then 
it logically follows that the query cannot have a solution, 
because the query does not make sense with respect to 
the given ontology. Nevertheless, relative positions of 
variable occurrences have to be taken into account. This 
can be demonstrated by a case in which the same varia-
ble occurs in different branches of a union pattern; these 
occurrences are independent, and thus they cannot ever 
be considered a source of conflict.

Variable consistency checking algorithm
The variable consistency checking algorithm works with 
classes of resources to which variables can be bound. 
Basic classes are represented by IRIs and described by 
the ontology stored in a database. A query can contain 
complex patterns, therefore the basic classes may not be 
sufficient to describe classes of resources to which vari-
ables can be bound. For this reason, the algorithm has 
to be able to work with unions and intersections of the 
classes. Two classes are considered to be consistent if 
they are not disjoint classes. For basic classes, the infor-
mation about whether the classes are disjoint is obtained 
directly from the ontology according to the values of the 
owl:disjointWith property. Otherwise, the consistency of 
the classes is checked recursively according to the union 
and intersection operators.

Briefly, the algorithm checks whether information 
obtained for a variable from one specific position in the 

Fig. 1  SPARQL query using similarity search. This example SPARQL 
query uses a procedure call named orchem:similaritySearch to identify 
compounds that are similar to a given structure. The task of the query 
is to select all compounds that are not annotated as antibiotics, but 
that are similar to a compound that is annotated as an antibiotic. In 
addition to the compounds, the query also returns similarity scores 
to the most similar antibiotics. The first triple pattern (line 6) binds the 
ATB variable to compounds that are annotated as antibiotics (identi-
fied by ChEBI ID 33281). The following triple pattern (line 7) binds the 
MOLFILE variable to the MOL structures of these compounds. The 
procedure call is identified by the orchem:similaritySearch IRI and is 
represented by the triple pattern on lines 10–14. The blank node used 
in the object position (lines 12–14) represents parameters of the pro-
cedure call. The query structure is denoted by the orchem:query IRI, 
and its value is specified by MOLFILE. Other parameters are constant. 
The type of the query structure is denoted by the orchem:queryType 
IRI, and the cutoff similarity score is denoted by the orchem:cutoff IRI. 
The blank node used in the subject position (line 10) represents multi-
value results of the procedure call. The COMPOUND variable is bound 
to the similar compounds found (identified by the orchem:compound 
IRI), and the SCORE variable is bound to their appropriate similarity 
score (identified by the orchem:score IRI). The minus pattern (lines 
17–21) eliminates all identified compounds (to which COMPOUND 
is bound) that are annotated as antibiotics. Finally, the results are 
grouped by COMPOUND (line 23), and the compounds (COMPOUND 
variable) and their maximal similarity scores to some antibiotics (MAX-
SCORE variable) are returned as the final result (line 3)
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checked query is consistent with information obtained 
for the same variable from different parts of the query. 
The algorithm works with the syntax tree of the checked 
query that is produced by the same parser that is used for 
query translation. For each node of the syntax tree, two 
kinds of information are recursively computed:

• • The class registry contains maps between variable 
names and classes of resources to which variables 
can be bound (which are denoted classes of the vari-
ables). The registry represents classes of resources 
that are inferred from the whole pattern represented 
by the node.

• • The location registry collects all variables and their 
locations that occur in the pattern that have to be 
checked for consistency. Together with the name of 

the variable and its location in the query, the class of 
the variable inferred from the variable occurrence is 
also stored.

In general, for a given variable name, the algorithm 
checks the consistency between variable classes stored in 
the location registry and classes stored in the class regis-
try that are derived from the other parts of the checked 
query. Nodes of a syntax tree are processed recursively 
from leaves to the root:

• • A triple pattern is always located in a leaf of the syn-
tax tree and presents a source of all class information. 
If the predicate of the triple pattern is not variable 
(i.e., it is a property IRI or a property path contain-
ing IRIs), then the property IRI is used to obtain the 
range and domain of the property. If the triple pat-
tern contains a variable in the subject position, the 
class of the variable is set according to the obtained 
domain. And vice versa, if the triple pattern contains 
a variable in the object position, the class of the vari-
able is set according to the obtained range. A triple 
pattern using the rdf:type predicate and having a var-
iable in the subject position is a special case denot-
ing that the object is the class of the variable. If the 
pattern contains a variable in the predicate position, 
the class of the variable is rdfs:Property. All obtained 
class information is stored in the class registry of the 
node. Similarly, positions of variables used in the tri-
ple and their classes are stored in the location regis-
try of the node.

