
PEARLS

The gut mycobiome: The overlooked

constituent of clinical outcomes and

treatment complications in patients with

cancer and other immunosuppressive

conditions

Jessica R. Galloway-PeñaID
1,2*, Dimitrios P. Kontoyiannis2*

1 Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas,

United States of America, 2 Department of Infectious Diseases, Infection Control, and Employee Health, The

University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America

* jrgalloway@mdanderson.org (JRG-P); dkontoyi@mdanderson.org (DPK)

Extensive efforts have focused on investigating the contributions of the intestinal microbiome

to health and disease, including immunomodulation [1, 2]. While the term “microbiome”

technically refers to microorganisms including bacteria, fungi, viruses, protozoa, and parasites,

the majority of studies focus on the bacteriome [3]. Although the bacteriome constitutes

>99% of the microbiome [4] (which is potentially the reason most studies focus on the bacter-

iome), it is irrefutable that the commensal fungi, or the “mycobiome,” alongside the other

microorganisms, coexist and interact ways that can be beneficial or detrimental to the host [5–

7]. Emerging research has focused on how the bacteriome relates to gastrointestinal (GI) disor-

ders, cancer therapy–related toxicities, and stem-cell transplantation outcomes; including cor-

relations with infection, graft-versus-host disease (GvHD), tumorigenesis, cancer relapse, and

mortality [8–11]. Thus far, there has been a lack of dedicated research focusing on the influ-

ence of mycobiome-associated immunomodulation in patients with cancer and other states of

immunosuppression. Herein, by focusing on the gut ecosystem, we discuss the role of fungi in

various patient populations, the importance of bacterial-fungal dysbiosis, and offer ideas for

future investigations regarding the role of mycobiome.

Current implications of gut fungi in patients with cancer or critical

illness

Fungal diversity and density are low in healthy subjects [7], although the factors for coloniza-

tion resistance against fungi in the gut are inadequately understood. It has been long known

that commensal bacteria limit fungal colonization via activation of mucosal innate immunity

by bacterial derived metabolites [12], while antibacterial agents can predispose individuals to

Candida albicans colonization and infections [13]. For example, antibiotic-induced dysbiosis

of intestinal microbes, such as Bacteriodes spp., was linked to a reduction in the cathelicidin

antimicrobial peptide (CRAMP), which resulted in the outgrowth of intestinal Candida spp.

[12]. Recently, it was found that an antibiotic-induced reduction in the levels of bacterial

derived short-chain fatty acids (SCFAs) in the cecum enhanced GI colonization of C. albicans
[14].

Antibiotics, however, are not the only factor that can potentially result in increased fungal

burden in the gut. In addition to the known effects of proton pump inhibitors (PPIs) as
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promoters of Candida gut colonization [15], it has been shown that high-intensity chemother-

apy results in reduced diversity of the GI microbiota, reduction of anaerobes [16], and a shift

in the Firmicutes to Bacteriodetes ratio [17]. Given that decreases of anaerobic bacteria have

been shown to promote Candida overgrowth [18], and Bacteroidetes have been shown to be

negatively associated with fungi [19, 20], it stands to reason that the gut mycobiome is altered

during cytotoxic chemotherapy.

In addition to the known fact that Candida colonization precedes Candida invasion in the

bloodstream [21], enrichment of the fungal consortium in the gut could also affect cancer

treatment-related complications and oncological outcomes. It was previously shown that pro-

longed administration of fluconazole for 75 days after hematopoietic stem cell transplantation

(HSCT) was not only associated with protection against invasive candidiasis and Candida-

related death, but also with decreased gut GvHD [22]. Indeed, Candida-colonized patients

have significantly higher incidence of severe GvHD [23]. C-type lectin receptors (such as Dec-

tin-1 and -2) of dendritic cells recognize fungal cell wall polysaccharides, which trigger protec-

tive antifungal T helper 17 cell (Th17) responses in the GI mucosa [24]. In fact, the induction

of Th17/interleukin-23 (IL-23) responses via activation of pattern recognition receptors by

Candida has been suggested as a potential mechanism of GvHD pathophysiology [25].

