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Abstract: Protein is the basic organic substance that constitutes the cell and is the material condition
for the life activity and the guarantee of the biological function activity. Elucidating the interactions
and functions of proteins is a central task in exploring the mysteries of life. As an important protein
interaction, self-interacting protein (SIP) has a critical role. The fast growth of high-throughput
experimental techniques among biomolecules has led to a massive influx of available SIP data. How
to conduct scientific research using the massive amount of SIP data has become a new challenge that
is being faced in related research fields such as biology and medicine. In this work, we design an
SIP prediction method SIPGCN using a deep learning graph convolutional network (GCN) based on
protein sequences. First, protein sequences are characterized using a position-specific scoring matrix,
which is able to describe the biological evolutionary message, then their hidden features are extracted
by the deep learning method GCN, and, finally, the random forest is utilized to predict whether there
are interrelationships between proteins. In the cross-validation experiment, SIPGCN achieved 93.65%
accuracy and 99.64% specificity in the human data set. SIPGCN achieved 90.69% and 99.08% of these
two indicators in the yeast data set, respectively. Compared with other feature models and previous
methods, SIPGCN showed excellent results. These outcomes suggest that SIPGCN may be a suitable
instrument for predicting SIP and may be a reliable candidate for future wet experiments.

Keywords: self-interacting protein; graph convolutional networks; protein–protein interactions;
random forest

1. Introduction

Protein is the basic component of organisms and participates in almost all biological
processes in cells [1,2]. The vast majority of life activities are the result of the simulta-
neous action of many proteins, and the interacting protein system is the basis for all life
activities. Exploring the interaction between proteins (PPIs) is not only of great signifi-
cance to the regulation of cell growth, but also lays a theoretical foundation for deeper
disease research [3–6]. With the fast growth of high-throughput experimental techniques for
measuring the interactions between organisms, massive amounts of experimental data on
various types of proteins continue to accumulate. This makes it possible to develop effective
new theories of analysis and computation that can contribute to a deeper understanding of
the mechanisms through which cellular functions arise, providing useful information for
studies such as the discovery of evolutionary patterns and even the pathogenic mechanisms
of organisms.
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In the interaction between proteins, self-interacting protein (SIP) accounts for a large
proportion. SIP is an interaction between the same type of proteins, which holds a crucial
position as a coordinator in gene expression and other complex biological functions. In-
depth studies can help to better understand cancer, viral infections, neurodevelopmental
disorders, and other potential diseases disturbed by these factors [7–10]. In their study
of the origin of protein evolution, Pereira Leal et al. [11] discovered that proteins evolved
through the replication of homodimers, in other words, through the replication of genes
encoding SIPs. Wagner et al. [12] found, in fly, worm, and yeast data sets, that the PPIs
between paralogous dimers and homodimers are not independent, and the frequency of
the protein–protein interactions between paralogous proteins are higher than that of pure
chance. Thus, they believe that gene differentiation and replication are important factors
to promote the eukaryotic proteome expansion, and a multicopy of the same subunit is
an economic way to form a larger functional structure. Ispolatov et al. [13] identified
a significant amount of SIP in the PPI network, which suggests that it may play a vital
function in the cellular system. Moreover, SIP is able to regulate protein function without
increasing the genome size, thus expanding its functional diversity.

With the deepening of computational biology research and the accumulation of exper-
imental data [14–16], the computational methods of protein–protein interaction prediction
are emerging, and excellent results have been achieved [10,17–20]. Among them, the neural
network plays an important role. It has a self-learning ability and associative storage
function. It can learn the distribution rule of original biological data and find the optimal
solution of a computational problem at high speed, so as to effectively improve the per-
formance of the model. For instance, Wang et al. [21] designed the CNNFSRF method to
accurately predict PPI by extracting the features of the protein sequences through convo-
lutional neural networks. In order to effectively combine the key sequence-pattern and
sequence-order information when processing the protein samples, Jia et al. [22] used chaos
game to represent information for predicting PPI. You et al. [23] designed a hierarchical
PPI prediction model, PCAEELM, based on protein sequences only. The model refines the
protein data features using the PCA algorithm, and is combined with a high-performance
ELM classifier to achieve a high accuracy. Chen et al. [24] combined the location-specific
score matrix with wavelet transform to extract protein features, and effectively predicted
SIPs using the deep forest-based predictor. In both human and yeast data sets, the proposed
model achieves competitive accuracy. Wang et al. [25] designed the computing method to
predict PPI based on the similarity between protein sequences and natural language, and
achieved a better performance in the cross-validation experiments. Liu et al. [26] proposed
an SIP prediction computational approach called SPAR, which considers fine-grained do-
main interaction information to design an improved coding scheme. Compared with other
SIP prediction models, this method shows a better performance.

