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Abstract: Antimicrobial resistance (AMR) in bovine respiratory disease (BRD) is an emerging concern
that may threaten both animal and public health. Rapid and accurate detection of AMR is essential
for prudent drug therapy selection during BRD outbreaks. This study aimed to develop a multiplex
quantitative real-time polymerase chain reaction assay (qPCR) to provide culture-independent infor-
mation regarding the phenotypic AMR status of BRD cases and an alternative to the gold-standard,
culture-dependent test. Bovine clinical samples (297 lung and 111 nasal) collected in Nebraska were
subjected to qPCR quantification of macrolide (MAC) and tetracycline (TET) resistance genes and
gold-standard determinations of AMR of BRD pathogens. Receiver operating characteristic curve
analysis was used to classify AMR based on the qPCR results. For lung tissues, the qPCR method
showed good agreement with the gold-standard test for both MACs and TETs, with a sensitivity of
67–81% and a specificity higher than 80%. For nasal swabs, qPCR results passed validation criteria
only for TET resistance detection, with a sensitivity of 88%, a specificity of 80% and moderate agree-
ment. The culture-independent assay developed here provides the potential for more rapid AMR
characterization of BRD cases directly from clinical samples at equivalent accuracy and higher time
efficiency compared with the gold-standard, culture-based test.

Keywords: bovine clinical samples; prudent antibiotic use; culture independent; rapid detection;
receiver operating characteristic; quantitative PCR

1. Introduction

Bovine respiratory disease (BRD) is one of the most common and costly cattle diseases
and affects 97% of feedlots, or 16% of cattle, with economic losses estimated to exceed
1 billion USD/year [1,2]. BRD is a disease complex with multiple contributing factors,
including environment, viruses, bacteria, and the host [3]. Disease onset is commonly
initiated by viral infections, which may suppress host defense mechanisms, allowing op-
portunistic bacterial pathogens to replicate and colonize deeper in the lung. Environmental
factors such as crowding, poor ventilation, weather, and weaning increase stress and also
reduce host immunity [4]. The coexistence of multiple viral and bacterial pathogens often
increases the severity of BRD outbreaks, leading to higher mortality and morbidity rates
and associated economic burdens [5,6].

Among pathogenic bacteria causing BRD in feedlot cattle and neonatal calves, Mannheimia
haemolytica is the most frequently isolated, followed by Histophilus somni and Pasteurella mul-
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tocida [1]. The multifactorial nature of BRD is often a challenge for disease management.
Administration of antibiotic drugs for treatment and/or metaphylaxis (control and preven-
tion) purposes may potentially select for resistance among bacterial pathogen populations [7].
Recent studies have shown that the frequency of antimicrobial resistance (AMR) in BRD
bacterial pathogens in feedlots is increasing, particularly resistance to macrolides (MACs)
and tetracyclines (TETs) [8], which are among the most commonly used antibiotics on beef
cattle feedlots in the United States [9–12]. The development of AMR could compromise
the effectiveness of antibiotics for the treatment and control of BRD, potentially leading to
higher mortality and lower productivity among cattle populations. Increasing AMR in BRD
pathogens may also threaten public health, as the resistance genes found in BRD pathogens
are contained within integrative conjugative elements (ICEs) that could potentially be trans-
ferred from BRD pathogens to zoonotic bacteria [10]. Hence, tools for rapidly and accurately
detecting potential AMR are critical components of outbreak monitoring by veterinarians
and producers. Such tools could be used as adjuncts to existing culture-independent BRD
pathogen detection methods that use similar technology and workflows [13]. In addition,
the use of these tools would enable rapid evaluation of the potential efficacy of antimicrobial
interventions and ultimately benefit the beef industry and support antimicrobial stewardship
by enabling informed selection of optimal drugs for BRD therapies.

Classic culture-based methods for determining AMR commonly involve isolating
and identifying organisms on solid media and assessing the growth inhibition of isolated
bacterial strains under a series of concentrations of the target antibiotic to determine the
minimum inhibitory concentration (MIC) [14]. As described by the Clinical and Labora-
tory Standards Institute (CLSI), isolates are classified as susceptible (S), intermediate (I),
or resistant (R) to an antibiotic based on the relationships between MIC measurements
and “breakpoints”, which are usually determined by taking into consideration the clini-
cal outcomes of infections when the antibiotic is used [15]. The culture-based approach
is widely used and is still considered the “gold-standard” test by national and interna-
tional surveillance programs for monitoring AMR [14]. However, this method requires
the growth, isolation, and identification of the target pathogens in pure culture, which
can be time consuming and challenging due to sample contamination or overgrowth with
environmental organisms [13].

In recent decades, molecular methods for detecting and quantifying AMR genes have
shown promise as potential alternatives to the gold-standard AMR detection [16]. Quantita-
tive real-time polymerase chain reaction (qPCR), which uses hydrolysis probes to generate
a fluorescence signal, enables real-time assessment of DNA amplification and quantification
of the genetic materials in the original sample. The qPCR approach also permits multiplexed
detection of several gene targets in a single reaction. A recent study demonstrated that
this approach is extremely useful for detecting opportunistic bacterial pathogens in bovine
clinical samples and has advantages over culture-based approaches, especially when multi-
ple pathogens coexist in the presence of normal flora [13]. These advantages make qPCR
a powerful tool for the detection of genes that confer AMR using existing sample types and
workflows. The detection of AMR genes in clinical samples (lungs and respiratory swabs)
would provide veterinarians and clinicians with information on the presence or absence
of AMR genes within hours to guide therapy selection. Although the detection of AMR
genes in a sample does not necessarily indicate that the resistance genes are carried by BRD
pathogens, such detection can be used as an indicator for the potential risks of antimicrobial-
resistant infections in BRD outbreaks. Although the use of qPCR for AMR detection in
tandem with culture-independent pathogen detection assays has not yet been evaluated,
such a combination would provide information on the co-presence of BRD pathogens and
BRD-associated resistance genes [13].

Unlike the gold-standard method, which generates a phenotypic classification of
AMR, qPCR assays generate cycle threshold (Ct) values, which are continuous values
representing the number of cycles at which the fluorescence signal exceeds the threshold
value (i.e., the background signal level) and are used to estimate the number of gene
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copies in the original sample. To accurately predict the AMR classification index using
a molecular testing method, an extensive epidemiological evaluation of the method based
on a comparison with gold-standard methods must be conducted. Hence, the objectives of
the present study were to (1) develop a qPCR method for the quantification of MAC and
TET resistance genes in BRD clinical samples; (2) determine the optimal cutoff to support
translation of qPCR results to a phenotypic classification of AMR; and (3) evaluate the
validity of AMR phenotypic classification by the qPCR assay.