The alterations in gut bacterial metabolites in the setting of antibiotics, chemotherapy, and

HSCT might have indirect effects on fungal fitness and morphogenesis. It has been shown that

antibiotics with activity against anaerobic organisms can reduce gut SCFA levels [26] and that

low fecal butyrate and propionate levels correlate with decreased microbial diversity and

higher incidence of GvHD post HSCT [27]. Interestingly, SCFAs have been demonstrated to

induce transcriptional changes in C. albicans [28] and butyric acid has been found to inhibit

yeast–hyphal transition [29]. Furthermore, it is possible antibiotics may have an indirect role

on adverse GvHD outcomes by affecting Candida physiology, such as promoting yeast-to-

hyphae transition [30].

In terms of tumorogenesis, the mycobiome has been implicated in the pathogenesis of

colon adenomas [31] and, most recently, pancreatic ductal adenocarcinoma [32]. It was shown

that fungi migrate from the gut to the pancreas and that pancreatic tumors are infiltrated by

Malassezia spp. Removal of the mycobiome was protective against tumor growth. Mechanisti-

cally, fungi promoted the progression of pancreatic cancer by inducing the complement cas-

cade via activation by mannose binding lectin. Similarly, researchers have also recently shown

increases in Malasseziomycetes and decreases in Saccharomycetes in patients with colorectal

cancer, but no mechanism has been proposed [33].

The mycobiome and chronic inflammatory bowel disorders

In addition to the cancer and critically ill setting, the gut mycobiome has also been implicated

in inflammatory GI disorders, to include Crohn disease and ulcerative colitis. It was first

observed that patients with inflammatory bowel disorders (IBDs) had a higher GI colonization

rate by C. albicans compared to healthy individuals [34]. Furthermore, Sokol and colleagues

observed an imbalance in the Basidiomycota to Ascomycota ratio in IBD compared to healthy

subjects [35]. Further mechanistic studies implicated the mycobiome as a key contributor to

initiation of inflammation and pathogenesis of IBD, where dectin-1–deficient mice had more

severe IBD symptoms and colonization by pathogenic fungi [36]. It was also shown that C. tro-
picalis could exacerbate colitis severity in dectin-1–deficient mice. However, the association of

antifungal selection pressure to the constitution of the gut mycobiome and its direct or indirect

consequences to the underlying GI pathology and microbiome are rather complex. For exam-

ple, prolonged treatment with fluconazole led to decreased levels of Candida gut colonization
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at the expense of increased levels of gut colonization by opportunistic molds, such as Aspergil-
lus amstelodami, resulting in elevated colitis severity [37]. Interestingly, susceptibility to colitis

occurring in the presence of commensal bacteria eradication was revered by colonization with

either C. albicans or Saccharomyces cerevisiae [6]. This shows that in the appropriate context,

fungi can also confer protection against mucosal injury by tuning immune response.

Fungal–bacterial interactions to consider in the patient with cancer or GI

disorder, or critically ill patient

Many bacterial–fungal interactions that have been reported to influence the colonization and

pathogenesis of both kingdoms (Table 1). However, most studies were derived from in vitro

experiments or murine models that have a mono-microbial view of alterations in fungal biol-

ogy as a result of interactions with bacteria. These interactions have been shown to provide

synergy in commensalism, as in the case of C. albicans with enterococci [38], or are mutually

antagonistic, such as the case between C. albicans and Pseudomonas aeruginosa [39] (Table 1).

Interestingly, fecal microbiota transplantation (FMT) efficacy was reduced in patients with

Clostridioides difficile colitis who had dominance of Candida in the gut [40]. One possible rea-

son why patients with C. difficile and co-colonized with Candida species may not respond to

FMT is that C. albicans has also been shown to affect gut bacterial reconstitution or recoloniza-

tion after antibiotic administration [19]. Given that FMT has become an attractive treatment

strategy, not only for C. difficile infection or GI disorders but also to mitigate other treatment-

related toxicities such as GvHD, immune checkpoint inhibitor–associated colitis, and antibi-

otic resistant infection, one must consider the fungal contribution to the effectiveness of this

strategy [41–44].

Fungal implications for immunomodulation

There are data analogous to the bacteriome which suggest the immunomodulatory role of

fungi colonizing the GI tract in both innate and adaptive immunity [24]. It is well character-

ized that gut colonization by Candida or other fungi elicits Th17 and Th1 responses [45, 46].

