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Cardiac hypertrophy (CH) is a common cause of sudden cardiac death and heart failure, resulting in a significant medical burden.
The present study is aimed at exploring potential CH-related pathways and the key downstream effectors. The gene expression
profile of GSE129090 was obtained from the Gene Expression Omnibus database (GEO), and 1325 differentially expressed genes
(DEGs) were identified, including 785 upregulated genes and 540 downregulated genes. Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Reactome pathway enrichment analysis of DEGs were then performed. Although there were no
pathways enriched by downregulated genes, many CH-related pathways were identified by upregulated genes, including PI3K-
Akt signaling pathway, extracellular matrix- (ECM-) receptor interaction, regulation of actin cytoskeleton, and hypertrophic
cardiomyopathy (HCM). In the deeper analysis of PI3K-Akt signaling pathway, we found all the signaling transduction pointed
to B cell lymphoma-2- (Bcl-2-) mediated cell survival. We then demonstrated that PI3K-Akt signaling pathway was indeed
activated in cardiac hypertrophy. Furthermore, no matter LY294002, an inhibitor of the PI3K/AKT signaling pathway, or
Venetoclax, a selective Bcl-2 inhibitor, protected against cardiac hypertrophy. In conclusion, these data indicate that Bcl-2 is
involved in cardiac hypertrophy as a key downstream effector of PI3K-Akt signaling pathway, suggesting a potential therapeutic
target for the clinical management of cardiac hypertrophy.

1. Introduction

Cardiac hypertrophy (CH) is the heart’s response to stressful
situations that impose increased biomechanical stress by
increasing muscle mass. This physiological process contrib-
utes to reducing the ventricular wall stress, when the heart
undergoes a greater than normal workload. Although hyper-
trophy of the myocardium is a biological response of stress by
augmenting cardiac output, prolonged hypertrophy can lead
to ventricular arrhythmias, heart failure, and subsequent car-
diovascular mortality [1–3]. As reported previously, many
signaling transduction pathways were illustrated to contrib-
ute to the development of cardiac hypertrophy [4, 5]. Among
the CH-related pathways, PI3K-Akt signaling pathway,
which is activated by many types of cellular stimuli or toxic
insults to regulate fundamental cellular processes including
protein synthesis, proliferation, and survival, was well estab-
lished [6]. It is demonstrated that sustained activated PI3K in

the heart aggravates cardiac hypertrophy and myocardial
dysfunction; once PI3K is completely blocked, the hearts lose
the hypertrophic response to physiological stimuli [7]. The
PI3K-promoting hypertrophic response needs the involve-
ment of PI3K downstream AKT [8], GSK3β [9], mTOR
[10], P70S6K, and eIF-4E [11], which are involved in the reg-
ulation of fundamental cellular processes, including metabo-
lism, glucose uptake, proliferation, and protein synthesis.
Furthermore, we found that all the fundamental cellular pro-
cesses were assigned towards a single goal of cell survival.
However, the central downstream effector of the PI3K-Akt
signaling pathway, which regulates cell survival, remains
incompletely defined.

Bcl-2 is a founding member of the BCL-2 apoptosis reg-
ulatory protein family, which can induce (proapoptotic) or
inhibit (antiapoptotic) apoptosis [12]. Bcl-2 is overexpressed
in more than half of human cancers [13]. As an important
oncogene, Bcl-2 can inhibit cell apoptosis by inhibiting the
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activation of apoptosis proteins (such as BAX and BAK),
thereby promoting the survival of cancer cells [14]. The
expression of Bcl-2 in human breast cancer is associated with
a good prognosis, and ongoing studies have shown that
destroying Bcl-2 can cause cell death [15]. Bcl-2 and related
cytoplasmic proteins are key regulators of apoptosis, and the
cell suicide program is essential for the development, tissue
homeostasis, and protection of pathogens. Previous reports
indicate that whether cells should survive or die depends
largely on the Bcl-2 family of antiapoptotic and apoptosis reg-
ulators [16]. Bcl-2 has a cell cycle inhibitory function, which
can be separated from improving cell survival [17].