2. Results
2.1. Characteristics of the Multiplex qPCR Assay

In silico analyses showed 100% identity of the primer and probe loci to strains of
M. haemolytica and P. multocida (Table S1). For the H. somni strains, 100% identity to ICEtetR
gene targets was observed for sequences in GenBank; the remaining three targets were not
found in H. somni strains available at the time of analysis. These resistance genes are not
unique to BRD pathogens and are found on the chromosomes and/or plasmids of non-
BRD-causing microbes (Table S2). The sequence identity of the primers and probes with
non-BRD pathogen bacterial species does not indicate off-target binding to other genes, as
it is expected that these AMR gene sequences are found in various other bacterial species.

Preliminary evaluation of the assay using the reference strains indicated that the
multiplex qPCR assay detected all of the targets in the M. haemolytica reference strain
and had sensitivity for all four targets of <3.2 CFU/mL, with Ct values ranging from
37.34 (ICEtetR) to 35.70 (msrE) at the lowest detectable concentration (Table 1). The assay
also correctly classified all M. haemolytica reference strains that had been determined to
contain the target genes (Table S3). Due to the lack of sequences for non-M. haemolytica BRD
pathogens in GenBank or other databases, a panel of H. somni (35 strains) and P. multocida
(5 strains) from BRD cases that had been subjected to MIC testing was also evaluated (Table
S4). The detection of MAC resistance genes by the assay corresponded with phenotypic
MAC and TET resistance in 26 and 28 of 35 H. somni strains, respectively. For P. multocida,
genotypic results that agreed with the phenotypes for both TET and MAC resistance were
obtained for all five strains. To validate assay specificity, we also tested ATCC reference
strains of Actinobacillus pleuropneumoniae, Mannheimia granulomatis, H. somni, and B. trehalosi
that do not exhibit phenotypic resistance. No qPCR targets were detected in any of these
reference strains. The susceptibility of two bovine respiratory strains of B. trehalosi was also
evaluated; as expected, the tetracycline-resistant (TETr) and macrolide-resistant (MACr)
strain was positive for all four targets, whereas the susceptible strain was negative for
all targets.

2.2. Phenotypic Antimicrobial Resistance Based on the Gold-Standard Test

BRD pathogen detection. Along with the sample distribution, Table 2 shows the
prevalence of BRD pathogens by sample type. In addition to the individual BRD pathogens
examined in this study, a new pathogen category, “positive for at least one BRD pathogen”,
was evaluated. Overall, of the submitted samples for BRD diagnosis, at least one BRD
pathogen was detected in 97.8%. In general, the prevalence of samples with at least one BRD
pathogen was higher for lung samples (99.7%) than nasal samples (97.3%). Consistent with
previous reports, M. haemolytica was the most frequently isolated BRD pathogen, comprising
63.7% of tested samples, followed by P. multocida (42.5%) and H. somni (29.6%). However, the
pathogen distribution varied by sample type (Figure 1). Specifically, among lung samples,
M. haemolytica was the most prevalent pathogen (64.3%), followed by P. multocida and
H. somni at similar levels (32.3% and 31.3%). By contrast, both M. haemolytica and P. multocida
were relatively highly prevalent in nasal samples (64.9% and 72.1%), whereas H. somni was
not (26.1%).
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Table 1. Sensitivity and limit of detection in colony forming units per reaction (CFU/rxn) using a
Mannheimia haemolytica reference strain (1621) confirmed to have targets by whole-genome sequencing.

Target CFU/rxn Ct 1 CD 2 RE 3

ICETetR 3200 26.78
ICETetR 320 30.23
ICETetR 32 33.53
ICETetR 3.2 37.34 0.982 0.95
erm42 3200 26.32
erm42 320 29.85
erm42 32 32.95
erm42 3.2 36.17 0.986 1.00
mph E 3200 25.61
mph E 320 29.05
mph E 32 32.30
mph E 3.2 36.56 0.985 0.88
msr E 3200 25.44
msr E 320 28.82
msrE 32 32.04
msr E 3.2 35.70 0.985 0.98

1 Ct = threshold cycle, 2 CD = correlation of determination, R2, 3 RE = reaction efficiency (10ˆ(−1/slope)−1).

Table 2. Sample distribution by clinical sample type and pathogen.

Sample Type 1 Total Sample Size 2

Occurrence of BRD Pathogens
No. of Positive Samples (Prevalence, 95% CI)

M. haemolytica P. multocida H. somni Positive for at Least
One BRD Pathogen

Lung sample 297
191

(64.3%,
58.7–69.5%)

96
(32.3%,

27.3–37.8%)

93
(31.3%,

26.3–36.8%)

296
(99.7%,

98.1–100.0%)

Nasal sample 111
72

(64.9%,
55.6–73.1%)

80
(72.1%,

63.1–79.6%)

29
(26.1%,

18.9–35.0%)

108
(97.3%,

92.4–99.1%)

Others—
skin/liver 4

1
(25.0%,

4.6–69.9%)

0
(0.0%,

0.0%–49.0%)

1
(25.0%,

4.6–69.9%)

2
(50%,

15.0–85.0%)

Missing 4
1

(25.0%,
4.6–69.9%)

1
(25.0%,

4.6–69.9%)

1
(25.0%,

4.6–69.9%)

1
(25.0%,

4.6–69.9%)

Total 416
265

(63.7%,
59.0–68.2%)

177
(42.5%,

37.9–47.3%)

123
(29.6%,

25.4–34.1%)

407
(97.8%,

95.9–98.8%)
1 Lung samples refer to lung tissues and abdominal fluid clinical samples; nasal samples are collected as nasal swabs; other samples are either skin
or liver tissues; missing samples are those lacking records about tissue types. 2 The distribution of the samples by the pathogens is not exclusive,
as more than one pathogen can be isolated from a single sample.
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Figure 1. Prevalence of major bovine respiratory disease pathogens tested in this study by sample type.

Phenotypic AMR data manipulation. The distributions of AMR classifications de-
termined by the MIC test by BRD pathogen and sample type are presented in Table 3.
BRD pathogens isolated from clinical samples were classified as S, I, or R based on the
comparison of the MIC test results with the breakpoints listed in Table 4. Strains classified
as intermediate were much less prevalent, resulting in an inadequate number of samples in
this category for statistical analysis. This was the major reason for combining R and I into
the newly defined category R+I, resulting in a binary classification of AMR status based
on the gold-standard MIC test, i.e., R+I and S. AMR status was recorded for individual
pathogens as well as for the category of “positive for at least one pathogen”. In addition,
resistance to two drugs in the MAC class was evaluated, and “resistance” to tilmicosin,
tulathromycin, or MACs as a class (either tilmicosin or tulathromycin) was recorded.

Resistant BRD pathogen isolation. Based on the newly defined category R+I, the
prevalence of TETr BRD pathogens was higher than that of MACr pathogens for all
pathogens and sample types. TET resistance prevalence ranged from 19.2% to 52.7%,
while MAC resistance prevalence was between 8.8% and 39.3%. The only exception was
M. haemolytica isolated from nasal samples, in which the prevalence of TET resistance
(6.9%) was slightly lower than that of MAC resistance (8.3%). In addition, the occurrence
of antimicrobial-resistant BRD pathogens was always higher in lung samples than in nasal
samples. Specifically, 44.6% of lung samples and 23.1% of nasal samples possessed at least
one TETr pathogen, while 36.9% of lung samples and 19.4% of nasal samples possessed at
least one MACr pathogen. The same trends were observed for all resistant BRD pathogens.
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Table 3. Summary of minimum inhibitory concentration test results by sample type, pathogen, and antimicrobial.