In this work, we combine a deep learning graph convolutional neural network with
protein sequences to design the SIP prediction model, SIPGCN. To be specific, SIPGCN
first characterizes the biological evolutionary message of the protein amino acid by the
PSSM matrix, then extracts their objective distribution features using GCN, and finally
predicts the existence of interacting SIPs using an RF classifier. In the human data set,
SIPGCN obtained an accuracy of 93.65% and a specificity of 99.64%. In the yeast data set,
SIPGCN achieved 90.69% and 99.08% for these evaluation metrics, respectively. Compared
with the previous models, SIPGCN exhibited superior competitiveness. The outcomes of
these experiments demonstrate that SIPGCN can effectively predict SIPs with interactions
from massive quantities of data and can provide reliable candidates for subsequent wet
experiments, the flowchart of which is illustrated in Figure 1. The source code and data used
by SIPGCN can be downloaded from https://github.com/look0012/SIPGCN (accessed on
25 May 2022).

https://github.com/look0012/SIPGCN
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Figure 1. The flowchart of SIPGCN.

2. Materials and Methods
2.1. Gold Standard Data Sources

In this experiment, we collected two identical proteins from the relevant databases
and their interaction mode was described as “direct interaction” to construct the experi-
mental data set. More concretely, human protein sequences with self-interrelation were
collated from databases including InnateDB [27], BioGRID [28], UniProt [29], DIP [30], and
MatrixDB [31]. The principles for selecting these data are as follows: Firstly, the length of
protein residues was 50 to 5000 residues. Secondly, only proteins that met one of the follow-
ing conditions could be selected as positive samples: (1) officially reported by two or more
journals, (2) proteins defined as homo-oligomers by the UniProt database, and (3) verified
by more than two large-scale or one small-scale experiments. Finally, the negative samples
did not contain proteins with self-interaction. Through screening of the above principles,
1441 SIPs and 15,938 non-SIPs were included in the human data set. Additionally, the yeast
data set also underwent the same screening, and the quantity of positive and negative
samples was 710 and 5511, respectively.

In this study, the data set we used was imbalanced, with the number of negative
samples being much larger than the number of positive samples. Generally speaking, the
vast majority of data sets in the real world are imbalanced. We would be very lucky if
we could obtain a balanced data set. Therefore, to solve the problem of imbalanced data,
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researchers have put forward many solutions, which can be roughly divided into two
categories: one is to build balanced data sets and the other is to use different evaluation
indicators to measure the imbalanced data sets.

For the first scheme, we used the resampling method. For example, we used the over-
sampling method to increase the number of minority class samples to the same number
as that of the majority classes. Another is the use of the undersampling method to select
part of the majority class samples to reduce them to the same number as the minority class
samples. In addition, the data set can be balanced by generating more virtual samples
through GAN and other methods.

For the second scheme, accuracy was not a good measure. It was more inclined to the
majority of samples, which is often misleading. Therefore, in addition to accuracy, some
other evaluation indicators need to be added to measure the performance of the model.
For example, a comprehensive evaluation index F1 that can reflect the accuracy and recall
rate, namely, an AUC that can consider the classification ability of the classifier for positive
and negative samples at the same time, and can still make a reasonable evaluation of the
classifier in the case of unbalanced samples.