• • A group pattern collects patterns (enclosed in braces) 
that have to all be fulfilled. It is the main place where 
the consistency of class information is checked. For 
each child pattern of the processed group pattern, the 
class registries of all other child patterns are merged 
by the class intersection operation. For each vari-
able stored in the location registry of the child pat-
tern, class consistency between the class of the vari-
able and the class of the variable stored in the merged 
class registry is checked. If the classes are inconsist-
ent, a warning about incorrect usage of the variable 
in the given location is reported. After the check 
phase, the class registries of all child patterns are 
merged by the class intersection operation into the 
class registry of the processed group pattern, and the 
child location registries are merged into the location 
registry of the processed group pattern.

• • A union pattern joins two child group patterns that 
represent independent alternatives. Class registries 
of the child group patterns are merged by the union 
class operation into the class registry of the pro-
cessed union pattern. Location registries of child pat-

Fig. 2  SPARQL query using substructure search. This example query 
demonstrates how to select compounds that contain an antibi-
otic and an antimutagen as substructures. The first triple pattern 
(line 7) binds the ATB variable to compounds that are annotated 
as antibiotics (identified by ChEBI ID 33281). Substructure search 
is then used to determine compounds that contain the given ATB 
compounds as substructures. The procedure call is identified by the 
orchem:substructureSearch IRI and is represented by the triple pattern 
on lines 10–12. The blank node used in the object position (lines 
11–12) represents parameters of the procedure call. The query struc-
ture is denoted by the orchem:query IRI, and its value is specified by 
another blank node, which represents the structure of a compound 
to which the ATB variable is bound. The type of the query structure 
is denoted by the orchem:queryType IRI. The COMPOUND variable is 
bound to the identified compounds. Compounds that contain an 
antimutagen (identified by ChEBI ID 73190) are identified in the same 
way (lines 17–22). Because the results of both procedure calls are 
represented as the COMPOUND variable, the variable contains the 
intersection of the procedure call results at the end. The query returns 
the identified compounds (COMPOUND variable) together with the 
appropriate antibiotic (ATB variable) and antimutagen (AMG variable) 
as the final result (line 3)
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terns are normally merged into the location registry 
of the processed pattern.

• • An optional pattern includes only one group pattern 
as the child pattern that is considered an optional 
part of a query. Because the optional pattern is not 
mandatory, its class registry is kept empty. Its loca-
tion registry is set according to the location registry 
of its child pattern, because variables used in the 
optional pattern still have to be consistent with the 
rest of the query.

• • A minus pattern also includes only one group pattern 
as the child pattern. It eliminates query solutions that 
are not compatible with solutions of the child pat-
tern. For this reason, registries of minus patterns are 
kept empty.

An example of how the variable consistency of a query 
is checked is shown in Fig. 3.

Presentation of results
The most important requirement for the presentation 
layer is that it should not be hardwired directly into the 
code. The basic idea is that descriptions how instances 
of classes should be visualized are stored in the database 
together with the ontology describing the classes. For 
practical usage, the visualization of a class is described 
in a selected template language, and only the name of 
the template is stored in the database. In our project, we 
used a simple template language called Apache Velocity 
[26]. The task of the template is to generate HTML code 
that represents the given instance of the class for which 
the template is intended. Velocity templates can con-
tain static text (HTML code in our case) that is directly 
passed into the output during template evaluation by the 
Velocity template engine. The important parts of a tem-
plate are references that allow representation of dynamic 
content, i.e., content that is specific for the represented 
instance. Velocity has three types of references. The basic 
type of references are Velocity variables (prefixed by a 
dollar sign) that can refer to Java objects. References can 
have reference properties that represent other type of 
references. A property is connected by the dot symbol 
with a reference and represents the value of an appropri-
ate Java getter method called on the reference. Another 
type of references is called methods, which are similar to 
reference properties but contain additional arguments 
enclosed in parentheses. The resource that should be pre-
sented by a template is stored in a reference that is set 
outside the template engine before the template evalua-
tion is started. The final important parts of the Velocity 
template language are directives that control the process 
of output generation. Directives include mechanisms 
to express conditions, loops, variable assignments, and 

