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The Cancer Genome Atlas (TCGA) has accrued RNA-Seq-based transcriptome data for more than 
4000 cancer tissue samples across 12 cancer types, translating these data into biological insights 
remains a major challenge. We analyzed and compared the transcriptomes of 4043 cancer and 548 
normal tissue samples from 21 TCGA cancer types, and created a comprehensive catalog of gene 
expression alterations for each cancer type. By clustering genes into co-regulated gene sets, we 
identified seven cross-cancer gene signatures altered across a diverse panel of primary human cancer 
samples. A 14-gene signature extracted from these seven cross-cancer gene signatures precisely 
differentiated between cancerous and normal samples, the predictive accuracy of leave-one-out 
cross-validation (LOOCV) were 92.04%, 96.23%, 91.76%, 90.05%, 88.17%, 94.29%, and 99.10% 
for BLCA, BRCA, COAD, HNSC, LIHC, LUAD, and LUSC, respectively. A lung cancer-specific gene 
signature, containing SFTPA1 and SFTPA2 genes, accurately distinguished lung cancer from other 
cancer samples, the predictive accuracy of LOOCV for TCGA and GSE5364 data were 95.68% and 
100%, respectively. These gene signatures provide rich insights into the transcriptional programs 
that trigger tumorigenesis and metastasis, and many genes in the signature gene panels may be of 
significant value to the diagnosis and treatment of cancer.

Recent advances in cancer genomics have created a rich resource for studying the causes of cancer. 
The Cancer Genome Atlas (TCGA)1 (http://cancergenome.nih.gov) has accrued more than 10,000 cases 
of human cancer including over 25 different cancer types. Datasets including RNA-Seq, miRNA-Seq, 
Exon-Seq, somatic mutations, methylation, CNV for each case are publically available via the TCGA 
Data Portal (https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp) and UCSC Cancer Genomics Hub 
(https://cghub.ucsc.edu). Translating these data into biological insights remains a major challenge. 
Currently several studies have analyzed genome-wide mutational patterns in different cancer types and 
identified genes harboring functional mutations implicated in cancerogenesis2–5. Cancer is thought to be 
driven by gene expression pattern changes due to the accumulation of mutations or epigenetic modifi-
cations; thus, a comprehensive characterization of alterations in gene expression will not only advance 
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our understanding of cancer biology, it will also provide a large number of new potential diagnostic and 
therapeutic targets for cancer. Cheng et al.6 introduced a method to identify cancer-associated attractors 
and revealed some interesting bimolecular events shared among multiple cancer types based on microar-
ray gene expression data. However, genome-wide association analysis of RNA-Seq transcriptome data 
across various TCGA cancer types has rarely been reported. RNA-Seq, a revolutionary technology for 
genome-wide gene expression profiling, offers several key advantages compared to microarrays7, it could 
better characterize the transcriptomic changes associated with human cancers.

In this study, we analyzed and compared the RNA-Seq transcriptomes of 4043 cancer and 548 solid 
tissue normal samples across 21 types of cancer from TCGA. We created a catalog of gene expression 
alterations for each cancer type, and our results show that the alterations in gene expression vary sub-
stantially between different tumor types. Studies have shown that cancer involves many different genes 
and a majority of these genes have a small to moderate effect8, it is difficult to detect these effects by 
single gene analysis. By clustering genes into co-regulated gene sets, we are able to examine accumula-
tive effects of a group of functionally related genes. We performed gene set association analysis for each 
cancer type; our results revealed several common gene signatures shared by multiple cancer types and 
a lung cancer-specific gene signature. We also validated these signatures using several non-TCGA data 
sets. These cross-cancer and cancer-specific transcriptional aberrations improve our understanding of 
the etiology of human cancers, and are of great importance for the diagnosis and treatment of cancer.

Results
Gene-level differential expression analysis of transcriptomes. We conducted gene differential 
expression analysis and created a catalog of gene expression alterations for each of 12 cancer types; the 
results are shown in Supplementary Table S1. Our results show that a large number of genes were differ-
entially expressed. Among a total of 20530 genes, the percentage of differentially expressed (DE) genes 
with FDR <  0.01 is 0.32, 0.72, 0.51, 0.52, 0.52, 0.65, 0.68, 0.54, 0.69, 0.46, 0.46, and 0.56 for BLCA, BRCA, 
COAD, HNSC, LIHC, LUAD, LUSC, KICH, KIRC, KIRP, PRAD, and THCA, respectively. To examine 
the similarity of DE genes between cancer types, we extracted the top 3% most differentially expressed 
genes from each cancer type. We then calculated the number of common DE genes between cancer types. 
As shown in Table 1, we found that DE genes vary substantially across cancer types, and there are less 
than 20% common DE genes between most cancer types. LUAD and LUSC, two forms of lung cancers, 
turn out to be most similar cancers since they share 55% of DE genes. Contrarily, the DE profiles of 
two kidney cancers, KICH and KIRC, are quite different from each other and others; the percentage of 
common DE genes is less than 10%. Additionally, THCA is also poorly overlapped with other cancers in 
terms of DE genes. The diversity in differential expression could be explained by several factors: (1) many 
of gene expression alterations may be cancer type-specific; (2) aberrations in different genes may have 
same phenotypic consequences; (3) single gene analysis may miss many subtle effects on causative genes.

Gene clustering. Prior to gene set association analysis, we clustered genes based on their expres-
sion profiles over all normal samples across 12 cancer types. We obtained a total of 3236 clusters 
(Supplementary Table S2). The expression changes of genes in a cluster are highly correlated under 

Table 1.  The percentage of common genes and gene sets in top 3% most differentially expressed genes 
and gene sets between 12 cancer types*. *Results from DE gene comparisons lie below the diagonal line; 
results from DE gene set comparisons are above the diagonal line.
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various conditions, thus, it is reasonable to assume that genes in the same cluster are co-regulated or 
belong to the same pathway.