In this study, we reanalyzed the gene expression profile of
GSE129090 to explore the molecular mechanism of cardiac
hypertrophy. KEGG enrichment analysis showed that the
upregulated DEGs were enriched in PI3K-Akt signaling
pathway and the central downstream effector was Bcl-2,
which functioned in cell survival. To verify the results above,
the validation experiments were performed. It was demon-
strated that the cross-sectional area in the TAC group was
significantly higher than that in the Sham group, accompany-
ing the activation of PI3K-Akt signaling pathway, resulting
from the level of phosphorylated PI3K, AKT, GSK3β,
mTOR, P70S6K, and eIF-4E. Once the phosphorylation of
PI3K or Bcl-2 was blocking by their selective inhibitors, the
development of CH was retarded. In conclusion, these data
indicate that Bcl-2 is involved in cardiac hypertrophy as a
central downstream effector of PI3K-Akt signaling pathway,
suggesting a potential therapeutic target for the clinical man-
agement of cardiac hypertrophy.

2. Methods and Materials

2.1. Data Collection. The gene expression profile of
GSE129090 was obtained from the Gene Expression Omni-
bus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/)
based on the platform of Illumina MouseRef-8 v2.0 expres-
sion beadchip. A total of 6 samples were available, including
3 hypertrophic cardioymocytes (hypertrophy induced by
trans-aortic constriction (TAC)) samples and 3 normal adult
cardiomyocyte (ACM) samples.

2.2. Identification for DEGs. For the analysis of DEGs, the
expression data were first normalized using the normalize-
BetweenArray function from R package “Limma” [18]. Then,
the normalized data were used to analyze DEGs using the
Limma software package in the R software (http://www
.bioconductor.org/packages/release/bioc/html/limma.html)
[19]. The cut-off value was set as P value <0.05 and
log2ð∣fold change ðFCÞ ∣ Þ > 1 for DEG analysis [20].

2.3. Pathway Analysis of DEGs. The Kyoto Encyclopedia of
Genes and Genomes (KEGG: http://www.genome.ad.jp/
KEGG) and Reactome (https://reactome.org/) pathway
enrichment analysis were performed to investigate the signal-
ing pathways that were related to the unique DEGs.

2.4. Animals and Transverse Aortic Constriction (TAC)
Model. Male C57BL/6J mice aged 10 weeks were purchased
from Shanghai SLAC Laboratory Animal CO, LTD (China).

The experimental procedures were approved by the Institu-
tional Animal Ethical Committee of Luodian hospital of
Baoshan District. The experiments were proceeded accord-
ing to NIH guidelines for Care and Use of Laboratory Ani-
mals (NIH, 8th Edition, 2011). The mice were maintained
in individually ventilated cages (at 22°C, 12h light/dark
cycle) with free access to standard laboratory chow. 40 rats
were randomly divided into 4 groups (10 for each group),
which were, namely, Sham group, TAC group, TAC+
LY294002 group, and TAC+Venetoclax group.

TAC operation was performed as a previous report [21].
Briefly, for the TAC group, after carotid arteries explosion
and 60%-75% diameter of ligation, mice were administrated
with normal saline (NS, 1ml/day) for 8 weeks; for the TAC
+LY294002 group, mice were treated with LY294002
(20mg/kg/day, Sigma, USA) for 8 weeks by intraperitoneal
injections; for the TAC+ Venetoclax group, mice were
treated with Venetoclax (100mg/kg/day, Selleckchem) for 8
weeks by oral gavage.

After administration of TAC operation, mice were main-
tained for another 8 weeks. Subsequently, the hearts were col-
lected and fixed with 10% neutral formalin and preserved in
-80°C for further research.