In this study, the gold standard data set we used produced both positive and negative
samples. Unlike some data sets that only produced positive samples, we needed to build
negative samples (in this case, we built a balanced data set). Based on the consideration of
maintaining the integrity of the data set, we did not delete the samples of the data set, but
used all of the samples of the imbalanced data set. Therefore, in addition to using accuracy,
we also used some more reliable measures, such as F1, MCC, and AUC, and drew the
ROC curve. We used these comprehensive indicators to better evaluate the performance of
the model.

2.2. Characterization of Protein Evolution Information

We utilized the PSSM matrix to transform the protein evolution information in alpha-
betic form into a matrix in numerical form in the experiment. PSSM [32] is able to translate
protein sequences into numerical matrices and depict their biological evolutionary infor-
mation [33–37]. In the PSSM matrix, each protein can generate a N × 20 matrix PM(i, j),
which is mathematically described below:

PM =


σ1,1 σ1,2 · · · σ1,20
σ2,1 σ2,2 · · · σ2,20
...

...
...

...
σN,1 σN,2 · · · σN,20

 (1)

here, N means the quantity of protein residues, 20 means the quantity of amino acid types,
and the matrix element σi,j denotes the probability of mutation of the ith residue to the jth
amino acid. In the experiment, we used position-specific iterated BLAST (PSI-BLAST) to
generate the PSSM matrix of protein, and its download website is http://blast.ncbi.nlm.nih.
gov/blast.cgi (accessed date 1 May 2015). We set the parameter e-value and iterations of
PSI-BLAST to the optimal 0.001 and 3, respectively, and searched for the protein sequences
in the classical SwissProt database.

2.3. Protein Feature Extraction

In the experiment, Fast learning with Graph Convolutional Networks (FastGCN) is
employed to extract the hidden features of the proteins [38]. FastGCN is able to interpret
graph nodes as independent identically distributed samples under a certain probability
distribution and write the loss and each convolutional layer as an integral over the ver-
tex embedding function, and to then evaluate the integral by defining a Monte Carlo
approximation to the sample loss and sample gradient.

http://blast.ncbi.nlm.nih.gov/blast.cgi
http://blast.ncbi.nlm.nih.gov/blast.cgi
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Suppose the probability space (V′, F, P) correlates with the vertex set V′ of graph
G′. For a subgraph G of a graph G′, its vertices are i.i.d. samples of V′ obtained by the
probability measure P. It is mathematically represented as follows.

h̃(l+1)(v) =
∫

Â(v, u)h(l)(u)W(l)dP(u), h(l+1)(v) = σ
(

h̃(l+1)(v)
)

, l = 0, . . . , M− 1 (2)

where u and v are independent random variables of P, and h(l) is the embedding function
from the lth layer. Loss L is the expected value of g(h(M)) embedded in h(M), which is
expressed as follows:

L = Ev∼P

[
g
(

h(M)
)
(v)
]
=
∫

g
(

h(M)
)
(v)dP(v) (3)

Thus, the i.i.d. sample u(l)
1 , . . . , u(l)

t1
∼ P of tl is available to approximately estimate

the integral transformation in the lth layer, which is described below:

h̃(l+1)
tl+1

(v)
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t ∑tl

j=1 Â
(

v, u(l)
j

)
h(l)tl

(
u(l)

j

)
W(l), h(l+1)

tl+1
(v)
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tM
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i=1 g(h(M)

tM
(u(M)

i )) (5)

In the experiment, we verified the hyperparameter of FastGCN through the grid
search method, and its optimization setting was as follows: the learning rate was 1e-1, the
number of hidden layer neurons was 256, the number of iterations was 200, and the loss
function was thr L2 regularization function. Specific experimental details can be found in
Supplementary Materials Table S1.

2.4. Interaction Prediction

We use a random forest (RF) classifier [39–41] in the study to predict the interaction of
the extracted feature data. RF contains multiple decision trees that classify new data by
what they have learned in the data set using the following classification strategy.

(a) Construct sub-datasets by drawing samples from the dataset in a repeatable form
according to the number of samples;

(b) Train decision trees based on these sub-datasets and obtain the results of each decision tree;
(c) Combine the results of all decision trees to obtain the final output using a minority–majority

voting strategy.