Gene set association analysis of TCGA data. Cancers arise from the aberrations in multiple genes, 
many of which only have moderate or weak effect sizes that are difficult to detect by only analyzing 
individual genes, therefore, we adopted gene set association analysis to detect the accumulative effect 
of a group of functionally related genes and to reveal the transcriptional program accounting for the 
variability in phenotype.

Carcinogenesis is caused by the accumulation of mutations and epimutations in normal cells9,10, which 
confer a growth and selective advantage upon these cells, resulting in uncontrolled cell division and the 
evolution of these cells by natural selection11. The mutations can be classified into two classes, driver 
mutation and passenger mutation, according to their phenotypic effects12. Driver mutations are causally 
implicated in carcinogenesis while passenger mutations don’t contribute to the development of cancer. 
A driver mutation is expected to alter the gene expression of its target genes and/or genes that share the 
same biological pathway13,14, and these changes in gene expression account for the phenotypic variance15.

The cell cycle lies at the core of cancer16,17. In normal cells, the cell cycle is controlled by a series 
of signaling pathways by which a cell grows, replicates its DNA and divides. In cancers, as a result of 
mutations, this regulatory process malfunctions, resulting in uncontrolled cell proliferation that leads 
to carcinogenesis18,19. From the perspective of pathway, we hypothesize that there may be two potential 
carcinogenic mechanisms, as illustrated in Fig.  1: (1) one or more driver mutations are within a cell 
cycle-associated pathway, altering its expression pattern and consequently leading to cancer; (2) one or 
more driver mutations lie in an organ/tissue-specific pathway or other pathways not related to cell cycle, 
which interacts with a cell cycle-associated pathway, alters its expression pattern, and ultimately results 
in cancer. Since the deregulation of cell cycle is a common characteristic shared by multiple cancer types, 
we expected that the expression of cell cycle-associated pathways would be altered across a range of can-
cers. By analyzing and comparing the transcriptome data of 12 cancer types, we can test this hypothesis.

A gene signature denotes a set of genes that are significantly differentially expressed between cancer 
and normal samples. We call those pathways/gene sets significantly altered in multiple cancer types 
as cross-cancer gene signatures while those disrupted in just one cancer type as cancer-specific gene 
signatures. We performed gene set association analysis using all gene sets generated by gene clustering; 
the results are shown in Supplementary Table S3. We identified 20, 7, 7, 6, 7, 15, 30, and 1 significant 
gene sets for BLCA, BRCA, COAD, HNSC, LIHC, LUAD, LUSC, and KICH, respectively. No significant 
associations were found for KIRC, KIRP, PRAD, and THCA. Among 46 significant gene sets, seven are 

Figure 1. Two possible carcinogenic mechanisms. (1) gene expression aberrations in cell cycle-associated 
pathways can directly lead to carcinogenesis, these pathways are cross-cancer gene signatures altered across 
a range of cancer types; (2) gene expression aberrations in organ-specific pathways can indirectly lead to 
carcinogenesis by interacting with cell cycle-associated pathways, these pathways are cancer-specific gene 
signatures altered in a single cancer type. Stars represent driver mutations that can alter the expression levels 
of their target genes.
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cross-cancer gene signatures whose expression levels were significantly altered in at least four cancer types 
(Fig. 2), the false discovery rates (FDRs) of these gene sets for each cancer type are shown in Table 2. In 
order to gain biological insights into these gene sets, we performed three types of pathway enrichment 
analyses, GO analysis, KEGG analysis, and Pathway Commons analysis, and disease association analysis 
for genes of each of these gene sets. The results of these analyses are shown in Supplementary Table S4. 
Interestingly, we found that these seven cross-cancer gene signatures are all closely related to cell cycle 
regulation, as we expected. Gene set CLUSTER2556 is significant in BLCA, COAD, and LUSC. There are 
9 significant gene sets shared by two cancer types. Gene set CLUSTER242 is shared by LIHC and LUSC, 
and the remaining 8 gene sets are shared by LUAD and LUSC. LUAD and LUSC are more similar to one 
another than other cancer types possibly because they are both lung cancers.

Cross-cancer gene signatures. We identified seven cross-cancer gene signatures: CLUSTER241, 
CLUSTER514, CLUSTER1011, CLUSTER932, CLUSTER574, CLUSTER3137, and CLUSTER184, that 
were altered in at least four types of human cancers. All of these signatures are associated with cell cycle 
regulation.

Figure 2. The normalized expression levels of seven cross-cancer gene signatures across 12 types of 
cancer and normal samples. 
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Cross-cancer gene signature 1 – CLUSTER241. CLUSTER241 is significantly altered in seven cancer 
types: BLCA, BRCA, COAD, HNSC, LIHC, LUAD, and LUSC. GO analysis, KEGG analysis, and Pathway 
Commons analysis indicate that genes in this cluster are enriched in pathways involved in the cell cycle. 
The top enriched GO biological process, KEGG pathway, and Pathway Commons pathway are M Phase, 
Cell Cycle, and Mitotic Prometaphase, respectively. The top associated disease is Aneuploidy. Aneuploidy, 
denoting cells with an abnormal number of chromosomes, is commonly observed in human cancer; 
it has been recognized as a key characteristic of cancer20,21. This cluster contains 33 genes, several of 

Table 2.  Significant gene sets at FDR < 0.15 from 12 types of cancers.
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which have reported roles in cancer. Kinesins have been reported to play critical roles in the initiation 
and development of human cancers22,23. Marker of proliferation Ki-67 (MKI67) is a prognostic marker 
for breast cancer24,25. Simultaneous aberration of topoisomerase (DNA) II alpha (TOP2A) and v-erb-b2 
avian erythroblastic leukemia viral oncogene homolog 2 (ERBB2/HER2) has been observed in multiple 
tumor types26,27.