2.5. Western Blotting Analysis. Standard western blot analysis
was performed as described in the literature [22]. The pri-
mary antibodies used in this study were anti-AKT
(ab32505, Abcam), anti-phospho-AKT (ab81283, Abcam),
anti-GSK3β (ab32391, Abcam), anti-phospho-GSK3β
(ab131097, Abcam), anti-mTOR (ab2732, Abcam), anti-
phospho-mTOR (ab84400, Abcam), anti-eIF-4E (ab32024,
Abcam), anti-phosphoeIF-4E (ab76256, Abcam), anti-PI3K
(#4257, CST), anti-phospho-PI3K (#4228, CST), anti-
P70S6K (#2708, CST), anti-phospho-P70S6K (#9208, CST),
and anti-Actin (ab8227, Abcam).

2.6. Quantitative Real-Time PCR. Total RNA was isolated
from heart tissues using TRIzol Reagent (Invitrogen), and
the qRT-PCR experiments were performed according to the
literature [22] using SYBR Green (Roche). The expression
levels of atrial natriuretic peptide (ANP), brain natriuretic
peptide (BNP), and β-myosin heavy chain (β-MHC) were
used as markers of cardiac hypertrophy [23]. GAPDH was
used as control, and the 2−ΔΔCt method was used to measure
the relative gene expressions. All the primers used in this
study were obtained from Sangon (Shanghai, China). The
real-time PCR primers were as follows:

ANP-forward: 5′-ACCTGCTAGACCACCTGGAG-3′,
ANP-reverse: 5′-CCTTGGCTGTTATCTTCGGTACCGG-
3′; BNP-forward: 5′-GAGGTCACTCCTATCCTCTGG-3′,
BNP-reverse: 5′-GCCATTTCCTCCGACTTTTCTC-3′; β-
MHC-forward: 5′-CCGAGTCCCAGGTCAACAA-3′, β-
MHC-reverse: 5′-CTTCACGGGCACCCTTGGA-3′;
GAPDH-forward: 5′-TTGCTTCAGGGTTTCATCCAG-3′,
GAPDH-reverse: 5′-GACACTCGCTCAGCTTCTTG-3′.

2.7. Histological Analysis. 8 weeks after TAC or sham surgery,
the animals were sacrificed, and the hearts were arrested with
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Figure 1: Selection of DEGs and function annotation: (a) heat map of DEGs (785 upregulated and 540 downregulated genes); (b) KEGG
pathway analysis of upregulated DEGs; (c) Reactome pathway analysis of upregulated DEGs.
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a 10% potassium chloride solution at end-diastole and then
fixed in 10% formalin. The paraffin-embedded hearts were
cut transversely into 4-5μm sections. Heart sections were
stained with HE, and the cell size was measured using a quan-
titative digital image analysis system (ImageJ, 1.52a).

2.8. Statistical Analysis. All experiments were performed in
three independent parallel experiments, and the results were
shown as mean ± standard deviation (SD). Differences
between groups were estimated using unpaired Student’s t
-test. A two-tailed value of P valve <0.05 was considered sta-
tistically significant.

3. Results

3.1. Identification of DEGs and Enrichment Pathway
Analyses. The study included 3 TAC samples and 3 ACM

samples. A total of 1325 DEGs were identified after the anal-
ysis of GSE129090 by Limma package in R language. Of
these, 785 were upregulated, and 540 were downregulated
in TAC samples compared with ACM samples. A heat map
of DEGs was shown in Figure 1(a).

For a deeper insight into the DEGs, we performed KEGG
and Reactome pathway enrichment analyses. Upregulated
DEGs were mainly enriched in CH-related pathways
(Figure 1(b) and 1(c)), such as PI3K-Akt signaling pathway,
ECM-receptor interaction, regulation of actin cytoskeleton,
hypertrophic cardiomyopathy (HCM), and cytokine-
cytokine receptor interactions. However, the downregulated
DEGs were not significantly enriched in any pathway.