3. Results
3.1. Evaluation Metrics

We utilize evaluation metrics commonly used in machine learning to evaluate the per-
formance of the model in the study in order to make it generalizable and easily comparable
with other methods [24,42–44]. These evaluation metrics can be mathematically formulated
as follows:

Acc. =
TP + TN

TP + TN + FP + FN
(6)

Spe. =
TN

TN + FP
(7)

F1 =
2TP

2TP + FP + FN
(8)

MCC =
TP× TN − FP× FN√

(TP + FP)× (TN + FN)× (TP + FN)× (TN + FP)
(9)
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here, TP and TN denote true positive and negative, and FP and FN denote false positive
and negative, respectively. In the experiments, we also simultaneously plotted the receiver
operating curve (ROC) curves and calculated the area under the curve (AUC) values to
comprehensively evaluate the model capability.

Five-fold cross-validation (FFCV) [14,45–47] was used to generate the above evaluation
criteria when evaluating the model performance. Specifically, we scrambled the order
of all the data in SIPs data set, and randomly generated five disjoint subsets with an
approximately equal number. In each experiment, one subset was utilized to verify the
model performance, while the rest of the subsets were utilized for training the model. The
experiment was run five times, and different subsets were taken each time to ensure that
all subsets were verified only once. The final results were expressed by the average and
standard deviation of the five groups of experiments. To minimize the effect of randomness
on the assessment method, we performed 100 groups of FFCV and took the mean value as
the final result.

3.2. Performance Evaluation

SIPGCN is evaluated for its performance on data sets human and yeast using the
FFCV method. The detailed FFCV outcomes are summarized in Tables 1 and 2. As seen in
Table 1 of the human data set, the accuracy achieved by the five experiments was 93.53%,
93.41%, 92.78%, 94.10%, and 94.42%, with an average of 93.65% and standard variance of
0.64%. SIPGCN achieved 99.64%, 37.11%, 43.01%, and 0.6068 in specificity, F1, MCC, and
AUC, respectively. As seen in Table 2, which shows the outcomes of the yeast data set, the
accuracy achieved by the five SIPGCN experiments was 91.32%, 91.08%, 90.35%, 90.11%,
and 90.60%, with an average of 90.69% and a standard variance of 0.50%. Among other
evaluation indicators, SIPGCN achieved 99.08%, 38.37%, 41.19%, and 0.6430. The ROC
on gold standard data sets are displayed in Figures 2 and 3. In order to ensure that all
aspects of the ML process are fully addressed and reported, so as to better evaluate the
model’s capabilities, we plotted the learning curve trajectory of the model during training,
as shown in Figure 4. As can be seen from the figure, the model shows a convergence trend
with the increase in iteration.

Table 1. The FFCV outcomes attained using SIPGCN in the human data set.

Testing Set Acc. Spe. MCC F1 AUC

1 93.53% 99.68% 49.63% 44.72% 0.6108
2 93.41% 99.84% 41.77% 33.62% 0.6198
3 92.78% 99.03% 37.20% 34.81% 0.5841
4 94.10% 99.85% 32.09% 22.64% 0.5422
5 94.42% 99.78% 54.36% 49.74% 0.6773

Average 93.65 ± 0.64% 99.64 ± 0.35% 43.01 ± 9.04% 37.11 ± 10.54% 0.6068 ± 0.0496

Table 2. The FFCV outcomes attained using SIPGCN in the yeast data set.

Testing Set Acc. Spe. F1 MCC AUC

1 91.32% 99.82% 44.33% 49.87% 0.6599
2 91.08% 98.84% 35.09% 37.04% 0.6413
3 90.35% 98.99% 41.75% 43.85% 0.6838
4 90.11% 98.72% 37.56% 39.07% 0.6181
5 90.60% 99.01% 33.14% 36.13% 0.6122

Average 90.69 ± 0.50% 99.08 ± 0.43% 38.37 ± 4.63% 41.19 ± 5.69% 0.6430 ± 0.0297
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Figure 2. The ROC generated by SIPGCN in the human data set.