Cross-cancer gene signature 2 – CLUSTER514. CLUSTER514 is significantly altered in seven cancer 
types: BLCA, BRCA, COAD, HNSC, LIHC, LUAD, and LUSC. GO analysis, KEGG analysis, and Pathway 
Commons analysis indicate that genes in this cluster are enriched in pathways involved in the cell cycle. 
The top enriched GO biological process, KEGG pathway, and Pathway Commons pathway are Organelle 
Fission, Cell Cycle, and Cell Cycle, Mitotic, respectively. The top associated disease is Cancer or Viral 
Infections. This cluster contains 36 genes, of which a lot are prognostic markers for cancer. Enhancer of 
zeste 2 polycomb repressive complex 2 subunit (EZH2) has been linked to multiple cancers28,29. Aurora 
kinase A (AURKA) causes chromosome instability by inactivating p53 and contributes to tumorigenesis/
carcinogenesis30–32. Baculoviral IAP repeat containing 5 (BIRC5) is over-expressed in most human can-
cers; the microRNA targeting BIRC5 suppresses cell proliferation in triple-negative breast cancer (TNBC) 
cells33–35. Thymidine Kinase 1 (TK1), which is elevated in the early stages of malignancies, is a universal 
marker for cancer36,37. Polo-like kinase 1 (PLK1) is overexpressed in many tumor types; it is a target for 
cancer therapy38–40. RAD51 recombinase (RAD51) plays a critical role in DNA Damage Repair and is a 
potential therapeutic target for cancer41,42. Hyaluronan-mediated motility receptor (HMMR) is correlated 
to the stemness and tumorigenicity of cancer stem cells43,44. Cyclin B1 (CCNB1), PDZ binding kinase 
(PBK), and cyclin-dependent kinase inhibitor 3 (CDKN3) are also prognostic biomarkers for various 
types of cancer45–49.

Cross-cancer gene signature 3 – CLUSTER1011. CLUSTER1011 is significantly altered in seven can-
cer types: BLCA, BRCA, COAD, HNSC, LIHC, LUAD, and LUSC. GO analysis, KEGG analysis, and 
Pathway Commons analysis indicate that genes in this cluster are enriched in pathways involved in the 
cell cycle. The top enriched GO biological process, KEGG pathway, and Pathway Commons pathway are 
Cell Cycle, Cell Cycle, and DNA Replication, respectively. The top associated disease is Fanconi Anemia 
(FA). The FA proteins are involved in the cell-cycle checkpoint and DNA-repair pathways50,51. This cluster 
contains 19 genes, several of which have been linked to cancer. Mutations in BRCA1 interacting protein 
C-terminal helicase 1 (BRIP1) have been associated with ovarian cancer and breast cancer52–54. The over-
expression of KIAA1524/CIP2A have been observed in multiple types of cancer55–57. Centromere protein 
H (CENPH) is a prognostic marker for cancer58–61.

Cross-cancer gene signature 4 – CLUSTER932. CLUSTER932 is significantly altered in seven cancer 
types: BLCA, BRCA, COAD, HNSC, LIHC, LUAD, and LUSC. GO analysis, KEGG analysis, and Pathway 
Commons analysis indicate that genes in this cluster are enriched in pathways involved in the cell cycle. 
The top enriched GO biological process, KEGG pathway, and Pathway Commons pathway are Cell Cycle, 
Cell Cycle, and Cell Cycle, Mitotic, respectively. The top associated disease is Retinoblastoma. This cluster 
contains 19 genes, many of which have well-known roles in cancer. Cyclin E1 (CCNE1) and cyclin E2 
(CCNE2) play critical roles in cell cycle regulation and are potential therapeutic targets in cancer62–64. The 
aberrant expression of cell division cycle 6 (CDC6) has been documented in multiple human cancers65–67. 
E2F transcription factor 7 (E2F7) is interacted with p53, it has been implicated as playing a role in tum-
origenesis68–70. Ubiquitin-like with PHD and ring finger domains 1 (UHRF1) is an upstream regulator of 
the Tip60-p53 interaction and it has been linked to liver cancer71.

Cross-cancer gene signature 5 – CLUSTER574. CLUSTER574 is significantly altered in six cancer types: 
BRCA, COAD, HNSC, LIHC, LUAD, and LUSC. GO analysis, KEGG analysis, and Pathway Commons 
analysis indicate that genes in this cluster are enriched in pathways involved in the cell cycle. The top 
enriched GO biological process, KEGG pathway, and Pathway Commons pathway are Mitotic Cell Cycle, 
Pyrimidine Metabolism, and Cell Cycle, Mitotic, respectively. The top associated disease is Pancreatic 
Diseases. This cluster contains 17 genes, several of which have been associated with cancer. Forkhead box 
M1 (FOXM1) is overexpressed in the majority of human cancers, it has well-known roles in cancer72–74. 
Thymidylate synthetase (TYMS) is considered a prognostic biomarker for cancer75,76. Ribonucleotide 
reductase M2 (RRM2) is associated with poor survival; it is also implicated in angiogenesis77–79. Spindle 
and kinetochore associated complex subunit 1 (SKA1) has been highlighted as a biomarker in several 
types of cancers80.