In fact, among 30 taxa of the human mycobiome, C. albicans is the major inducer of systemic

Th17 cells [47]. Additionally, Candida-specific Foxp3+ regulatory T (Treg) cells, which are

implicated in the maintenance of mucosal immune homeostasis, have been detected in the

peripheral blood of healthy individuals [48]. Depending on the morphogenetic state of S. cere-
visiae, both subsets from human CD4+ T cells can be induced; thus, S. cerevisiae yeasts induce

Th1 CD4 differentiation, while S. cerevisiae spores promote Th17 CD4 expansion. These dif-

ferential effects of fungi on T-cell responses appear to be dependent on the influence of fungal

mannans on dendritic cells [49]. Moreover, as discussed above, inoculation with S. cerevisiae
and C. albicans were sufficient to alleviate the severe colitis as well as reduced levels of protec-

tive CD8+ T cells in antibiotic-treated mice infected with influenza virus [6].

Emerging data suggest that gut microbes may impact antitumor immunity during immu-

notherapy by priming innate effectors and the adaptive immune responses, inducing cytokine

production by antigen-presenting cells or lymphocytes [32]. In the aforementioned data, gut

mycobiota (specifically Malassezia species) are implicated in the pathogenesis of pancreatic

adenocarcinoma by promoting pancreatic inflammation through the complement cascade

[32]. Interestingly, several in vitro studies using myeloid or keratinocyte cell lines have shown

that stimulation with Malassezia leads to the induction of mainly proinflammatory cytokines

and chemokines [50]. Given the evidence for the immunomodulatory role of the gut myco-

biota, it is important to consider the effects perturbation of the gut fungi may cause on human
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health and various disease states, including possibly sites distant from the gut, such as lungs

[47] and central nervous system [51].

The immunomodulatory role of fungi may not only have implications for chemotherapeu-

tic/immunotherapy response and leukemia persistence, but also for infectious complications.

It has been shown that in scenarios where antibiotics promote Candida intestinal domination,

genetic changes occur that lead to increased fitness of C. albicans in the gut [52]. Interestingly,

this gut-adapted C. albicans confers increased protection against systemic fungal and bacterial

pathogens [52], likely due to the induction of systemic adaptive Th17 responses [46]. C. albi-
cans and S. cerevisiae were both shown to be capable of stimulating innate immunological

memory in myeloid cells [53]. Interestingly, mice treated with β-1,3-glucan or chitin were pro-

tected from a C. albicans challenge, suggesting a mechanism by which fungi can train mucosal

or circulating monocytes [54].

Technical considerations for mycobiome studies

The mycobiome field is in its infancy, and thus many technical challenges need to be consid-

ered when performing these studies. First, compared to bacteria and viruses, the mycobiome

comprises a relatively minor component of the overall microbiome [7]. Many commonly used

fecal genomic DNA extraction protocols are tailored for extracting bacterial genomic DNA

and are often imperfect for extracting fungal genomic DNA in regard to bead size for mechan-

ical lysis, enzymatic lysis buffers, and neutralizing or stabilizing agents [55]. Moreover, differ-

ent extraction kits favor particular fungal species, are biased against others, and are prone to

contamination [56]. Thus, one must carefully consider DNA extraction methods based on

whether the study is mycobiome specific, or if one needs to combine bacterial and fungal

microbiota analyses.

Table 1. Important fungal–bacterial interactions altering pathogenesis.

Fungi Bacteria Relationship Model Observation Reference

Candida
albicans

Enterococcus spp. Synergy Germ-free and

antibiotic-perturbed

mice

Enterococcal species are found to dominate the gastrointestinal microbiome

following the introduction of C. albicans
[38]

Antagonistic C. elegans coinfection

model

E. faecalis can inhibit C. albicans hyphal morphogenesis and virulence [38]

C. albicans Pseudomonas
aeruginosa

Antagonistic In vitro models P. aeruginosa lipopolysaccharide inhibits C. albicans biofilm and hyphal

development

[39]

In vitro models P. aeruginosa excretes quorum-sensing molecules and quinolone signals,

which repress hyphal and biofilm formation

[39]

In vitro models C. albicans secretes farnesol, which down-regulates the expression of P.

aeruginosa virulence factors through modulation of the Pseudomonas
quinolone signal system

[39]

In vitro models C. albicans inhibits the production of cytotoxic exotoxin A and pyoverdine [39]