others. All directive names are prefixed by a number 
sign (#). There are two types of directives. A line direc-
tive is parametrized by data enclosed in parentheses. 
A typical example is the #set directive, which assigns a 
value to a Velocity variable. In addition to parameters, 
a block directive contains also a body enclosed between 
the directive name and #end. For example, the body 
of the #foreach directive is repeated according to the 
parameters of the directive. The possibility to define new 
directives is an important feature of Velocity. To allow 
presentation of instances by Velocity templates, we define 
two special new directives:

• • The #sparql directive is a block directive that allows 
submission of a SPARQL query to obtain information 
from the database. The query is written in the body 
of the directive. The result of the query is stored in 
a Velocity variable that is used as a parameter of the 
directive and that represents all results of the query. 
The Velocity variable can be looped over for all indi-
vidual results using the #foreach directive. Each indi-
vidual result has reference properties that correspond 
to SPARQL variables used in the query.

• • The #url directive is a block directive that allows 
generation of a hyperlink to a resource. The output 
of a template is used inside our web application, and 
thus, it should not contain a regular HTML link. 
Instead, the #url directive generates a special code 
that informs the application that a view of the new 
resource is requested. The directive is parametrized 
by the linked resource, with the body containing the 
text of the link.

An example of usage of these directives is shown in 
Fig. 4.

Web application
In the previous sections, we described suggested 
approaches for database querying. To examine their 
applicability, we developed a simple web application that 
allows users to submit queries and visualize results. The 
application was developed using Google Web Toolkit 
(GWT) [27]. The user interface of the application is 
divided into three parts. The left part contains a query 
editor that allows users to write SPARQL queries. We 
used the third-party component CodeMirror [28] as the 
editor, which is interconnected with our checking algo-
rithm. During query typing, the editor sends the written 
query to the server for checking, and errors and warnings 
are immediately reported in the editor.

The query result is visualized as a table in the cen-
tral part of the application. Each variable used in the 
select clause of a query is represented by one column. 
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Individual solution mappings forming a single result 
are represented by rows. If the value to which a variable 
is bound is a resource represented by an IRI or a blank 
node, the appropriate item template is used to visualize 
the cell. Otherwise, the value itself is used as cell content.

The right part of the application is used to visual-
ize details about the selected resource. The IRI of the 
resource can be entered directly by the address bar, or the 
resource can be selected from the result table. If details 
about the resource are requested, the application uses the 
appropriate page template to generate details about the 
resource.

The application uses two kinds of templates that are 
specified by separated properties. Both properties use 
the prefix template: (see Table  1). The item template is 
used to generate small items in the result table, and it is 
denoted for a class by using the template:itemTemplate 
property. The page template is used for the detailed pres-
entation and is denoted by the template:pageTemplate 
property.

Results and discussion
For application of our proposed system, it is necessary to 
select and load data into the database, define their ontol-
ogy, write templates for data visualization, and define 

stored procedures that can be called from SPARQL 
queries.

Transformation of the ChEBI database
We decided to use the ChEBI database as a data source. 
ChEBI is sufficiently large for our purposes, and we have 
previously performed an analysis of this database [29]. 
The ChEBI data are available in a relational database 
form, and thus the data needed to be converted into the 
form of triples. For this purpose, we defined ad hoc ontol-
ogy to demonstrate our proposed approaches. We used 
the prefix chebi: as the base of IRIs used by the ontology 
(see Table 1). The main entities in the ChEBI database are 
compounds that are stored in the COMPOUNDS table. 
Each compound stored in ChEBI is represented as an 
instance of the chebi:Compound class in our database. 
IRIs that identify compounds use the prefix chebiID: (see 
Table 1).