Cross-cancer gene signature 6 – CLUSTER3137. CLUSTER3137 is significantly altered in five cancer 
types: BLCA, COAD, LIHC, LUAD, and LUSC. GO analysis, KEGG analysis, and Pathway Commons 
analysis indicate that genes in this cluster are enriched in pathways involved in the cell cycle. The top 
enriched GO biological process, KEGG pathway, and Pathway Commons pathway are Cell Cycle Process, 
Cell Cycle, and Mitotic M-M/G1 Phases, respectively. The top associated disease is Retinoblastoma. 
This cluster contains 16 genes, several of which have been linked to cancer. S-phase kinase-associated 
protein 2, E3 ubiquitin protein ligase (SKP2) is a protooncogene in human tumors and is a potential 
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cancer drug target81–83. Ribonucleotide reductase M1 (RRM1) is a prognostic marker for cancer84,85. DNA 
(cytosine-5-)-methyltransferase 1 (DNMT1) is overexpressed in many cancers and is correlated to the 
aberrant methylation in human cancer cells86. The polymorphisms of DNMT1 have been reported to 
increase breast cancer risk87–89.

Figure 3. The normalized expression levels of gene signatures significantly altered in one type of cancer 
across 12 types of cancer and normal samples. 
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Cross-cancer gene signature 7 – CLUSTER184. CLUSTER184 is significantly altered in four cancer types: 
BLCA, BRCA, LUAD, and LUSC. GO analysis, KEGG analysis, and Pathway Commons analysis indicate 
that genes in this cluster are enriched in pathways involved in the cell cycle. The top enriched GO bio-
logical process, KEGG pathway, and Pathway Commons pathway are M Phase, Oocyte Meiosis, and Cell 
Cycle, Mitotic, respectively. The top associated disease is Aneuploidy. This cluster contains 24 genes, sev-
eral of which have been linked to cancer. The aurora kinase B (AURKB) was shown to be overexpressed 
in many types of cancer cells, and it has been implicated in the carcinogenesis and tumor development 
process90–92. Ubiquitin-conjugating enzyme E2C (UBE2C/UBCH10) has been reported to play a critical 
role in carcinogenesis and tumor development93–95.

Although these seven cross-cancer gene signatures in a broad sense are involved in the cell cycle, they 
may manifest different cellular processes leading to the abnormal cell cycle regulation in malignancy. For 
example, DNMT1 in CLUSTER3137 is the major enzyme responsible for maintenance of the DNA meth-
ylation pattern96–98. DNMT1 has been reported to be overexpressed in many cancers and to be involved 
in the epigenetic silencing of tumor suppressor genes in human tumor cells86. Therefore, the perturbation 
of CLUSTER3137 might be an epigenetic trigger of tumorigenesis. The deregulation of CLUSTER1011 
may reveal the roles of components of the Fanconi anemia/BRCA pathway in human cancers. Increasing 
evidence shows that FA proteins are involved in the DNA damage response50,51. In this cluster, except 
for genes that have established roles in the DNA damage response, such as Fanconi anemia, comple-
mentation group D2 (FANCD2)99, our study also suggests genes, e.g., downstream neighbor of SON 

Symbol Full name Lung diseases

SFTPA2 surfactant, pulmonary-associated 
protein A2

lung cancer101–104, acute and chronic lung dis-
ease105,106

SFTPA1 surfactant, pulmonary-associated 
protein A1

lung cancer103, acute and chronic lung dis-
ease107–109

ROS1 ROS proto-oncogene 1, receptor 
tyrosine kinase lung cancer165,166,

ABCA3 ATP-binding cassette, sub-family A 
(ABC1), member 3 pulmonary fibrosis167, respiratory disease168–170

AQP4 aquaporin 4 lung cancer171,172

HHIP hedgehog interacting protein lung cancer173, chronic obstructive pulmonary 
disease174, abnormal lung function175

SLC34A2 solute carrier family 34, member 2 pulmonary alveolar microlithiasis176,177

IL6R interleukin 6 receptor chronic obstructive pulmonary disease178, abnor-
mal lung function179

Table 3.  List of lung disease-associated genes in CLUSTER1520.

Figure 4. The normalized expression levels of SFTPA1 and SFTPA2 across 12 types of cancer and 
normal samples. 



www.nature.com/scientificreports/

9Scientific RepoRts | 5:13413 | DOi: 10.1038/srep13413

(DONSON) and proline/serine-rich coiled-coil 1 (PSRC1), that may have new unrevealed functions in 
DNA repair since the expression levels of theses genes were up-regulated in accordance with FA proteins 
and BRIP1 in cancer samples. Altogether, these seven cross-cancer gene signatures can not only deepen 
and broaden our understanding of the cellular events involving carcinogenesis related to the four phases 
of the cell cycle, they also reveal many potential novel therapeutic targets that have so far not been linked 
to cancers but may have unknown roles in cancer biology. Our study can be considered as a starting 
point, and further investigations (e.g., mutation analysis, survival analysis, and functional analysis) on 
these genes or clusters may lead to the discovery of novel cancer biomarkers and development of new 
anticancer therapies.

Gene signatures significantly altered in one type of cancer. Based on the TCGA cancer data sets we used, 
we identified 37 gene signatures significantly altered (FDR <  0.15) only in one type of cancer, of which 21 
gene signatures are for lung cancers: LUAD and/or LUSC, 13 for BLCA, 1 for BRCA, 1 for HNSC, and 1 
for KICH. Figure 3 lists the expression patterns of part of these gene signatures across cancer and normal 
samples. Among these signature gene sets, several were implicated in relative organ-specific diseases by 
disease association analysis, and may provide insights into transcriptional aberrations underlying the 
initiation and progression of a specific cancer type.

Gene signatures for lung cancers. 21 clusters were significantly altered only in one or both of lung can-
cers, three of which, CLUSTER1520, CLUSTER901 and CLUSTER1057, have been implicated in lung 
diseases.