Neutropenic co-

colonized mice

Mice colonized with both P. aeruginosa and C. albicans had significantly

lower mortality compared to those colonized with P. aeruginosa alone

[39]

C. albicans Clostridium spp. Synergy In vitro models C. albicans coculture promotes C. difficile and C. perfringens growth in

aerobic conditions

[63]

C. difficile mouse model Oral Candida administration worsens C. difficile severity [64]

Antagonistic In vitro models p-cresol, produced by C. difficile, inhibits hyphal formation and virulence of

C. albicans
[63]

C. difficile mouse model C. albicans reduces C. difficile growth and C. difficile–related mortality, which

appears dependent on the alterations that Candida induces on the gut

bacteriome composition

[40]

https://doi.org/10.1371/journal.ppat.1008353.t001
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Most problems, however, lie in the lack of standardized methods for characterization of the

mycobiota. When comparing amplicon sequencing, ITS1, ITS2, 18S, and 28S rRNA give

slightly different results [56]. The 18S rRNA typically outperforms other markers in its ability

to amplify and discriminate different species; however, because fungal rRNA copy numbers

vary, there is a strong bias towards fungi with more copies. On the other hand, although the

internal transcribed spacer (ITS) region represents the formal fungal barcode, it sometimes

provides insufficient resolution to distinguish species. ITS primers show both amplification

and sequencing biases related to the variable length of the product [56]. The length of the ITS1

and ITS2 markers vary from 50 bp to several kb. Incorrect mapping, and thus classification,

leads to the inclusion of false positives or exclusion of valid operational taxonomic units

(OTUs). Microbiome studies rely on well-curated reference databases in order to provide

accurate taxonomic assignments of OTUs. Unfortunately, public repositories contain a high

percentage of fungal sequences that are incomplete or even incorrectly annotated [57, 58].

Moreover, in regard to shotgun metagenomics, the number of annotated fungal genome

sequences available in reference databases are sparse compared to the number of bacterial

genome sequences available. Thus, for the mycobiome field to move forward, it would be criti-

cal to expand fungal sequencing efforts and improve fungal phylogenetics and taxonomic

classification.

Another critical topic to consider in research moving forward is the potential for using

mycobiome components as rapid diagnostic markers. Despite their promise, the diagnostic

use of fungal biomarkers, such as galactomannan and beta glucan, are fraught with problems

even in high-risk populations, such as acute myeloid leukemia (AML) and HSCT patients [59].

In contrast, mycobiome testing offers the promise of a holistic assessment of the fungal com-

munity in a particular site. As with all molecular-based clinical diagnostics in mycology, tech-

nical challenges include the sheer spectrum and number of fungi needed to be identified in

immunocompromised patients, universal methods for preparing sample templates consider-

ing fungal morphology variability, lack of consistency in nomenclature, and the limitations of

commercial platforms panels, reference libraries, and databases [60].

Conclusions

Although the impact of the microbiome in health and disease has been established, concurrent

analysis of the bacterial/fungal consortium and its balance have been understudied [61]. This

knowledge gap may be in part due to technical limitations within the metagenomic field; how-

ever, one can imagine that there is a vast number of cross-kingdom interactions that are

important in the human host. To date, a small number of fungal-bacterial relationships have

been studied in vitro or in model systems, but often this “one bacteria, one fungi” experimen-

tation strips these insights of their complexity and the nuances of interactions in the setting of

polymicrobial communities. This multifaceted trans-kingdom interplay is not only affected by

the specific members that are present but also the complex immunological millieu of the

human host. Fungal–bacterial combinations that may be neutral or advantageous in the

human host may be detrimental in an immunocompromised patient. Thus, improved

approaches in understanding the mycobiome are vital in order to provide a foundation for

personalized medicine in the patient with cancer. A deeper comprehension of the fungal–bac-

terial–immunocompromised host triad may allow for identification of high-risk patients and

improved treatment strategies [62]. We believe mycobiome is an underexploited field of inves-

tigation in the cancer field, and many fascinating research questions remain unanswered in

both patients with hematologic cancer (Box 1) and other patients with chronic immunosup-

pressive conditions (e.g., recipients of solid transplant, chronic autoimmune disorders, and
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critically ill patients in the intensive care unit (ICU), where systematic mycobiome research is

currently limited.
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