Figure 3. The ROC generated by SIPGCN in the yeast data set.

Figure 4. Learning curve trajectory generated by SIPGCN in the human and yeast data sets.

3.3. Comparison with Other Classifier Models

To verify the effect of the classifier on the model capability, we implemented abla-
tion experiments. In particular, we retained the feature extraction method in the exper-
iments and only replaced the RF classifiers used in the original model with K-Nearest
Neighbor (KNN) [48] and Extreme Learning Machine (ELM) [49], and validated them in
human and yeast data sets, respectively, and the experimental outcomes are summarized
in Tables 3 and 4.
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Table 3. The outcomes of different classifier models in the human data set.

Model Testing Set Acc. Spe. MCC F1 AUC

ELM

1 86.88% 93.55% 14.33% 21.38% 58.32%
2 86.99% 92.58% 11.95% 19.00% 56.66%
3 88.26% 94.26% 16.77% 23.02% 56.21%
4 86.62% 92.72% 11.27% 18.56% 55.46%
5 87.21% 93.17% 14.56% 21.52% 54.59%

Average 87.19 ± 0.63% 93.26 ± 0.68% 13.78 ± 2.21% 20.70 ± 1.87% 56.25 ± 1.40%

KNN

1 87.34% 93.81% 11.76% 18.52% 54.53%
2 87.63% 93.49% 15.11% 21.82% 59.00%
3 87.17% 93.00% 12.81% 19.78% 56.21%
4 86.30% 92.65% 13.44% 20.93% 53.86%
5 87.55% 93.62% 13.25% 19.96% 56.66%

Average 87.20 ± 0.53% 93.31 ± 0.48% 13.27 ± 1.22% 20.20 ± 1.25% 56.05 ± 2.01%

SIPGCN Average 93.65 ± 0.64% 99.64 ± 0.35% 43.01 ± 9.04% 37.11 ± 10.54% 60.68 ± 4.96%

Table 4. The outcomes of different classifier models in the yeast data set.

Model Testing Set Acc. Spe. MCC F1 AUC

ELM

1 79.18% 87.01% 8.93% 20.80% 55.50%
2 79.82% 85.93% 10.53% 21.32% 56.27%
3 80.14% 86.47% 12.70% 23.53% 55.02%
4 80.87% 86.96% 17.41% 27.88% 59.00%
5 78.39% 86.04% 10.14% 22.48% 51.64%

Average 79.68 ± 0.94% 86.48 ± 0.50% 11.94 ± 3.35% 23.20 ± 2.82% 55.49 ± 2.64%

KNN

1 82.32% 90.59% 12.60% 22.54% 59.12%
2 83.44% 90.68% 10.92% 20.16% 52.72%
3 81.75% 90.11% 12.21% 22.53% 54.78%
4 82.88% 91.35% 11.35% 20.82% 53.99%
5 83.94% 92.07% 9.94% 18.70% 54.18%

Average 82.86 ± 0.87% 90.96 ± 0.76% 11.40 ± 1.06% 20.95 ± 1.64% 54.96 ± 2.44%

SIPGCN Average 90.69 ± 0.50% 99.08 ± 0.43% 41.19 ± 5.69% 38.37 ± 4.63% 64.30 ± 2.97%

Table 3 lists the FFCV outcomes of the ELM and KNN classifier methods, respectively,
in the human data set. We can see that the accuracy and specificity achieved by the five
groups of experiments of the ELM classifier model are 87.19% and 93.26%, respectively,
with a standard deviation of 0.63 and 0.68%. The average accuracy and specificity achieved
by the KNN classifier model of the five groups of experiments are 87.20% and 93.31%,
respectively, with a standard deviation of 0.53 and 0.48%, respectively. However, SIPGCN
acquired an accuracy of 93.65% in the human data set, which is 6.46 and 6.45% higher, and
a specificity of 99.64, which is 12.44 and 6.33% higher, respectively.