CLUSTER1520 contains 39 genes. Some genes in this cluster have been reported to be associated 
with lung cancer or other lung diseases (see Table 3 for details). Among them, two genes, SFTPA1 and 
SFTPA2, encode surfactant protein A (SP-A) that plays a vital role in maintaining normal lung func-
tion100 and have been implicated in various lung diseases101–104,105–109. The expression levels of SFTPA1 
and SFTPA2 were much higher in lung tissue samples than in any other tissue samples, moreover, these 
two genes were strikingly down-regulated in lung tumor tissues as compared to the adjacent nontumor 
tissues (Fig. 4). We thus speculate that the expression changes in these two genes might be an important 
indicator for lung function abnormalities, and those 39 genes in CLUSTER1520 might form a network 
underlying the initiation and/or development of lung cancers. It could be valuable to elucidate the pos-
sible roles of these genes in lung cancer in an experimental setting.

The top associated disease for CLUSTER901 is Lung Neoplasms (adjP =  0.0006). This cluster contains 
32 genes, several of which have been reported to play roles in lung diseases. G protein-coupled receptor, 
class C, group 5, member A (Gprc5a) protein is detected in the lungs more than in any other tissue; 
Gprc5a knockout promotes lung inflammation and tumorigenesis in mice110–112. Moreover, GPRC5A is 
down-regulated in the adjacent field and normal bronchial epithelia of patients with chronic obstructive 
pulmonary disease and non-small-cell lung cancer113,114. Wingless-type MMTV integration site family, 
member 7A (WNT7A) has been reported to be associated with lung cancer115,116. Claudin 18 (CLDN18) 

Figure 5. The predictive accuracy and error rates of LOOCV for each cancer type using the 14-gene 
signature. Red indicates the predictive accuracy; Blue represents error rates.
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deficiency is related to alveolar barrier dysfunction117,118. Adrenoceptor beta 2 (ADRB2) is associated with 
lung function and lung diseases119,120.

The top associated diseases for CLUSTER1057 are Lung Diseases (adjP =  0.0037), Respiratory Tract 
Diseases (adjP =  0.0037), and Airway Obstruction (adjP =  0.0037). CLUSTER1057 contains many 
immunity-associated genes and might contribute to the immune reactions to lung cancers. Among them, 
interleukin 33 (IL33) has been linked to lung diseases121,122; interferon (alpha, beta and omega) receptor 2 
(IFNAR2) is a prognostic biomarker for lung cancer123; GTPase, IMAP family member 6 (GIMAP6) and 
member 8 (GIMAP8) were significantly down-regulated in the non-small cell lung cancer124.

Gene signatures for BLCA. Thirteen clusters were significantly altered only in BLCA, two of which, 
CLUSTER2174 and CLUSTER1860, have been implicated in bladder abnormalities. The top associated 
disease for CLUSTER2174 is Urogenital Abnormalities (adjP =  0.0008). This cluster contains 15 genes. 
Among them, fibroblast growth factor receptor 1 (FGFR1) is a well-known gene that plays a key role in 
the development of urothelial carcinomas125,126. The top associated disease for CLUSTER1860 is Cystitis 
(adjP =  3.08e-05). This cluster contains 18 genes. Gap junction protein, gamma 1 (GJC1/CX45) is one of 
the two most important gap junction proteins in bladder smooth muscle cells and suburothelial myofi-
broblasts that are essential for the coordination of normal bladder function127. SPARC-like 1 (SPARCL1) 
is down-regulated in bladder cancer and prostate cancer128,129.

Gene signatures for BRCA. CLUSTER891 is significantly altered only in BRCA. The top associated dis-
ease is Adenocarcinoma (adjP =  0.0182). This cluster contains 16 genes, two of which have been linked 
to p53. p53 represses hepatoma-derived growth factor (HDGF), and loss of p53 function contributes to 
tumorigenesis by elevating HDGF expression130,131. p53 induces the expression of ferredoxin reductase 
(FDXR) which sensitizes cells to apoptosis132,133. Syndecan 1 (SDC1) promotes tumor angiogenesis and 
growth134,135.

Gene signatures for KICH. CLUSTER2240 is significantly altered only in KICH. The top associated 
disease for CLUSTER2240 is Ciliary Motility Disorders (adjP =  1.85e-05), and Ciliary dysfunction is 
a risk factor for both syndromic and isolated kidney cystic disease136. This cluster contains 25 genes. 
Nephronophthisis 1 (NPHP1/NPH1) gene deletion is correlated with nephronophthisis137–140.

We have shown that DE genes vary dramatically across 12 cancer types. To test whether there exists 
a more consistent DE pattern at the gene set level, we extracted the top 3% most differentially expressed 
gene sets from each cancer type, and calculated the number of common DE gene sets between cancer 
types. The results are shown in the upper triangular matrix in Table 1. We found that the percentage of 
common gene sets increase compared to the percentage of common genes for most of cancer pairs. This 
suggests there are common patterns shared by different tumor types, and these patterns can be detected 
more effectively at the gene set level. These similarities across cancer types shed light on biomarkers that 
can be used across a range of cancer types and thus have important implications for treatment.

Through genome-wide gene set association analysis of all co-regulated clusters, we identified both 
cross-cancer gene signatures, which regulate the cell cycle, and cancer-specific gene signatures, which are 
associated with relative organ/tissue-specific diseases. These partly verified our hypothesis that alterations 
in cell cycle-associated pathways directly contribute to the initiation and development of cancers, while 
some organ/tissue-specific pathways can lead to cancers possibly by altering the expression of cell-cycle 
associated pathways. More functional investigations are necessary for further validating this hypothesis.