ChEBI stores features of compounds in separate tables. 
These features include names (NAMES table), basic 
chemical features (CHEMICAL_DATA table), acces-
sions to other databases (DATABASE_ACCESSION 
table), and chemical structures (STRUCTURES table). 
The tables describing features contain not only the fea-
ture values themselves but also other related information. 

a b c
Fig. 3  Example of variable consistency check. This example demonstrates the work of the variable consistency checking algorithm. Part a shows 
a simple SPARQL query intended to select resources that belong to the :Dog class or to the :Bird class and also belong to the :Mammal class. The 
query has a solution in standard animal ontology. However, the second alternative of the union pattern is inconsistent with the rest of the query 
(because birds are not mammals). Therefore, this alternative has no influence on the final result, and the user should be warned. Before checking, 
the query is transformed into a syntax tree by the parser. The relevant part of the parser tree is shown in Part b. For better clarity, nodes are identified 
by numbers. The tree is then processed by the checking algorithm from the leaves to the root. For each node, the class registry and the location 
registry are computed. Contents of the registries are shown in boxes in Part c. The top part of each box contains the class registry, and the bottom 
part of the box contains the location registry. A green arrow indicates for which node registries were computed. Triple patterns 4, 6, and 7 simply 
denote requested classes of variable X, and this information is written into their registries. Group patterns 3 and 5 contain only one child pattern, so 
their registries are the same as registries of these child patterns. After that, union pattern 2 merges information from group patterns 3 and 5. Finally, 
group pattern 1 is processed. This pattern contains two child patterns, so the checking phase has to be performed. The location registry of node 7 
is compared with the class registry of node 2. Class :Mammal is consistent (is not disjoint) with the union of :Dog and :Bird classes; thus, this part is 
correct. And vice versa, the location registry of node 2 is compared with the class registry of node 7. Class :Dog is consistent with :Mammal, but class 
:Bird is not consistent with :Mammal. Therefore, the warning is generated for variable X used on line 10
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All tables contain names of sources from which the 
original values were taken. For this reason, ChEBI fea-
tures are not represented directly as literal values but as 
instances of appropriate classes that are subclasses of the 
chebi:CompoundProperty class. These instances are con-
nected with respective compounds by appropriate prop-
erties that are subproperties of the chebi:hasProperty 
property. Each such resource representing a ChEBI fea-
ture has an appropriate property suffixed by Value rep-
resenting a value of the ChEBI feature. Moreover, the 
resources also have the common property chebi:source, 
which determines the name of the original data source. 
Other properties can be added depending on the type of 
feature.

Chemical relations between compounds are stored 
in the RELATION and VERTICE tables. In our data-
base, they are represented in a similar way as other 
features. The chemical relations are represented as 
instances of appropriate classes that are subclasses of the 
chebi:CompoundRelation class. These resources are con-
nected to the respective compounds by appropriate prop-
erties that are subproperties of the chebi:inRelationWith 
property. A related compound is specified by the 
chebi:inRelationWithValue property. In this case, other 
properties can also be specified for resources represent-
ing chemical relations.

The ChEBI database also contains comments (COM-
MENTS table) that are assigned to compounds or fea-
tures. These comments are represented as instances of 
the chebi:Comment class and are connected with the 
commented resource by the chebi:comment property. An 
example showing the basic concept of the conversion is 
shown in Fig. 5.

An approach in which ChEBI features and relations 
are represented as instances of classes has the advantage 
that additional information (source name, comments, 
etc.) can be connected. On the other hand, in a SPARQL 
query, two properties are needed to obtain a feature 
value. If a user wants to obtain the value of a ChEBI 
feature of a compound, it is necessary to use a property 
connecting the compound with the resource represent-
ing the ChEBI feature, and then to use the property con-
necting this resource with the feature value. To solve this 
minor issue, we defined a property chain that allows the 
connection of these two properties to be represented as 
a single property [16]. The name of the chain property is 
the same as the name of the first property in the chain 
but with the prefix chebix: (see Table 1) instead of chebi:. 
Usage of property chains is also shown in Fig. 5.