Pathogen Sample Class Antibiotics No. of Total Samples
No. (Percentage) of Samples with 1

R I R+I S

M. haemolytica

Lung

Tetracycline Oxytetracycline 191 78 (40.8%) 3 (1.6%) 81 (42.4%) 110 (57.6%)
Macrolide Tilmicosin 191 69 (36.1%) 5 (2.6%) 74 (38.7%) 117 (61.3%)
Macrolide Tulathromycin 191 64 (33.5%) 3 (1.6%) 67 (35.1%) 124 (64.9%)

Macrolide Tilmicosin or
tulathromycin 191 75 (39.3%) 0 (0%) 75 (39.3%) 116 (60.7%)

Nasal

Tetracycline Oxytetracycline 72 3 (4.2%) 2 (2.7%) 5 (6.9%) 67 (93.1%)
Macrolide Tilmicosin 72 2 (2.8%) 0 (0%) 2 (2.8%) 70 (97.2%)
Macrolide Tulathromycin 72 6 (8.3%) 0 (0%) 6 (8.3%) 66 (91.7%)

Macrolide Tilmicosin or
tulathromycin 72 6 (8.3%) 0 (0%) 6 (8.3%) 66 (91.7%)

P. multocida

Lung

Tetracycline Oxytetracycline 96 28 (29.2%) 2 (2.1%) 30 (31.3%) 66 (68.7%)
Macrolide Tilmicosin 95 15 (15.8%) 1 (1.0%) 16 (16.8%) 79 (83.2%)
Macrolide Tulathromycin 96 9 (9.4%) 1 (1.1%) 10 (10.5%) 86 (89.5%)

Macrolide Tilmicosin or
tulathromycin 95 15 (15.8%) 1 (1.0%) 16 (16.8%) 79 (83.2%)

Nasal

Tetracycline Oxytetracycline 78 15 (19.2%) 0 (0%) 15 (19.2%) 63 (80.8%)
Macrolide Tilmicosin 80 6 (7.5%) 0 (0%) 6 (7.5%) 74 (92.5%)
Macrolide Tulathromycin 78 1 (1.3%) 3 (3.8%) 4 (5.1%) 74 (94.9%)

Macrolide Tilmicosin or
tulathromycin 80 7 (8.8%) 0 (0%) 7 (8.8%) 73 (91.2%)

H. somni

Lung

Tetracycline Oxytetracycline 93 41 (44.1%) 8 (8.6%) 49 (52.7%) 44 (47.3%)
Macrolide Tilmicosin 93 20 (21.5%) 1 (1.1%) 21 (22.6%) 72 (77.4%)
Macrolide Tulathromycin 93 20 (21.5%) 8 (8.6%) 28 (30.1%) 65 (69.9%)

Macrolide Tilmicosin or
tulathromycin 93 26 (28.0%) 6 (6.4%) 32 (34.4%) 61 (65.6%)

Nasal

Tetracycline Oxytetracycline 29 13 (44.8%) 0 (0%) 13 (44.8%) 16 (55.2%)
Macrolide Tilmicosin 29 2 (6.9%) 1 (3.4%) 3 (10.3%) 26 (89.7%)
Macrolide Tulathromycin 28 5 (17.9%) 2 (7.1%) 7 (25.0%) 21 (75.0%)

Macrolide Tilmicosin or
tulathromycin 28 6 (21.4%) 3 (10.7%) 9 (32.1%) 19 (67.9%)
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Table 3. Cont.

Pathogen Sample Class Antibiotics No. of Total Samples
No. (Percentage) of Samples with 1

R I R+I S

At least one
BRD pathogen

Lung

Tetracycline Oxytetracycline 296 124 (41.9%) 8 (2.7%) 132 (44.6%) 164 (55.4%)
Macrolide Tilmicosin 295 95 (32.2%) 6 (2.0%) 101 (34.2%) 194 (65.8%)
Macrolide Tulathromycin 296 87 (29.4%) 8 (2.7%) 95 (32.1%) 197 (67.9%)

Macrolide Tilmicosin or
tulathromycin 295 105 (35.6%) 4 (1.3%) 109 (36.9%) 182 (63.1%)

Nasal

Tetracycline Oxytetracycline 108 23 (21.3%) 2 (1.8%) 25 (23.1%) 83 (76.9%)
Macrolide Tilmicosin 108 11 (10.2%) 0 (0.0%) 11 (10.2%) 97 (89.8%)
Macrolide Tulathromycin 108 11 (10.2%) 5 (4.6%) 16 (14.8%) 92 (85.2%)

Macrolide Tilmicosin or
tulathromycin 108 19 (17.6%) 2 (1.8%) 21 (19.4%) 87 (80.6%)

1 S, R, I denotes susceptible, resistant, and intermediate resistant to the drug classified based on MIC test and CLSI breakpoints, and the categories of R and I are combined into a new category of “resistant”, or R+I.

Table 4. Phenotypic classification of antimicrobial resistance based on minimum inhibitory concentration measurements by antibiotics tested in this study.

Class Antibiotics
Antimicrobial Resistance Classification

Susceptible (S) Intermediate (I) Resistant (R) “Resistant” (R+I)

Tetracycline Oxytetracycline ≤2 >2 and ≤8 >8 >2
Macrolide Tilmicosin ≤8 >8 and ≤32 >32 >8
Macrolide Tulathromycin ≤16 >16 and ≤32 >32 >16
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2.3. Optimal Ct Cutoff Value Determination

Real-time PCR data manipulation. Three gene targets conferring resistance to MACs,
i.e., msrE, mphE, and erm42, were detected using the qPCR method, and the average
observed Ct value for the three targets was used. The use of the average value was deemed
reasonable because of the high similarity of the distributions of the Ct values for the three
genes (Figure 2). Although the distribution of the Ct values for mphE was slightly shifted
from those for erm42 and msrE, the percentile distributions were similar, so the average
value for the three genes is a good representation of the inherent distribution of any of the
three genes. Hence, all qPCR results for MAC drugs reported in this study are based on
the average measurement of the three gene targets.
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Optimal Ct cutoff value determination. As shown in Table 5, for the lung samples,
the optimal Ct cutoff value for TET was 36.06, with more than 80% sensitivity (Se) and
specificity (Sp) and a good level of agreement with the MIC test (κ = 0.64). The prevalence
of lung samples possessing at least one BRD pathogen resistant to TET was approximately
45%, leading to positive predictive value (PPV) and negative predictive value (NPV)
estimates of 0.79 and 0.84; these values indicate that 79% of tested samples classified
as resistant actually possessed at least one BRD pathogen resistant to TET and 84% of
samples classified as susceptible were truly susceptible. Compared with TET resistance,
the optimal Ct cutoff values for MAC resistance were lower, with lower Se but higher Sp of
approximately 90%. The qPCR assay showed a good level of agreement with phenotypic
MAC resistance, with κ ranging from 0.61 to 0.64. Similar to TETr strain detection, both the
NPV and PPV of the qPCR assay for MAC resistance were approximately 80%, ensuring
relatively low false-negative and false-positive rates. Figure 3 shows the receiver operating
characteristic (ROC) plots for all of the antimicrobials for the lung and nasal samples,
respectively. In general, the performance of the qPCR approach for detecting resistance
was lower for nasal samples than for lung samples. Se and Sp were both lower for nasal
samples, with ranges of 50%–88% and 79%–83%, respectively; and the concordance with
the MIC tests was fair to moderate, as indicated by κ values ranging from 0.30 to 0.58.
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Table 5. Optimal cycle threshold (Ct) cutoff value by sample type and antibiotics.