Table 4 lists the FFCV results of the ELM and KNN classifier models, respectively, in the
yeast data set. We can see from the table that the average accuracy and specificity achieved
by the five groups of experiments of the ELM classifier model are 87.19% and 93.26%,
respectively, with a standard deviation of 0.63 and 0.68%, respectively. The average accuracy
and specificity achieved by the KNN classifier model of the five groups of experiments are
87.20% and 93.31%, respectively, with a standard deviation of 0.53 and 0.48%, respectively.
However, SIPGCN acquired an accuracy of 93.65% in the human data set, which is 6.46
and 6.45% higher, and a specificity of 99.64, which is 12.44 and 6.33% higher, respectively.

Table 4 gives a summary of the FFCV outcomes of the ELM and KNN classifier models
on the yeast data set. We can see that the accuracy and specificity achieved by the five
groups of experiments for the ELM classifier model are 79.68% and 86.48%, respectively,
with a standard deviation of 0.94 and 0.50%, respectively. The average accuracy and
specificity achieved by the KNN classifier model for the five groups of experiments are
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82.86% and 90.96%, respectively, with a standard deviation of 0.87 and 0.76%, respectively.
However, SIPGCN acquired an accuracy of 90.69% on the yeast data set, which is 11.01 and
7.83% higher, and a specificity of 99.08%, which is 16.22% and 8.12% higher, respectively.
To observe the experimental results more intuitively, we present these evaluation indicators
with histograms, as displayed in Figures 5 and 6.

Figure 5. The outcomes of different classifier models in the human data set.

Figure 6. The outcomes of different classifier models in the yeast data set.

3.4. Comparison with Other Feature Models

To verify the influence of GCN features on the model performance, we compared it
with the autocovariance (AC) features. Specifically, we utilized the AC method to extract
protein features to replace GCN features, while the other algorithms of the model remained
constant. The outcomes obtained by the AC feature model on the gold standard data sets
for human and yeast are listed in Tables 5 and 6. From Table 5, it is evident that the AC
feature model gained a mean accuracy of 84.31%, and the accuracy of the FFCV was 84.12%,
83.94%, 83.22%, 85.04%, and 85.23%, respectively. The SIPGCN model achieved an accuracy
of 93.65%, which is 9.34% higher than the AC feature model. Among the other parameters
of the evaluation model, the SIPGCN model also achieved better results.

Table 5. Comparison of SIPGCN with an AC feature model in the human data set.

Model Testing Set Acc. Spe. MCC F1 AUC

AC

1 84.12% 90.71% 5.05% 13.75% 49.99%
2 83.94% 89.58% 7.97% 16.47% 57.12%
3 83.22% 89.87% 6.17% 15.38% 52.51%
4 85.04% 90.15% 9.46% 17.20% 55.81%
5 85.23% 91.35% 7.97% 16.01% 55.79%

Average 84.31 ± 0.82% 90.33 ± 0.71% 7.32 ± 1.72% 15.76 ± 1.30% 54.24 ± 2.93%

SIPGCN Average 93.65 ± 0.64% 99.64 ± 0.35% 43.01 ± 9.04% 37.11 ± 10.54% 60.68 ± 4.96%
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Table 6. Comparison of SIPGCN with the AC feature model in the yeast data set.

Model Testing Set Acc. Spe. MCC F1 AUC

AC

1 78.62% 87.73% 0.88% 13.07% 52.37%
2 78.62% 85.69% 7.51% 19.39% 54.44%
3 80.63% 87.87% 10.10% 20.98% 58.29%
4 79.02% 86.57% 6.37% 18.18% 55.90%
5 80.16% 87.09% 10.04% 21.09% 55.84%

Average 79.41 ± 0.93% 86.99 ± 0.90% 6.98 ± 3.77% 18.54 ± 3.29% 55.37 ± 2.17%

SIPGCN Average 90.69 ± 0.50% 99.08 ± 0.43% 41.19 ± 5.69% 38.37 ± 4.63% 64.30 ± 2.97%

The outcomes of the AC feature model for the yeast dataset are summarized in Table 6,
from which it can be seen that the AC feature model gained an average accuracy of 79.41%,
sensitivity of 86.99%, and AUC of 55.37%. The SIPGCN model is 11.28%, 12.09%, and
8.93% higher, respectively, than the AC feature model for these parameters. From the above
comparison, it is evident that SIPGCN utilizing the GCN algorithm has better outcomes
than the AC feature model. This finding suggests that, compared with the AC feature
model, SIPGCN has a better performance. The reason for this result may be that the GCN
algorithm can deeply dig out the essential characteristics of the proteins in the form of graph
structures, which helps the classifier to better identify potential protein self-interactions.