The property chains are defined in the ontology. Unfor-
tunately, Virtuoso does not contain support for property 
chains. We therefore extended our translation algorithm 
to expand property chain IRIs that occur in the predi-
cate position into the property path using the specified 
property chain properties. This cannot be considered full 
property chain support, but it is suitable for basic usage.

Images of chemical structures were generated from 
Structure-Data Files (SDFs) stored in the ChEBI database 
with the molconvert tool [30].

Templates
Our application is constructed so that for each class 
(or its superclass), two kinds of Velocity templates are 

Fig. 4  Example of a velocity template. For a given compound, the 
example template generates an HTML list of its chemical or other 
roles. Each item in the list is a hyperlink to the represented role. The 
visualized compound is referenced by the $entity Velocity variable 
that is set by the system before the template is evaluated. The body 
of the #sparql directive contains a query that returns the roles of 
the compound and their names. The query is parametrized using 
the $entity reference. Before the query is submitted, the reference is 
replaced by its value. The query results are returned by the database 
engine and stored in the $roles Velocity variable specified as a param-
eter of the directive. Individual results are processed by the #foreach 
directive. It sequentially stores a result into the $role Velocity variable 
and processes its body. The $role Velocity variable is used to access 
values of SPARQL variables; the reference to the role entity ($role.
ROLEDEF) and to the name of the role ($role.NAME) are accessible 
inside the body. These references are used by the #url directive to 
produce links to the roles. The #escapeHTML macro escapes charac-
ters in the name value to be placed into HTML

Table 1  Namespace prefix definitions

The table shows definitions of all namespace prefixes used in our project. The 
prefixes are already defined in our SPARQL query engine, and therefore they 
need not be explicitly defined in SPARQL queries

Prefix Value

chebi http://bioinfo.uochb.cas.cz/0.9/chebi#

chebix http://bioinfo.uochb.cas.cz/0.9/chebix#

chebiID http://bioinfo.uochb.cas.cz/0.9/chebi/

template http://bioinfo.uochb.cas.cz/0.9/template#

orchem http://bioinfo.uochb.cas.cz/0.9/orchem#

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs http://www.w3.org/2000/01/rdf-schema#

owl  http://www.w3.org/2002/07/owl#

xsd http://www.w3.org/2001/XMLSchema#
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14.12.10
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DATATYPE_ID
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"1-(5-carboxypentyl)pyrraline"@en

"3"^^xsd:integer

"caproyl pyrraline"@en

"ChEBI" "2010-12-14"^^xsd:date

"C12H17NO4"

"CHECKED"

"ChEBI"
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but is a misnomer."
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Formula

chebi:
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chebi:
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604731

b RDF form

chebi:comment chebi:text

chebi:createdOn rdf:type

COMMENTS

chebi:source

rdf:type

chebi:nameValue

chebi:synonym

chebi:primaryName chebi:hasFunctionalParent

chebi:source

chebi:inRelationWithValue

rdf:type

chebi:formulaValue

rdf:type

rdf:type
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VERTICE & RELATION

chebi:star
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COMPOUNDS CHEMICAL_DATA