BRD
Pathogen

Sample Class Antibiotics
No. of
Total

Samples

No. of Samples with 1
Optimal Cycle
Threshold (Ct)

Se 2

(%)
Sp 2

(%)
AUC 2

(%)
Kappa

(κ)
Prevalence

(%)
PPV 2

(%)
NPV 2

(%)R+I S

M.
haemolytica

Lung

Tetracycline Oxytetracycline 191 81 110 31.00 77.78 95.45 89.99 0.75 42.41 92.65 85.37
Macrolide Tilmicosin 191 74 117 33.04 74.32 93.16 86.14 0.69 38.74 87.30 85.16
Macrolide Tulathromycin 191 67 124 32.89 79.10 92.74 88.94 0.73 35.08 85.48 89.15

Macrolide Tilmicosin or
tulathromycin 191 75 116 33.04 73.33 93.10 85.45 0.68 39.27 87.30 84.38

Nasal

Tetracycline Oxytetracycline 72 5 67 32.26 100.00 79.10 92.54 0.34 6.94 21.83 98.35
Macrolide Tilmicosin 72 2 70 21.42 100.00 100.00 100.00 1.00 2.78 52.25 99.17
Macrolide Tulathromycin 72 6 66 30.73 50.00 86.36 63.89 0.25 8.33 25.00 95.00

Macrolide Tilmicosin or
tulathromycin 72 6 66 30.73 50.00 86.36 63.89 0.25 8.33 25.00 95.00

P. multocida

Lung

Tetracycline Oxytetracycline 96 30 66 36.10 83.33 86.36 86.52 0.67 31.25 73.53 91.94
Macrolide Tilmicosin 95 16 79 32.91 56.25 89.87 72.23 0.45 16.84 52.94 91.03
Macrolide Tulathromycin 96 10 86 32.91 80.00 89.53 84.94 0.53 10.42 47.06 97.47

Macrolide Tilmicosin or
tulathromycin 95 16 79 32.91 56.25 89.87 72.23 0.45 16.84 52.94 91.03

Nasal

Tetracycline Oxytetracycline 78 15 63 29.35 66.67 92.06 88.04 0.59 19.23 66.67 92.06
Macrolide Tilmicosin 80 6 74 36.40 66.67 62.16 59.01 0.10 7.50 12.50 95.83
Macrolide Tulathromycin 78 4 74 31.47 50.00 78.38 58.78 0.11 5.13 11.11 96.67

Macrolide Tilmicosin or
tulathromycin 80 7 73 32.22 42.86 76.71 56.36 0.11 8.75 15.00 93.33

H. somni

Lung

Tetracycline Oxytetracycline 93 49 44 36.28 81.63 72.73 75.72 0.55 52.69 76.92 78.05
Macrolide Tilmicosin 93 21 72 33.08 61.90 79.17 67.29 0.37 22.58 46.43 87.69
Macrolide Tulathromycin 93 28 65 31.67 60.71 87.69 75.36 0.50 30.11 68.00 83.82

Macrolide Tilmicosin or
tulathromycin 93 32 61 33.08 62.50 86.89 76.95 0.51 34.41 71.43 81.54

Nasal

Tetracycline Oxytetracycline 29 13 16 32.85 92.31 56.25 62.50 0.47 44.83 63.16 90.00
Macrolide Tilmicosin 29 3 26 30.88 66.67 65.38 52.56 0.15 10.34 18.18 94.44
Macrolide Tulathromycin 28 7 21 27.19 100.00 38.10 68.03 -0.36 25.00 10.54 67.85

Macrolide Tilmicosin or
tulathromycin 28 9 19 26.83 100.00 36.84 66.67 −0.39 32.14 12.45 59.49
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Table 5. Cont.

BRD
Pathogen

Sample Class Antibiotics
No. of
Total

Samples

No. of Samples with 1
Optimal Cycle
Threshold (Ct)

Se 2

(%)
Sp 2

(%)
AUC 2

(%)
Kappa

(κ)
Prevalence

(%)
PPV 2

(%)
NPV 2

(%)R+I S

At least
one BRD
pathogen

Lung

Tetracycline Oxytetracycline 296 132 164 36.06 81.06 82.93 85.29 0.64 44.59 79.26 84.47
Macrolide Tilmicosin 295 101 194 33.08 69.31 89.69 81.25 0.61 34.24 77.78 84.88
Macrolide Tulathromycin 296 95 201 32.89 72.63 90.55 84.29 0.64 32.09 78.41 87.50

Macrolide Tilmicosin or
tulathromycin 295 109 186 33.08 67.89 91.40 81.94 0.62 36.95 82.22 82.93

Nasal

Tetracycline Oxytetracycline 108 25 83 32.81 88.00 79.52 90.07 0.56 23.15 56.41 95.65
Macrolide Tilmicosin 108 11 97 31.82 63.64 82.47 71.42 0.30 10.19 29.17 95.24
Macrolide Tulathromycin 108 16 92 31.47 43.75 83.70 57.54 0.24 14.81 31.82 89.53

Macrolide Tilmicosin or
tulathromycin 108 21 87 31.82 42.86 82.76 57.85 0.24 19.44 37.50 85.71

1 S, R, I denotes susceptible, resistant, and intermediate resistant to the drug classified based on MIC test and CLSI breakpoints, and the categories of R and I are combined into a new category of “resistant”, or R+I. 2 Se =
sensitivity; Sp = specificity; AUC = area under the curve; PPV = positive predictive value; NPV = negative predictive value.
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Figure 3. Receiver operating characteristic curves for determining optimal cycle threshold (Ct)
cutoff values for lung samples (a) and nasal samples (b). Determined optimal Ct cutoff values
with corresponding sensitivity and specificity were provided for predicting the presence of bovine
respiratory disease pathogens resistant to tetracycline and macrolide drugs, respectively. Combined
macrolide refers to resistance to either tilmicosin or tulathromycin.