3.2. PI3K-Akt Signaling Pathway in CH Development. Given
that the upregulated DEGs were most significantly enriched
in PI3K-Akt signaling pathway, we selected the 36-related
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Figure 2: PI3K-Akt signaling pathway in CH: (a) PI3K-Akt signaling pathway in CH manually curated based on KEGG; (b) heat map of
DEGs in PI3K-Akt signaling pathway. GF: growth factors; RTK: receptor tyrosine kinase; ECM: extracellular matrix; ITGA: integrin
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genes for further study (Figure 2(a)). Among the 36 selected
genes, 28 genes were involved in ligand-receptor interaction,
18 of which were ECM-ITGA/B interaction (Figure 2(b)),

showing that the development of CH was mainly promoted
by the microenvironment. More importantly, we found that
all the signaling transduction pointed to Bcl-2-mediated cell
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Figure 3: PI3K-Akt signaling pathway was involved in the response to hypertrophic stimuli: (a) histological analyses of the hematoxylin and
eosin (H&E) staining of each group of mice at 8 weeks after TAC or sham surgery (n = 10); (b) statistical results for the cardiomyocyte cross-
sectional area (CSA, n = 50 cells); (c) real-time PCR analysis of the hypertrophy markers atrial natriuretic peptide (ANP), brain natriuretic
peptide (BNP), and β-myosin heavy chain (β-MHC); (d) the levels of total and phosphorylated AKT, GSK3β, mTOR, PI3K, P70S6K, and
eIF-4E expression in heart tissues of mice in the indicated groups; (e) quantitative results of (d) (n = 10). ∗P < 0:05 versus Sham group.
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survival. These results prompted us to hypothesize that
PI3K-Akt signaling pathway-induced Bcl-2-mediated cell
survival was involved in the development of CH.

3.3. PI3K-Akt Signaling Pathway Was Involved in the
Response to Hypertrophic Stimuli. Given that PI3K-Akt sig-
naling pathway was involved in the development of cardiac
hypertrophy, we first examined whether PI3K-Akt signaling
pathway was activated in cardiac hypertrophy tissues. As
shown in Figures 3(a)–3(c), we successfully constructed the
TAC mice model. The cross-sectional area (CSA) was signif-
icantly higher in the TAC group than that in the Sham group,
and the expression of ANP, BNP, and β-MHC was increased
in the TAC group. As expected, it was observed that PI3K,
AKT, GSK3β, mTOR, P70S6K, and eIF-4E were significantly
phosphorylated in the TAC group, suggesting that PI3K-Akt
signaling pathway was indeed activated in cardiac hypertro-
phy (Figures 3(d) and 3(e)).

3.4. LY294002 And Venetoclax Protected against Cardiac
Hypertrophy. To further examine whether PI3K-Akt signal-
ing pathway had a causative role in the development of car-
diac hypertrophy and Bcl-2 was the central downstream
effector, additional in vivo experiments were performed.
We treated the TAC mice with LY294002 (a PI3K inhibitor
that prevents PI3K phosphorylation) or Venetoclax (a selec-
tive Bcl-2 inhibitor) as described in Methods and Materials.
We found that no matter LY294002 or Venetoclax protected
against TAC-induced cardiac hypertrophy (Figure 4(a)). The
cross-sectional area was decreased in the treatment group.
The results determined that PI3K-Akt signaling pathway
played a critical role in TAC-induced CH, and Bcl-2-
mediated cell survival was the key cause of the cardiovascular
lesions.