rdf:type

chebi:formula

chebix:formula
chebix:primaryName

chebix:synonym

chebix:hasFunctionalParent

a Original relational form

Fig. 5  Conversion of ChEBI into RDF form. This example demonstrates the conversion of the ChEBI database from relational form into RDF form. 
Part a shows selected information about the ChEBI entity with ID 59968. Part b shows the same information coded in RDF form. For better clarity, 
it is represented as a connected graph. Each triple is represented as an arc labeled by the predicate IRI leading from the subject to the object. Blue 
arcs represent triples stored directly in the database. Green arcs represent triples inferred by property chains. Literals are represented as boxes, IRIs 
as rounded boxes, and blank nodes as circles. Dotted line boxes are not parts of the RDF model; they only highlight which table of the relational form 
was used to generate triples. In relational form, each table contains a primary key named ID. The basic data about the compound are stored in the 
COMPOUNDS table. In RDF form, the compound is identified by IRI chebiID:59968, and belongs to the chebi:Compound class. The basic data are con-
verted directly as appropriate properties (e.g., chebi:star) of the compound. An exception is the compound name, which is converted as an instance 
of chebi:PrimaryName. The reason for this is compatibility with representations of other compound names. Other names of compounds are stored 
in the NAMES table. The COMPOUND_ID is a foreign key that refers into the COMPOUNDS table. The TYPE column lists the type of the name. In this 
case, the name is coded as an instance of the chebi:Synonym class. Comments are stored in the COMMENTS table. The DATATYPE column indicates 
which data are commented. In this case, the DATATYPE value is CompoundName, and thus the DATATYPE_ID is a foreign key into the NAMES table. 
As an example of other features, the CHEMICAL_DATA table is employed. Similarly as for the NAMES table, COMPOUND_ID is a foreign key into the 
COMPOUNDS table, and the TYPE column indicates the type of the stored data. Therefore, the example chemical data is converted as an instance 
of the chebi:Formula class. Relations between compounds are stored in RELATIONS tables. Types of relations are listed in the TYPE column. Related 
compounds are specified indirectly. The RELATIONS table contains foreign keys (INIT_ID and FINAL_ID) that refer to the VERTICE table that translates 
vertex IDs into the appropriate related compound IDs. In this example case, the relation is coded as an instance of chebi:HasFunctionalParent
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defined—the item template for the result table and the 
page template for the details. For compounds, the item 
template shows the compound name together with a 
small image of the compound structure and a 3-star 
status that indicates whether the compound has been 
checked manually by the ChEBI team. For ChEBI com-
pound features, the value and source of the feature value 
are generated by the item template. An example of visu-
alizations generated by the item templates is shown in 
Fig.  6. Page templates generate more details, similar to 
the ChEBI web server. For ChEBI compound features, the 
details for the associated compound are generated, and 
the value of the feature is highlighted.

In addition to ChEBI data, our database also contains 
ontology data. For this reason, it is also necessary to 
define visualization templates for these data. Item tem-
plates visualize classes and properties by their names 
specified by the rdfs:label property and by their IRIs. 
Page templates generate various detailed information 
about their hierarchy and usage.

Use of a chemical cartridge
A large number of chemical cartridges are suitable for 
our purpose. We decided to use OrChem, which is also 
maintained by EBI [31]. OrChem supports similarity 
searches and substructure searches. Both are supported 
as specific SQL stored procedures. We mapped these 
procedures directly on our system. All IRIs employed for 
this mapping used the orchem: prefix (see Table 1).

The similarity search procedure (orchem_simsearch.
search) is represented by the orchem:similaritySearch 
property. Its only mandatory parameter is orchem:query, 
which specifies the structure used as the query struc-
ture. The orchem:queryType parameter specifies a type 
of query structure; the default value is SMILES, which 
denotes Simplified Molecular Input Line Entry Speci-
fication [32]. Another supported value is MOL, denot-
ing an MDL mol file [33]. The remaining parameters 
restrict the size of the result set. The cutoff similarity 
score is specified by the orchem:cutoff parameter (the 
default value is 0.8). The maximum number of results 
can be set by the orchem:topn parameter (the default 
value is −1, which means unlimited). Results of the 
procedure have multiple values. Identified compounds 
are denoted by the orchem:compound property, and 
the appropriate similarity score is denoted by the 
orchem:score property. An example is shown in Fig.  1. 
There is also a simplified variant of the procedure, called 
orchem:similarCompoundSearch. This uses the same set 
of parameters but returns identified compounds directly 
and not as multi-value results.