2.4. Validation of the Computational Approach

Determination of the required sample size for calculating the optimal cutoff. The
optimal Ct cutoff value was considered valid if the total sample size and the number
of samples positive for resistant BRD pathogens were both greater than or equal to the
minimum requirements established by considering the importance of both PPV and NPV.
Estimates of the sample size necessary for the validity evaluation are listed Table S5. Clearly,
the optimal Ct obtained for the lung samples for both TET and MACs satisfied the minimum
requirement. For the nasal samples, only the optimal Ct values obtained for oxytetracycline
and tilmicosin satisfied the requirements for both sample size and number of positive
samples, whereas the optimal Ct values for tulathromycin and the combined MAC group
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did not satisfy the second requirement, i.e., the number of resistant samples included for
determining the optimal Ct value was insufficient. If only NPV is of importance, then the
optimal Ct obtained for all nasal samples is valid. However, increasing PPV or minimizing
the false-positive rate helps reduce the overall misclassification rate and thus cannot be
ignored completely.

Cross-validation. To validate the consistency of the optimal Ct cutoff value estimation,
5-fold and 10-fold cross-validation (CV) were conducted with a focus on the category of
“resistance to at least one BRD pathogen”. Because more consistent estimates in terms
of the optimal Ct cutoff and the κ value were obtained, 5-fold CV was used to optimize
the optimal Ct cutoff value for the qPCR method. Table S6 shows the results of the 5-fold
CV along with a comparison of the average level of agreement between the training and
test sets.

The optimal Ct values for the lung samples for both TETs and MACs were consistent
in terms of required diagnostic accuracy. Overall, for the lung samples, the optimal Ct
obtained from the overall data fell within the 95% average optimal Ct obtained using 5-fold
CV. In addition, the average κ evaluated based on the training and test sets indicated a
good level of agreement with the results of the MIC tests for both groups of antimicrobials.
However, the optimal Ct obtained from the nasal samples was sufficiently validated only
for the TET group. For the MAC group, a disparity in the average κ was observed between
the training and test datasets.

Table 6 summarizes the optimal Ct values and the level of agreement based on the
minimum requirements for total sample size and resistant sample size and 5-fold CV. The
optimal Ct for predicting the phenotypic AMR classification based on qPCR results was
sufficiently validated for the lung samples containing MACr and/or TETr BRD pathogens
and for the nasal samples containing TETr BRD pathogens. The optimal Ct values for the
lung samples were 35.66 and 33.12 for TET and MAC resistance, respectively, with a good
level of agreement between the gold-standard and the qPCR approach. The optimal Ct
value obtained for the nasal samples was 33.27 for TET resistance, with a moderate level of
agreement between the gold-standard and the qPCR approach.

Table 6. Optimal cycle threshold (Ct) cutoff value for lung and nasal samples.

Class Antibiotics
Lung Sample Nasal Sample

Optimal Cycle Threshold (Ct) Kappa (κ) Optimal Cycle Threshold (Ct) Kappa (κ)

Tetracycline Oxytetracycline 35.66 0.61 33.27 0.49
Macrolide Tilmicosin 33.12 0.61 - -
Macrolide Tulathromycin 32.64 0.63 - -

Macrolide Tilmicosin or
tulathromycin 33.12 0.62 - -

3. Discussion

The method described in this study enables AMR gene detection in clinical samples
in a culture-independent manner and thus can rapidly provide clinicians, veterinarians,
and cattle producers preliminary information on the presence of potential AMR in BRD
cases. Previous examinations of AMR in BRD pathogens have relied on whole-genome
sequencing (WGS) approaches to mine genomic sequences for resistance genes. Although
this approach is much more comprehensive, it is less practical for use with clinical samples
and in situations where a clinician may need rapid results for drug decisions. Compared
with isolates, working with clinical samples from livestock environments poses a significant
challenge due to the large variations in sample types and quality, environment, and
collection requirements. Working with clinical samples requires a targeted and quantitative
approach such as qPCR, which has been shown to increase the detection of pathogens
compared with culture-dependent methods such as WGS [13].
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In developing this assay for use in a rapid format with clinical samples, our goal
was to select robust gene targets with spatial and temporal consistency in BRD pathogen
strain genomes and that confer resistance to highly relevant drug classes. Consequently,
the performance of the method for both TETs and MACs was evaluated using ATCC-
and clinical sample-sourced strains that have been subjected to MIC testing and/or WGS.
Overall, the developed multiplex qPCR method performed well with high specificity for
detecting the target AMR genes. In the initial validation, evaluation of the phenotypic–
genotypic agreement using less comprehensive methods showed high levels of agreement
for M. haemolytica, P. multocida and B. trehalosi. By contrast, for H. somni, disagreement
between the results of the multiplex qPCR assay and phenotypic AMR classification using
MIC was observed for 9 of 35 strains tested. Potential explanations for this discrepancy
include alternative mechanisms of phenotypic resistance or inactive resistance genes in
these strains.

The results indicate that this method may be particularly useful for assessing the
presence of TET or MAC resistance in BRD pathogens in general or in M. haemolytica, one
of the most dominant bacterial pathogens. TETs and MACs were chosen as the target
drug classes because they are often used as first-line treatments for BRD. More than 70%
of drugs used for the treatment or prevention of BRD in the United States are MACs
(including tulathromycin, tilmicosin, tildipirosin, and gamithromycin), followed by TETs
(mainly oxytetracycline, ~9%) [9,17,18]. Determinants conferring resistance to MACs or
TETs in the population of BRD pathogens are frequently carried on ICE elements, revealing
a potential challenge in the use of these important drugs for BRD disease treatment and/or
prevention [19,20]. The ability to rapidly identify AMR to these drugs would be critically
useful to veterinarians in the field, who could rapidly adjust their treatment or prevention
therapies in response to the detection of such resistance [19].

One of the largest challenges in developing our assay was ensuring the concordance
between phenotypic AMR status and the detection of genes conferring resistance in com-
plex clinical samples. Investigations of concordance between genotypic and phenotypic
resistance based on WGS or selected genes are increasing [21,22], and like the present
study, most previous works have found substantial variation in the level of concordance
depending on the combination of bacterial species, resistance gene(s) and resistance type.
To construct our assay, we selected genes conferring resistance to TETs and MACs that
are most commonly found in BRD pathogens and observed good agreement with corre-
sponding phenotypic resistance for some combinations. However, discrepancies between
genotypic and phenotypic resistance are not surprising, given the challenges of working
with clinical samples outlined above and the large number of potential resistance genes.
In one of the most comprehensive databases, ResFinder, more than 140 and 180 genes
or gene variants encoding TET or MAC resistance, respectively, have been reported to
date [23]. A more comprehensive gene panel may increase the predictive capability of
our proposed qPCR assay of resistance in BRD bacterial pathogens. Our in silico analysis
showed that the gene targets are potentially carried by other non-BRD pathogen bacteria,
which might cause false-positive results if these bacteria were present in sufficient numbers
in clinical samples.