3.5. Comparison with Other Previous Models

Recent investigations have shown that many researchers use a convolutional network
or graph convolutional neural network [50] combined with the 3D structure information of
proteins to solve the problem of PPI prediction [51]. In the model evaluation, these methods
have achieved good results. Aiming at the SIP in PPI prediction problem, SMOTE [52],
PSPEL [53], RP-FFT [44], SPAR [26], and LocFuse [54] have put forward better solutions to
the problem. To better assess the capabilities of SIPGCN, we compared it with these models.

As the evaluation parameters used by these methods are inconsistent, we chose the
accuracy provided by all of them as the measurement index, and summarized the results
obtained in the human and yeast data sets in Table 7. From Table 7, it is evident that
SIPGCN achieved the highest prediction accuracy in the human dataset, which is 3.80%
higher than the average accuracy of other methods. SIPGCN also achieved the best results
in the yeast data set, with an average accuracy that was 10.90% higher than other methods
and 3.83% higher than the second highest PSPEL method. The outcome of the comparison
experiments indicates that SIPGCN has a better performance and can predict SIP more
accurately than the previous models.

Table 7. Comparison of accuracy among SIPGCN and previous models in the human and yeast data sets.

Data Set SIPGCN SMOTE PSPEL RP-FFT SPAR LocFuse

Human 93.65% 91.68% 91.30% 93.54% 92.09% 80.66%
Yeast 90.69% 85.49% 86.86% 82.96% 76.96% 66.66%

4. Discussion

In this work, we designed an effective SIP prediction model SIPGCN based on protein
amino acid sequences, combined with a deep learning GCN and RF classifier. We first used
the PSSM matrix to obtain the evolutionary message of the amino acids, then extracted
their hidden feature distributions using the GCN algorithm, and finally utilized the RF
classifier on the gold standard data sets to determine whether there were interrelationships
between them. SIPGCN shows an optimal performance after comparison with different
models and previous methods. These excellent results indicate that SIPGCN has the ability
to accurately predict SIP and can provide new insights for wet experiments.
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There are two reasons SIPGCN performs so well. Firstly, SIPGCN makes full use of the
evolutionary message of protein amino acids, which provides an excellent solution for the
characterization of the sequence information; secondly, the feature extraction ability of deep
learning GCN is quite impressive, which can extract the hidden feature distribution in pro-
tein network nodes as much as possible and can represent it as a numerical vector. With the
support of these two advantages, SIPGCN naturally has a powerful prediction capability.

However, there are some limitations of SIPGCN. For example, SIPGCN only uses the
sequence information of proteins and does not utilize their physicochemical information
or 3D structure information, which needs to be further explored. Additionally, although
the deep learning GCN method has a strong feature extraction capability, it has a high
complexity and a large number of hyperparameters. How to better tune these hyperpa-
rameters to achieve optimal performance and reduce their complexity needs to be further
resolved. These limitations motivate us to continuously improve the method and measure
the performance of SIPGCN with higher requirements.

5. Conclusions

Proteomics research has always occupied an important position in biology research,
and protein self-interaction prediction studies are also progressing and break-throughs
have been made. In this work, we designed an innovative model, SIPGCN, for predicting
SIP based on deep learning. The model utilizes the evolutionary message of protein amino
acids and mines their deep features using the GCN algorithm. On the gold standard data
set, SIPGCN has demonstrated its excellent predictive power. SIPGCN has also exhibited
an optimal performance in ablation experiments. The above described results demonstrate
that SIPGCN can accurately predict proteins with self-interaction and can rapidly provide
credible candidates for wet experiments.

Supplementary Materials: The following supporting information can be downloaded at: https:
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