The substructure search procedure (orchem_sub-
search.search) was mapped in a similar way and is rep-
resented by the orchem:substructureSearch property. It 
uses the parameters orchem:query, orchem:queryType, 
and orchem:topn, which have the same meanings as in 
the previous case. Moreover, the orchem:tautomers 
parameter indicates whether the query structure should 
be expanded to its tautomers, and the orchem:exact 
parameters control whether only structures that are 
equal to the query structure should be returned. The 
default values of these additional parameters are false. 
Identified compounds are returned directly as the sub-
ject of the procedure call pattern. An example is shown 
in Fig. 2.

Limits of the implementations
Although our proposed simple web application works 
satisfactorily well, we identified several weaknesses.

Procedure call extension
One of the main requirements for implementation is that 
usage of procedure calls should be transparent from the 
user’s point of view. Employing triple patterns with spe-
cial meanings fulfills this requirement in general. How-
ever, there are still situations in which this is not entirely 
true.

The major weakness of our procedure calls support is 
that variables used as parameters have to be bound to 
values before a procedure call is executed. This require-
ment is a consequence of the manner in which patterns 
are evaluated. In general, a pattern is evaluated indepen-
dently of the context in which it occurs, and the result 
of the pattern evaluation is combined with results from 
other patterns. For this reason, the parameter values can 
only be taken from patterns that occur before the pro-
cedure call pattern in the same group of patterns. This 
requirement can be a bit counterintuitive in some cases, 
as illustrated in Fig. 7.

A minor weakness is that the syntax of procedure calls 
requires usage of the abbreviated blank node form to 
denote parameters or multi-value results. In this context, 
if the abbreviated form is expanded into multiple triples 
by using the label blank node form (or by using a vari-
able), the parser is unable to identify these triples as one 
procedure call and reports an error message. Another 
minor weakness is that a triple pattern is interpreted as 
a procedure call only if the predicate of the triple pattern 
is the specific procedure call IRI. This means that it is 
not possible to use this IRI as part of a complex property 
path. Binding a variable to this IRI and using this variable 
as the predicate also does not work.



Page 12 of 14Galgonek et al. J Cheminform  (2016) 8:31 

Ontology checking of queries
Checking focused on the consistency of the variables 
used can identify many potential problems. However, 
there are still some marginal cases for which no warn-
ing is reported, but it is possible to prove that the query 
cannot have a result for a given ontology. Our approach 
checks the usage of a variable independent of other vari-
ables. Therefore, it cannot express the fact that instances 
to which the variable is bound belong to one class only, 
while instances to which another variable is bound 
belongs to another class. Such a case is illustrated in 
Fig.  8. The query is considered to be correct; neverthe-
less, it is possible to logically infer that the query has no 
solution for the given ontology.

Presentation of results
Although the Velocity templates work well for our pur-
pose, we noted several limitations. Because Velocity 
contains no special support to produce dynamic HTML 
content, the output of a template is typically static HTML 
code. This means that all steps needed to produce the 
visualization of the given resource are produced by the 
Velocity engine on the server side during template evalu-
ation. As a consequence, there is no simple way to write 
a template that shows only basic information and allows 
for extended information to be loaded from the server 
upon user request. This poses a problem, especially in 
cases in which details about a resource with a huge num-
ber of properties should be generated. However, in gen-
eral, presentations of other chemical databases are also 
static. In the future, this issue can be solved by using a 
template engine that will support creation of interactive 

content. Nevertheless, for the pilot implementation of 
our approaches, we decided to select a simple engine that 
is sufficient for our purposes.

Potentially, a number of queries necessary to produce 
visual representations may also be a bottleneck. When 

CHEBI:26271 proline

Stars:

CHEBI:33704 alpha-amino acid

Stars:

is a

Prolin
Source: ChEBI

Fig. 6  Visualizations generated by item templates. The example 
shows three visualizations generated by item templates. At the top 
there is the visualization of the compound identified by IRI node che-
biID:26271. Visualizations of blank nodes that represent the values of 
compound properties chebi:isA and chebi:synonym are at the middle 
and at the bottom, respectively

a

b

c
Fig. 7  Limits of procedure call semantics. The example queries 
demonstrate a limitation of procedure call parameters passing. In 
general, all example queries should select compounds that have the 
role identified by identifier 33281, and optionally should find similar 
compounds for each compound. Although procedure calls should 
be transparent from the user’s point of view, there is the require-
ment that variables used as parameters of the procedure call must 
be bound to values in the same group pattern before the procedure 
call is evaluated. For this reason, Query a is not correct, and the 
translator will report an error, because the MOLFILE variable is used 
as a parameter but is not bound in the same group pattern. It would 
seem that Query b solves this issue. However, in this case, variable 
ATB is not restricted in the group pattern containing the procedure 
call, so the procedure will be called for all structures in the database, 
which is very inefficient. Thus, although some patterns are repeated, 
only Query c can be considered a proper query
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the result of a user query is returned by the database, the 
application cannot assume that all resources to which 
a variable is bound belong to the same class. Thus, for 
each of these resources, the query to obtain its class and 
appropriate template name has to be performed. Because 
the obtained templates are evaluated independently, the 
queries included in the templates are also performed 
independently and cannot be grouped. However, this is 
not an issue for the current data used, and we did not 
observe any performance problems caused by the queries 
submitted from the templates.

Conclusions
We have developed a database system based on RDF 
technologies. In recent years, these technologies have 
become more widely used in bioinformatics and chemin-
formatics research. However, we discovered some issues 
with these databases from the user’s point of view. Our 
proposed system addresses the following issues:

1.	 Most RDF-based systems lack support for special 
procedure calls. In cheminformatics research, com-
pound similarity search procedures are typical exam-
ples. In our system, SPARQL queries can contain 
procedures to solve such special tasks.

2.	 SPARQL queries are prone to user errors, because 
queries do not respect the data ontology. In such 
cases of user error, the queries return no data but are 
considered correct, and no warnings are reported. 
For this reason, we developed an algorithm checking 
whether a query can have a solution in the given data 

ontology. The user is warned about potential errors, 
which makes query writing more comfortable.

3.	 Many systems use a general presentation layer that 
presents obtained results without much detail. Even-
tually, they present some details, but only for the 
selected classes of resources. In our approach, we 
developed a general template-based approach allow-
ing presentation of results in a user-friendly manner.

All of these approaches are integrated into a simple 
web application, available at https://bioinfo.uochb.cas.
cz/projects/chemRDF. The application uses data derived 
from the ChEBI database and employs special similarity 
search procedures based on OrChem.

Although the need to learn SPARQL language and 
related technologies can take some time, in return, the 
user obtains the possibility to submit very powerful que-
ries. The main purpose of our application is not to submit 
a simple query similar to full-text searching, as in some 
other databases. We assume that usage of our application 
will be focused on writing complex queries to solve inter-
esting tasks.

Availability and requirements
Project name: SPARQL for Chemoinformatics.
Project home page: https://bioinfo.uochb.cas.cz/pro-
jects/chemRDF.
Operating system(s): Platform independent.
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other than those specified by the licenses.
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Fig. 8  Limits of the variable consistency checking. This example 
query shows a marginal case in which the query is considered correct 
by the checking algorithm, but nevertheless, it can be deduced that 
it has no solution. Consider that all classes used in the example are 
mutually disjoint. For both union patterns, our checking algorithm 
observed that the class of variable X is the union of the ex:ClassA and 
ex:ClassC classes. Variable Y is handled in a similar way, and thus, the 
query is considered correct. However, it can be logically deduced that 
the query has no solution. The first union pattern denotes that the 
class of variable X is ex:ClassA only if the class of variable Y is ex:ClassB. 
Concurrently, the second union pattern denotes that the class of vari-
able Y is ex:ClassB only if the class of variable X is ex:ClassC. However, 
classes ex:ClassA and ex:ClassC are disjoint, so the query cannot have 
a solution

https://bioinfo.uochb.cas.cz/projects/chemRDF
https://bioinfo.uochb.cas.cz/projects/chemRDF
https://bioinfo.uochb.cas.cz/projects/chemRDF
https://bioinfo.uochb.cas.cz/projects/chemRDF
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