The performance of the PCR-based rapid detection method was most optimal for
predicting collective phenotypic resistance among all coexisting BRD pathogens in a single
sample. In the MIC test, AMR classification is pathogen dependent, whereas qPCR detects
genes in a culture-independent manner regardless of bacterial source. Therefore, a collective
phenotypic resistance status for a sample, defined as possessing at least one resistant
bacterial pathogen, enables a more rational comparison between the results of MIC testing
and qPCR. For predicting phenotypic resistance in individual pathogens, the assay showed
the most promise for M. haemolytica in lung tissues for both TETs and MACs. Lower
agreement was observed for nasal swabs or for H. somni isolates, likely due to challenges
in the use of the gold-standard method with nasal swab samples and the isolation of
H. somni from all sample types. Nasal swab samples are frequently contaminated with
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environmental bacteria, which makes recovery of BRD pathogens challenging. Additionally,
because H. somni is sensitive to oxygen and a fastidious organism, recovery is low, and false-
negative testing results are common. Overall, the results indicate that the newly developed
PCR-based rapid detection method is valid for determining the potential likelihood of
resistance to TETs and MACs in at least one BRD pathogen or M. haemolytica, the most
prevalent BRD pathogen, isolated from bovine lung tissues.

The ROC approach used in our study is in essence a classification method. The gold-
standard, culture-based MIC approach gives a dichotomous outcome of resistance or suscep-
tibility to antimicrobials, while the qPCR assay uses a Ct cutoff to transpose the continuous
values produced into a finding of resistance or susceptibility. If the purpose of the qPCR
assay was to rule out the presence of resistance in a clinical sample for BRD diagnosis based
on a susceptible result, a higher Ct cutoff could be used to generate a “rule-out” test with a
high Se or low false negatives in detecting resistance. Conversely, a lower Ct cutoff would be
more likely to identify infections with the resistance of interest; such a “rule-in” test would
have a higher Sp and lower false positives, resulting in higher confidence in the presence
of resistance in a sample when a resistant result is observed. In the present study, the ROC
approach was used to determine the optimal Ct cutoff by prioritizing a balance between Se
and Sp. However, because the qPCR approach provides continuous information, it allows for
flexibility in assay design for multiple purposes (such as a priority for “rule-in” or “rule-out”
purpose) in real-world scenarios by varying the Ct cutoff.

Although the properties of diagnostic tests are generally expressed by Se and Sp, PPV
and NPV are also considered important indicators of a test’s usefulness. Unlike Se and Sp,
PPV and NPV depend heavily on prevalence, which in the present study was the prevalence
of resistant BRD pathogens determined using the gold-standard method. A low prevalence
of AMR would lead to a higher false-positive rate and imply lower PPV, whereas a high
prevalence of AMR would lead to a higher false-negative rate and imply lower NPV. In the
present study, AMR was more likely to be detected in lung samples than in nasal samples
(Table 5), which is largely attributable to the fact that the prevalence of AMR in the samples
in this study was lower among nasal samples (Table 3). As a result, the nasal samples
had a lower prevalence and PPV, which is the primary reason why the optimal Ct cutoff
values obtained for nasal samples were not valid. By contrast, the prevalence of AMR was
considerably higher among the lung samples, providing a more balanced outcome in favor
of the estimation of Se, Sp, PPV and NPV. Compared with the lung samples, the estimates of
Se and Sp for the nasal samples were similar, but PPV was much lower, resulting in invalid
estimates of the optimal Ct cutoff values. These results suggest that the most effective
application of the qPCR assay for phenotypic AMR classification is situations in which the
presence of AMR is not uncommon, such as during BRD outbreaks.

Although this novel application for predicting AMR phenotypes based on genotypic
data could potentially be translated into a rapid assay for use in a variety of platforms,
including pen side or in veterinary clinics, several limitations remain to be addressed. First,
the data on phenotypic resistance were recategorized into binary outcomes due to the
insufficient number of samples with intermediate resistance, and the ROC approach is
less optimal for discriminating among more than two classifiers. Second, the classification
was conducted for specific pathogen–sample–resistance type combinations in a series of
stratified analyses but did not include predictors other than the Ct value, such as historical
or clinical information like antimicrobial treatments, which might greatly influence the
development of resistance. Third, to estimate the optimal Ct value, the ROC approach
employed area under the curve (AUC), which is a widely used methodology but may be
further improved because its use of a threshold of 50% for classification ignores the actual
probability. To potentially address these limitations and increase the accuracy of diagnosis
of AMR among BRD infections using PCR-based rapid detection methods, alternative
classification methods, such as the H measure approach, warrant investigation [24].

In conclusion, the rapid multiplex real time-based PCR detection assay reported here,
which can estimate levels of AMR genes potentially associated with multiple species of
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BRD pathogens, holds promise for the rapid detection of these genes in complex samples.
By combining this gene detection assay with a pathogen-specific assay that can quantify
pathogen abundance in samples, veterinarians could rapidly assess the risk of BRD caused
by a potentially resistant pathogen, thereby enabling judicious use of antimicrobials in
cattle production systems. Further expansion of the number of gene targets may enable
more robust AMR assessments of complex samples.

4. Materials and Methods
4.1. Sample Collection and Distribution

Bovine lung tissue and nasal swab samples were collected over a one-year period in
2018 from submissions, mainly for BRD diagnostic testing, to the University of Nebraska-
Lincoln Veterinary Diagnostic Center and combined with an archived sample collection
that had been stored at −80 ◦C from 2012 to 2017. Although detailed clinical information
was not available for many submissions, most of these samples were likely collected from
non-healthy, clinically ill animals since they were submitted to a veterinary diagnostic
lab for BRD diagnosis. A total of 416 bovine clinical samples were collected, primarily
consisting of lung tissues (n = 297) and nasal swabs (n = 111). Omitted samples that
were excluded from further data analysis were either tissues less related to BRD diagnosis
(n = 4, i.e., skin and liver samples) or lacked records about tissue type (n = 4). The samples
were analyzed for the existence of target BRD bacterial pathogens. If the pathogens were
detected, phenotypic AMR characteristics were subsequently determined using the gold-
standard culture-based method. In addition, target genes conferring AMR in the samples
were quantified using the culture-independent qPCR rapid detection method developed in
this present study.

4.2. Reference Strains

ATCC-sourced strains, a collection of field isolates from diagnostic cases, and off-target
controls were used for a preliminary evaluation of the target specificity of the qPCR assay.
M. haemolytica strains that had been previously subjected to WGS and with established
presence or absence of the AMR targets and ICE elements were used to capture the known
genomic diversity of this pathogen (Table S3 [19,25]). H. somni, P. multocida, and B. trehalosi
strains isolated from clinical cases that had been subjected to MIC testing were also used
for evaluation purposes along with ATCC reference strains (Table S4). Bibersteinia trehalosi
was included in the reference set because it is occasionally isolated from BRD cases and has
shown AMR [26]. This collection of reference strains was employed only for evaluating
assay performance and specificity and was excluded from further data analysis of the
clinical samples.