Leave-one-out cross validation. Seven gene sets, CLUSTER241, CLUSTER514, CLUSTER1011, 
CLUSTER932, CLUSTER574, CLUSTER3137, and CLUSTER184, were differentially expressed in at least 
four of the seven cancer types: BLCA, BRCA, COAD, HNSC, LUAD, and LUSC. We extracted the top 
two most differentially expressed genes from these gene sets and created a 14-gene signature, including 
kinesin family member 4A (KIF4A), nucleolar and spindle associated protein 1 (NUSAP1), Holliday 
junction recognition protein (HJURP), NIMA-related kinase 2 (NEK2), Fanconi anemia, complementa-
tion group I (FANCI), denticleless E3 ubiquitin protein ligase homolog (Drosophila) (DTL), UHRF1, flap 
structure-specific endonuclease 1 (FEN1), IQ motif containing GTPase activating protein 3 (IQGAP3), 
kinesin family member 20A (KIF20A), tripartite motif containing 59 (TRIM59), centromere protein L 
(CENPL), chromosome 16 open reading frame 59 (C16orf59), and UBE2C. We employed leave-one-out 
cross-validation (LOOCV) to assess whether or not this 14-gene signature can be used to differentiate 
between the normal and cancerous tissue samples of those seven cancer types. Machine learning tech-
niques, for example support vector machines, have been playing a vital role in sample classification141–144. 
LOOCV was performed using SVM-light145 (http://svmlight.joachims.org/) that is an implementation of 
support vector machines. The predictive accuracy of LOOCV for each cancer type are shown in Fig. 5. 
The predictive accuracy is the proportion of the total number of predictions that were correct. We found 
that most of samples were correctly classified based on the expression levels of these 14 genes, the clas-
sification accuracy for BLCA, BRCA, COAD, HNSC, LIHC, LUAD, and LUSC were 92.04%, 96.23%, 
91.76%, 90.05%, 88.17%, 94.29%, and 99.10%, respectively.

http://svmlight.joachims.org/
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Validation of the 14-gene cross-cancer signature and a cancer-specific gene signature, 
CLUSTER1520, on non-TCGA data sets. We have shown that the cancerous and adjacent normal 
samples from BLCA, BRCA, COAD, HNSC, LIHC, LUAD and LUSC can be precisely classified using 
the 14-gene cross-cancer signature. To test if the same holds true for other non-TCGA data sources, 
we downloaded two RNA-Seq data sets, GSE40419146 and GSE50760147, and one microarray data set, 
GSE5364148, from the Gene Expression Omnibus (GEO: http://www.ncbi.nlm.nih.gov/geo). GSE40419 
includes the RNA-Seq expression values for 87 lung adenocarcinomas and 77 adjacent normal tissues, 
while GSE50760 contains the RNA-Seq expression values of 54 samples (18 primary colorectal cancer, 
18 liver metastasis, and 18 normal colon) generated from 18 colorectal cancer patients. We performed 
LOOCV on these two data sets based on the expression values of the 14-gene cross-cancer signature. 
We found that the tumor and normal samples were accurately classified, the predictive accuracy for 
GSE40419 and GSE50760 were 97.14% and 93.33%, respectively. GSE5364 includes 341 samples from 
multiple solid cancers: 18 lung tumor samples, 12 lung normal samples, 183 breast tumor samples, 13 
breast normal samples, 9 colon tumor samples, 9 colon normal samples, 9 liver tumor samples, 8 liver 
normal samples, 16 oesophagus tumor samples, 13 oesophagus normal samples, 35 thyroid tumor sam-
ples, and 16 thyroid normal samples. LOOCV was carried out for tumor and normal samples of each 
tumor type in this data set, the predictive accuracy for lung, breast, colon, liver, oesophagus, and thyroid 
samples were 100%, 93.37%, 100%, 100%, 94.12%, and 68.63%, respectively. These results show that our 
14-gene cross-cancer signature precisely differentiated between tumor and normal samples for all tumor 
types in GSE5364 except for those from the thyroid. Interestingly, we here were not able to effectively 
distinguish tumors from normal samples from the thyroid using this 14-gene cross-cancer signature, and 
this is consistent with the results from the TCGA data.

We found that CLUSTER1520 is a lung cancer-specific gene signature. In the 548 adjacent normal 
tissue samples of 12 TCGA cancer types, the expression level of CLUSTER1520 in the lung tissue sam-
ples was strikingly higher than any other tissue samples, and the same holds true for tumor samples if 
excluding THCA tumor samples from the analysis (Fig. 3). Moreover, CLUSTER1520 showed a substan-
tially reduced level of expression in the lung tumor samples as compared to lung normal samples. In 
order to test if this signature can be used to differentiate lung tumors from other tumors, we divided all 
cancer samples from 12 TCGA cancer types into two classes: lung cancer samples (LUAD, LUSC) and 
non-lung cancer samples (BLCA, BRCA, COAD, HNSC, LIHC, KICH, KIRC, KIRP, PRAD, THCA), and 
performed LOOCV on these two classes of cancer samples using the expression values of CLUSTER1520. 
The predictive accuracy was 95.68%, namely we very effectively identified lung cancer samples out of a 
selection of 12 TCGA cancers based on the expression pattern of CLUSTER1520. We also validate that 
CLUSTER1520 is a lung cancer-specific gene signature on a non-TCGA microarray data set (GSE5364). 
GSE5364 includes 6 tumor types, and we divided those tumor samples into two classes: lung tumor 
samples and non-lung tumor samples (breast, colon, liver, oesophagus, thyroid). The predictive accuracy 
of LOOCV for these two classes of tumor samples was 100%, this demonstrated that lung tumor samples 
and non-lung tumor samples were accurately classified based on CLUSTER1520. These results show that 
CLUSTER1520 is a lung cancer-specific gene signature, and genes in this signature are potential targets 
for developing novel lung cancer therapies.