4. Discussion

Cardiac hypertrophy is one of the most common causes of
heart failure, which is increasing in prevalence and is a debil-
itating disease with high rates of mortality and morbidity
worldwide [24]. Although many studies have reported that
long-term cardiac hypertrophy increases the likelihood of
heart failure, treatment of cardiac hypertrophy has not been
well defined, due to the obscure molecular mechanism [25].
Recently, multiple CH-related signaling pathways have been
identified in many individual studies, such as the PI3K-Akt,
calcineurin/NFAT, and MAPK pathway [26]. Originally, it
was thought that the pharmacological agents that selectively
modulate the CH-related pathways could inhibit the devel-
opment of pathological cardiac hypertrophy, but up to now,
no effective drugs targeting cardiac hypertrophy have been
found [27]. The reason is clear that it is impossible to inhibit
all the pathways relating to cardiac hypertrophy. So, finding
the central downstream effectors of the CH-related pathways
has attracted our attention. In this study, we reanalyzed the
gene expression profile of GEO129090, including 3 TAC
mice samples and 3 ACM mice samples. 1325 DEGs were
identified using R, including 785 upregulated genes and 540
downregulated genes. KEGG and Reactome pathway enrich-
ment analysis of DEGs were then performed. Although there
were no pathways identified by downregulated genes, many
CH-related pathways were identified by upregulated genes,
including PI3K-Akt signaling pathway, ECM-receptor inter-
action, regulation of actin cytoskeleton, and hypertrophic
cardiomyopathy (HCM). The genes involved in the ECM-
receptor interaction signaling pathway found in ductal breast
carcinoma could be used as effective independent prognostic
biomarkers for ductal breast carcinoma. The reorganization
of the actin cytoskeleton was a key mechanical driving force
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for cancer cells to acquire invasive properties. Related genes
regulated cell shape by affecting the actin cytoskeleton and
were important regulators of migration and proliferation.
HCM is the most common genetic heart disease in humans
and causes significant morbidity and mortality [28].

In the deeper analysis of PI3K-Akt signaling pathway, we
found all the signaling transduction pointed to Bcl-2-
mediated cell survival. These results showed that a microen-
vironment-promoted, PI3K-Akt signaling pathway-acti-
vated, and Bcl-2-mediated cell survival may be the key
cause of cardiac hypertrophy. To verify the results from the
bioinformatical analysis, we then examined the PI3K-Akt
signaling pathway in TAC-induced cardiac hypertrophy
samples. As reported previously, it was observed that PI3K,
AKT, GSK3β, mTOR, P70S6K, and eIF-4E were significantly
phosphorylated in TAC mice, suggesting that PI3K-Akt sig-
naling pathway was indeed activated in cardiac hypertrophy.

Cardiac hypertrophy is the adaptive response of the heart
muscle to pressure or volume overload [29]. PI3K is a highly
conserved lipid kinase involved in physiological cardiac
hypertrophy (PHH) [30]. The AKT pathway is an important
intracellular signaling pathway in eukaryotic cells, especially
a regulator of cardiac hypertrophy [31]. There is increasing
evidence proving that autophagy is involved in the regulation
of cardiac hypertrophy [32]. Studies have shown that related
genes can inhibit cardiac hypertrophy caused by pressure
overload by inhibiting the AKT/mTOR pathway to promote
autophagy [33]. The role of PI3K/Akt/mTOR pathway in
cardiac hypertrophy has been fully demonstrated. Dioscin
improves cardiac hypertrophy by inhibiting the
Akt/GSK3β/mTOR pathway [34]. Studies have shown that
Apelin-13 promotes cardiomyocyte hypertrophy through
PI3K-Akt-ERK1/2-p70S6K and PI3K-induced autophagy
[35]. Phosphorylation of eIF-4E is a mechanism by which
increased heart load is related to the accelerated rate of pro-
tein synthesis [36]. As we know, all the examined proteins,
PI3K, AKT, GSK3β, mTOR, p70S6K, and eIF-4E, are regula-
tors but not effectors. So, we hypnotized that the downstream
protein of PI3K-Akt signaling pathway, Bcl-2, was the effec-
tor. In our study of TAC mice treated with inhibitors
in vivo, we found that no matter LY294002, an inhibitor of
the PI3K/AKT signaling pathway, or Venetoclax, a selective
Bcl-2 inhibitor, protected against cardiac hypertrophy. These
results suggested that PI3K-AKT signaling pathway was
involved in cardiac hypertrophy by regulating Bcl-2-
mediated cell survival.

In conclusion, the present study evidences that Bcl-2
works as the central downstream effector of PI3K-Akt signal-
ing pathway to keep cardiomyocyte survival, resulting in car-
diac hypertrophy. It is indicated that Bcl-2 is of great
possibility to be a therapeutic target for the clinical manage-
ment of cardiac hypertrophy. This study provides novel and
useful information for the potential functions of Bcl-2 and
at the same time provides a new direction for the study of
the mechanism of CH.
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