4.3. Molecular-Based Rapid Detection Assay

Nucleic acid extraction. For initial validation, nucleic acids were extracted from
reference strains in pure subculture, as described previously [13]. Briefly, a single purified
colony was resuspended in nuclease-free water, boiled at 100 ◦C for 10 min and clarified
by centrifugation at 15,700 RCF for 2 min. Swabs, which were submitted to the laboratory
in various liquid transport media from referring veterinarians, were vortexed vigorously,
and 100 µL of the transport medium was combined with lysis solution and extracted
using a MagMax Total Nucleic isolation kit (AM1840) on a Kingfisher flex instrument
(Thermo Scientific) following the manufacturer’s instructions. Lung tissue samples were
added to a filter Whirl-Pak (Nasco, Fort Atkinson, WI) with 1–5 mL of sterile phosphate-
buffered saline (PBS) and placed in a stomacher for 30–60 s. Following stomaching, 2 mL of
suspension was removed from the bag, centrifuged at 15,700 RCF for 2 min and extracted
using the MagMax procedure and kit, as described above.

qPCR assay. A multiplexed hydrolysis nucleic acid probe assay was designed based
on whole-genome sequences of M. haemolytica strains possessing ICE elements containing
AMR genes. Four gene targets carried on the ICEs were selected, including three that
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confer resistance to MACs (msrE, mphE, and erm42) and one that is the repressor gene for
TET class drug resistance (ICEtetR). The primer and probe sequences were designed by
using PrimerQuest software (IDT, Iowa City) using genomic sequences from a reference
strain of M. haemolytica [19] (Table 7). In silico analyses of the primer and probe sequences
were conducted to evaluate the use of these targets in addition to M. haemolytica strains
with the ICEs and four AMR genes and in strains of P. multocida and H. somni.

Table 7. Oligonucleotide sequences for primers and probes used in the assay.

Target Primer/Probe Sequence (5′-3′) Size Reference

tetR ICEtetR-F TTTGGCTTTCTTGATGCTCTTG 71 This paper
ICEtetR-R GTGATGCTGGGTTTAGTCTATCT
ICEtetR-P

(CY5/TAO-IAB-RQ) CGCAATAGAGCTTAATGCATACACGGC

erm42 erm42-F GCCGTTAATGCTATTGAGTTCG 105 This paper
erm42-R CGGCTTCAATAATAGACACATTTGA
erm42-P

(FAM/ZEN-IAB-FQ) AGTGTATTGGCTGATAAGTTGAGCCATGA

msrE msrE-F GGGTGGTTACTCGGATTACTTG 88 This paper
msrE-R CTCCCGTTCCTTCATCATCAG

msrE-P (Texas
Red/IAB-RQ) AGCGACAACACCAAGCCGTAGAAT

mphE mphE-F TTGGAAACCCGCTACAGAAA 113 This paper
mphE-R GCTCCATCCTTTGAAGCTAGT
mphE-P

(JOE/ZEN-IAB-FQ) TGATGTTCTATGGGCAGATTTCACCCA

Following in silico analysis, primers and probes were purchased from Integrated
DNA Technologies (IDT) and used in a single 4-plex reaction in a rotary-based real-time
PCR instrument (Qiagen Rotorgene Q). Protocols were optimized for primer and probe
concentrations and annealing temperatures. The PCR master mix had a total volume of
25 µL comprising 12.5 µL of 2× Quantifast Multiplex PCR Master Mix (Qiagen), 1 µL of
each primer probe mix (4 µL total) containing F (10 µM), R (10 µM), and P (10 µM), 6.5 µL
of nuclease-free water and 2 µL of template DNA. The thermocycling conditions were as
follows: 95 ◦C for 5 min, followed by 45 cycles of 95 ◦C for 15 s, and 59 ◦C for 40 s. The
Ct threshold was set at a fixed value of 0.1 for all detection channels following dynamic
tube normalization.

Following optimization, assay performance was tested using reference strains, and
limit of detection analysis was conducted using a reference M. haemolytica strain known
through WGS to have all four genes (Reference strain 1621 in Table S3) [19]. The assay was
further validated using a panel of M. haemolytica strains (Table S3) previously characterized
by WGS and representing all known major genotypes and subtypes of M. haemolytica and
different combinations of AMR genes [19]. The assay gene targets have also been reported
in strains of H. somni and P. multocida isolated from cattle, and therefore strains of H. somni
and P. multocida with phenotypic resistance patterns similar to those of the M. haemolytica
strain collection were also included in this validation (Table S4). In addition, analyses of
non-target closely related strains, including B. trehalosi, and other ATCC reference strains
were performed (Table S4).

4.4. Preliminary Assay Validation and Analytical Sensitivity

Assay performance was evaluated for all four targets using DNA extracted from M.
haemolytica reference strain 1621. Briefly, the strain was grown in pure culture on tryptic soy
agar with 5% sheep blood (BAP) (Remel, Lenexa, KS). Colonies were picked and cultured
in 10 mL of brain heart infusion broth in a 100 mL flask shaken at 200 RPM for 12 h. Serial
dilutions (1:10) of this culture were plated on BAP to enumerate colonies and estimate
colony forming units/mL, and the remaining portion of each dilution was used for nucleic
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acid extraction, as described above, to evaluate assay performance and limit of detection
(Table 1). Following the determinations of limit of detection and dynamic range, the target
specificity of the assay was evaluated using a diverse collection of reference strains and
controls (Table S4).

4.5. Pathogen Isolation and Determination of Phenotypic Antimicrobial Resistance Characteristics

BRD pathogen isolation and confirmation. All clinical samples were processed for
bacterial isolation and identification of the BRD pathogens M. haemolytica, P. multocida,
and H. somni, as described previously [13]. Briefly, samples were documented, processed,
and tested by trained personnel following validated and approved standard operating
procedures in an American Association of Veterinary Laboratory Diagnosticians (AAVLD)-
accredited diagnostic laboratory. For bacterial culture, diseased portions of fresh lung
tissues were excised using flame-sterilized scissors and dipped in alcohol. After flame
sterilizing the exterior, the sample was bisected, and the cut surface was used to inoculate
culture media. Swabs were used directly to inoculate plates if submitted in liquid medium
or otherwise were resuspended in approximately 1.5 mL of PBS. Colonies were isolated by
streaking on culture media, including BAP, chocolate agar, and MacConkey agar (Remel,
Lenexa, KS), incubated in 5% CO2 and examined at 24 and 48 h after inoculation. Colonies
with morphologies consistent with M. haemolytica, P. multocida, or H. somni were identi-
fied by MALDI-TOF MS (Bruker Biotyper) testing using the manufacturer’s validated
procedures for definitive identification of these organisms.

MIC determination. For each confirmed BRD pathogen strain, the presence of pheno-
typic AMR was evaluated using oxytetracycline to represent the TET class and tilmicosin
and tulathromycin to represent the MAC class. As the gold-standard approach, AMR
to TETs and MACs was evaluated by MIC testing using the broth microdilution method
according to CLSI guidelines [27]. By comparing the MIC values with the corresponding
breakpoints for bovine respiratory pathogens (Thermo Sensititre using the BOPO6F panel),
which are listed in Table 4, BRD pathogen isolates were classified as S, I or R to each
drug [28]. In this study, intermediate and resistant were both re-defined as “resistant” (R+I)
at the strain level. A sample was classified as containing “resistant” BRD pathogens if
at least one strain of antimicrobial-resistant BRD pathogens evaluated in this study was
detected.