Gene set association analysis of two non-TCGA data sets. In order to test if the significant gene 
sets we identified from TCGA data can be validated on non-TCGA data sources, we performed gene 
set association analysis on two non-TCGA cohorts: a lung adenocarcinoma data set (GSE40419) and a 
colorectal cancer data set (GSE50760), the results are shown in Supplementary Table S5. For GSE40419, 
we identified 1 significant gene set (FDR <  0.25), CLUSTER514, which is one of the seven cross-cancer 
gene signatures. Moreover, we found that 9 out of 10 top gene sets with smallest FDRs were within the 
significant gene sets identified from TCGA LUAD and/or LUSC data. For GSE50760, we identified five 
significant gene sets (FDR <  0.25), two of them, CLUSTER2556 and CLUSTER514, were also identified 
as significant using TCGA COAD data. In the 10 top gene sets with smallest FDRs, 4 overlap with the 
significant gene sets from TCGA COAD data. These results show that at least part of significant gene sets 
identified from TCGA data can be validated on these two non-TCGA data sets.

Discussion
In this study, we comprehensively characterized the gene expression alterations of 12 types of cancers 
at the gene and gene set level. We identified DE genes and gene sets, some DE genes and gene sets are 
shared by different cancer types while others are only altered in one cancer type. We identified seven 
cross-cancer gene signatures that are differentially expressed in at least 4 cancer types. These signatures 
contain not only a number of genes which have established roles in cancers, but also genes that might be 
potential new biomarkers for cancers. These results reveal the aberrations in cancer transcriptomes and 
lead to a deeper understanding of the formation and development of human cancers.

Traditionally, we research one cancer type at a time, but there are patterns that can only be detected by 
making connections across different cancer types. Our results reveal that four gene sets, CLUSTER241, 
CLUSTER514, CLUSTER1011, and CLUSTER932, are significantly altered across seven cancer types: 
BLCA, BRCA, COAD, HNSC, LIHC, LUAD, and LUSC (Table  2). These similarities may indicate that 
there exist common mechanisms underlying the initiation and/or development of human cancers from 

http://www.ncbi.nlm.nih.gov/geo
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different organs or different tissues in the same organ. Interestingly, three types of kidney tumors don’t 
show these patterns. We found that KIRC and KIRP are more similar to each other than KICH since 
they share 36% of DE genes (Table 1). Studies have shown that KICH is less aggressive than KIRC and 
KIRP149,150.

Gene expression changes with phenotypic consequences are driven by mutations and epimutations. 
The driver mutations and epimutations may be scattered in different pathways. We hypothesize that 
some of these mutations or epimutations may disrupt a pathway responsible for cell cycle regulation 
that directly drives cells into uncontrolled proliferation, while others may lie within an organ-specific 

Figure 6. Pipeline of the analysis. 

Abbreviation Full Name
Number of 

Cancers
Number of 

Normals

BLCA bladder urothelial carcinoma 185 16

BRCA breast invasive carcinoma 955 106

COAD colon adenocarcinoma 244 23

HNSC head and neck squamous cell carcinoma 353 39

LIHC liver hepatocellular carcinoma 123 46

LUAD lung adenocarcinoma 450 58

LUSC lung squamous cell carcinoma 398 44

KICH kidney chromophobe 66 25

KIRC kidney renal clear cell carcinoma 497 72

KIRP kidney renal papillary cell carcinoma 127 28

PRAD prostate adenocarcinoma 166 38

THCA thyroid carcinoma 479 53

Table 4. Number of cancer and normal samples of 12 cancer types.
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pathway that turn a healthy cell into a cancer cell by altering the expression of cell cycle-associated 
pathways. We were not able to directly detect which pathways harbor the driver mutations through gene 
expression analysis, but we observed evidence that at least partially support this hypothesis: 1) aberra-
tions in the cell cycle are a common feature shared by multiple cancer types since all of the cross-cancer 
gene signatures we identified involved cell cycle processes; 2) we found that some cancer-specific gene 
signatures contain genes implicated in corresponding organ-specific diseases; 3) each type of cancer has 
its unique features in terms of their DE profiles. It would be very interesting for future studies to explore 
the connections between mutational profiles and DE profiles and how gene expression patterns change 
surrounding driver mutations.

We identified some gene sets that were only significantly altered in one type of cancer. Some of these 
gene sets may be cancer-specific gene signatures, say CLUSTER1520 and CLUSTER2318, that shed light 
on the mechanisms underlying cancer-driving abnormalities in a specific organ, while many of them 
may still represent a cellular process broadly perturbed across cancer types, and the differentiation is 
just stronger in one cancer type than other cancer types. Therefore, when we look for mechanisms 
underlying a specific cancer type, we should treat these signatures with caution. It could be a way to 
reveal cancer-specific events by comparing various tumor types and looking into the differential gene 
sets between tumor types in the future.