4.6. Predicting Phenotypic Antimicrobial Resistance

Statistical analysis was performed to optimize and validate the capability of the
developed qPCR assay to classify samples as either S or R+I to a given antimicrobial.
First, optimal Ct cutoff values were determined using ROC analysis to maximize the assay
accuracy (both Se and Sp as the primary accuracy indices) compared to the gold-standard
test. Optimal cutoff values were determined for clinical samples containing M. haemolytica,
P. multocida or H. somni resistant to OTC, tilmicosin or tulathromycin, as well as for samples
classified as “possessing at least one resistant BRD pathogen”. Second, the diagnostic
accuracy and validity of the developed qPCR assay were assessed by determining the
sufficiency of the sample size collected in this study for detecting MAC and TET resistance
in samples possessing BRD pathogens and by using the cross-validation technique. All
statistical analyses were performed in statistical software R version 3.5.1 [29].

4.6.1. Optimal Ct Cutoff Value Determination

Data preparation for ROC analysis. To determine the optimal Ct, ROC curves were
plotted by comparing the phenotypic AMR classification determined by the gold-standard
test with the continuous Ct value generated by the qPCR assay using the ‘pROC’ package
in statistical software R [30]. ROC curve analysis is a common method for evaluating
diagnostic tests with a binary classifier [31], but this method does not work optimally if
there is no detection or anomaly observed in either the qPCR assay or MIC test. In this
study, no detection by qPCR means that the target gene is either present in very small
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amounts or completely absent. Hence, samples recorded as “no gene copies detected” were
imputed with a Ct value of 40, the highest amplification cycle observed in this study. For
the gold-standard test, it is not easy to reinvestigate missing results. Hence, another four
samples were further excluded from data analysis due to a lack of MIC records, resulting in
a total of 404 samples (296 lung and 108 nasal) for inclusion in the following data analysis.

ROC analysis to determine the optimal Ct cutoff. In this study, ROC curves were
generated by plotting the true-positive rate (i.e., Se) against the false-positive rate (i.e., 1–Sp)
to determine the diagnostic equivalency between the qPCR assay and the gold-standard test
over different cutoff values. Table 8 shows a schematic representation of the comparison
of the outcomes of the qPCR assay and the culture-based gold-standard test and the
calculation of Se and Sp. The optimal cutoff translating the continuous Ct value into
a binary classification of R+I or S was determined by optimizing the AUC [32]. AUC can
take values between 0.5 and 1, with values closer to 1 indicating high performance of the
qPCR approach in predicting the resistance classification with minimum classification error
compared with the gold-standard test.

Table 8. Schematic representation of the outcomes of the multiplex qPCR assay detecting antimicrobial resistance compared
to the gold standard.

Multiplex qPCR Assay
Culture-Based Gold-Standard Test

“R” 1 S 2

“R” 1 True Positive (TP) False Positive (FP) PPV 3 = TP/(TP + FP)
S 2 False Negative (FN) True Negative (TN) NPV 3 = T N/(TN + FN)

Se 3 = TP/(TP + FN) Sp 3 = TN/(TN + FP)
1 “R” indicated by the gold-standard test refers to samples containing pathogens resistant (R) or intermediate resistant (I) to antibiotics tested
(“resistant” or R+I); hence classification given qPCR results based on the comparison to the gold-standard test also refers to the redefined “resistant”
in this study. 2 S indicated by both the gold-standard test and qPCR assay refers to samples containing pathogens susceptible to antibiotics tested.
3 Se = sensitivity; Sp = specificity; PPV = positive predictive value; and NPV = negative predictive value.

Performance of qPCR. As a post-analysis statistic, the determined optimal Ct cutoff
value was used to calculate Cohen’s Kappa (κ) in order to measure the agreement between
the two tests [33]. κ ranges from −1 to 1, with higher values implying greater concordance
between the two tests. The following interpretations of κ were used: κ < 0.2, poor agree-
ment; 0.2 < κ ≤ 0.4, fair agreement; 0.4 < κ ≤ 0.6, moderate agreement; 0.6 < κ ≤ 0.8, good
agreement; and κ > 0.8, very good agreement [34]. κ was calculated using Equation (1):

κ = Actual agreement beyond chance
Potential agreement beyond chance = p0−pe

1−pe
,

where p0 = proportion o f true agreement = TP+TN
TP+FN+FP+TN and

pe = proportion o f random agreement = TPFN∗TPFP+FPTN∗FNTN
(TP+FN+FP+TN)2 ,

TPFN = TP + FN, TPFP = TP + FP, FPTN = FP + TN and FNTN = FN + TN,
TP, TN, FN and FP are reported in Table 8.

(1)

The PPV and NPV were also calculated to measure the true-positive and true-negative
results of the multiplex qPCR assay, as shown in Table 8. In this study, PPV is the proportion
of samples showing a test result of “resistant” based on the multiplex qPCR assay that were
actually identified as resistant using the gold-standard test, while NPV is the proportion of
samples showing a test result of “susceptible” in the qPCR assay that were also identified
as susceptible using the gold-standard test.

4.6.2. Diagnostic Accuracy Evaluation

Developing a multiplex qPCR assay with relatively high diagnostic accuracy for
classifying AMR status in clinical samples is contingent on a balance of samples with
positive and negative responses to the outcomes of interest, i.e., R+I and S [35]. To determine
whether this balance was reached, the minimum required sample size and the required
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proportion of resistant samples were estimated and compared with the sample sizes and
the proportions of resistant samples included in this study to validate the optimal Ct cutoff
values determined using the ROC approach. Once the sufficiency of the sample size and
required number of resistant samples were determined to be adequate, cross-validation
(CV) was conducted to evaluate the computational approach used in ROC analysis to
determine the optimal Ct value. Cross-validation is one of the most common resampling
methods to evaluate the performance of a diagnostic test [36]. Here, the 5-fold CV technique
was used to validate the optimal Ct value of the multiplex qPCR assay for classifying AMR
equivalent to the gold standard. Further details of the accuracy evaluation techniques are
provided in the Supplementary Materials, Text.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-081
7/10/1/64/s1, Table S1: M. haemolytica in silico primer and probes analysis; Table S2: Primer binding
other species; Table S3: Isolates used in MALDI study (M. haemolytica WGS isolates); Table S4: Target
and non-target isolates used to validate assay specificity, with respective threshold cycle (Ct) values
obtained from multiplex qPCR and MIC values for antimicrobial resistance determination; Table S5:
Assessment of sufficiency of sample size for determining the optimal cycle threshold value; Table S6:
Comparison of 5-fold cross-validation with the optimal threshold cycle (Ct) cutoff value obtained
using ROC curves on the overall data; Text: Elaboration of accuracy evaluation techniques used in
the present study.
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