A question arising from this study is how to make connections between the mutational profiles and DE 
profiles of human cancers. Some genes, for example tumor protein p53 (TP53/p53), phosphatidylinositol-
4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA), and retinoblastoma 1 (RB1), are frequently 
mutated in a number of cancers and are key genes contributing to tumorigenesis151–153. However, among 
20530 genes in the BLCA, BRCA, COAD, HNSC, LIHC, LUAD, LUSC, KICH, KIRC, KIRP, PRAD, 
and THCA datasets, we found that TP53 was ranked at 11834, 14601, 7752, 18515, 17359, 8769, 11116, 
14995, 4200, 986, 4776, and 2094, PIK3CA at 16090, 7012, 14799, 4118, 13535, 13228, 6632, 12475, 
14634, 17065, 19153, and 18438, RB1 at 15691, 15157, 6836, 16116, 16543, 9168, 19208, 8333, 9565, 4233, 
16756, and 11160, respectively (Supplementary Table S1). These genes are not at the top of the DE gene 
list. One reason could be that mutations in TP53/PIK3CA/RB1 substantially change the expression of 
its downstream target genes rather than genes harboring them154. For example, the expression levels of 
two p53 targets, E2F7 and HDGF69,130, are significantly altered across multiple cancer types. These results 
indicate that cancer-causing genes may only have subtle expression changes, it is thus crucial to measure 
the total effect of a pathway or integrate mutation analysis into gene expression analysis.

Batch effects in high-throughput data might lead to inaccurate results when dealing with samples from 
multiple cancer types or data from different sequencing platforms155. In our study, all of the RNA-Seq 
data we used were from the same sequencing platform and same sequencing center, and this design 
minimizes the impact of batch effects on our analyses. Second, we clustered genes by their changing 
tendency in expression over samples, and this can eliminate the impact of batch effects on clustering 
since these effects are global effects on every gene in a sample. Third, we carried out gene set association 
analysis for each cancer type independently, thus avoiding the cross-cancer bias from the batch effects. 
Of course, proper handling of batch effects could improve the cross-platform or cross-cancer consistency 
when performing analyses on data from different sequencing platforms or different cancer types.

Methods
Overview. The pipeline of our analysis is illustrated in Fig. 6. The details of each step are described 
below.

Data sets. Transcriptome data and clinical data were obtained from the TCGA Data Portal (https://
tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp). In order to eliminate the heterogeneity introduced by dif-
ferent sequencing platforms, we only downloaded those data in the category of UNC (IlluminaHiSeq_
RNASeqV2). We chose 12 cancer types with transcriptome data available for both cancer and normal 
tissue samples. The two classes of phenotypes we used were “primary tumor” and “solid tissue normal”, 
namely only those samples in the clinical category of “primary tumor” or “solid tissue normal” were 
used for this study. The number of cancer and normal samples for each cancer type are listed in Table 4.

Differential expression analysis of individual genes. Differential expression analysis of individual 
genes was carried out using the edgeR Bioconductor package156 (http://www.bioconductor.org/packages/
release/bioc/html/edgeR.html). For each cancer type, we divide samples into two phenotypic groups, pri-
mary tumor and solid tissue normal, based on their clinical labels. Raw counts were extracted for these 
samples and edgeR was employed to find the differentially expressed genes between the two phenotypic 
groups.

Clustering and gene set association analysis. In order to perform gene set association analysis, 
we first clustered genes into co-regulated sets based on their expression profiles over all normal samples 
across 12 cancer types. First, RNA-Seq data were normalized by the DESeq normalization method157, 
clustering was then performed using APCluster158,159 (http://www.bioinf.jku.at/software/apcluster/). We 
used the Pearson correlation coefficient to measure the similarity between genes. Pearson correlation 

https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp
https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp
http://www.bioconductor.org/packages/release/bioc/html/edgeR.html
http://www.bioconductor.org/packages/release/bioc/html/edgeR.html
http://www.bioinf.jku.at/software/apcluster/
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measures the similarity in shape between two expression profiles, so this metric partitions genes into 
gene groups whose expression levels rise or fall synchronously under varying conditions or in response 
to a sequence of environment stimuli. We consider genes with coherent changing tendency in expres-
sion as co-regulated genes possibly functional in a same pathway. The number of clusters generated by 
APCluster is largely determined by the input preference, so we set the input preference (q) to 0.98 to 
obtain precise clusters, namely the expression profiles of genes in the same cluster are highly correlated.

We performed gene set association analysis for each cancer type to identify gene sets/clusters sig-
nificantly associated with cancers. Gene set association analysis was carried out using GSAASeqSP, a 
software newly developed by our group160 (http://gsaa.unc.edu). RNA-Seq raw counts were normalized 
by the DESeq normalization in GSAASeqSP which is same as that in the DESeq Bioconductor pack-
age157. We chose Signal2Noise for gene-level differential expression analysis and Weighted_KS for gene 
set association analysis. Gene sets are gene clusters generated by APCluster, and one cluster represents 
one gene set. Gene sets with less than 15 genes or more than 100 genes were filtered to avoid overly 
narrow or broad functional categories. In this study, we set the FDR cutoff to 0.15, namely gene sets with 
FDR <  0.15 were considered to be statistically significantly associated with cancers.

Pathway enrichment analysis and disease association analysis. To gain biological under-
standing of those gene sets statistically significantly associated with cancers, we carried out pathway 
enrichment analysis and disease association analysis using WebGestalt161,162 (http://bioinfo.vanderbilt.
edu/webgestalt/). We conducted three types of pathway enrichment analyses for genes of significant gene 
sets: GO analysis, KEGG analysis, and Pathway Commons analysis. GO analysis is to find which GO 
terms are over-represented in a gene set based on the functional annotation of genes. KEGG analysis 
and Pathway Commons analysis are to discover pathways enriched in genes in a gene set, the differ-
ence between these two analyses is that KEGG analysis is based on the KEGG PATHWAY Database163 
(http://www.genome.jp/kegg/pathway.html) while Pathway Commons analysis uses pathways collected 
by Pathway Commons164. Disease association analysis identifies diseases in which genes in a gene set are 
over-represented. We adopted the default values for parameters in WebGestalt when performing pathway 
enrichment analysis and disease association analysis.
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