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Abs t rac t .  We have used a new cinemicroscopy tech- 
nique in combination with antitubulin immunofluores- 
cence microscopy to investigate the timing of mitotic 
events in cells of the fission yeast Schizosac- 

charomyces pombe  having lengths at division between 
7 and 60 #m. Wild-type fission yeast cells divide at a 
length of 14 #m. Separation of daughter nuclei 
(anaphase B) proceeds at a rate of 1.6 + 0.2 ttm 
min -~, until the spindle extends the length of the cell. 
Coincident with spindle depolymerization, the nuclei 
reverse direction and take up positions that will be- 
come the center of the two daughter cells. This post- 
mitotic nuclear migration occurs at a rate of 1.4 + 0.5 
#m -1. In cells in which the wee1 ÷ gene is overex- 

pressed fivefold and that have an average length at mi- 
tosis of 28/xm, the rate of nuclear separation was 
only slightly reduced but, as spindles in these cells 
measure 20-22/~m, the duration of anaphase B was 
extended by ,x,40%. By contrast, in the mutant 
wee1. 50, which divides at 7 #m, both the rate and du- 
ration of anaphase B were indistinguishable from wild 
type. Nuclei reach the ends of these cells earlier but 
remain there until a point corresponding to the time of 
postmitotic nuclear migration in wild type. Thus, the 
events of mitosis can be extended but not abbreviated. 
These results are discussed in terms of a mitotic ter- 
mination control that monitors many different events, 
one of which is spindle elongation. 

W 
ILD-TYPE fission yeast ceils divide at a length of 
14/~m (Mitchison, 1970; Nurse, 1975; Mitchison 
and Nurse, 1985). Initiation of mitosis is accompa- 

nied by the disappearance of interphase, cytoplasmic micro- 
tubules and the formation of an intranuclear mitotic spindle 
(Hagan and Hyams, 1988). A brief anaphase A (the move- 
ment of the chromosomes to the spindle poles) is followed 
by an extended spindle elongation (anaphase B), which forms 
the major observable component of mitosis (McCully and 
Robinow, 1971; Hiraoka et al., 1984; Tanaka and Kanbe, 
1986; Hagan and Hyams, 1988; Robinow and Hyams, 1989). 
Anaphase B proceeds until the daughter nuclei reach the ends 
of the cell. Its completion is marked by the activation of two 
microtubule-organizing centers at the cell equator, forming 
the transient post-anaphase array (PAA) *, which precedes 
the reestablishment of interphase cytoplasmic microtubule 
network (Hagan and Hyams, 1988). Coincidently, spindle 
breakdown occurs and the nuclei migrate away from the cell 
ends to points which will become the centers of the two 
daughter cells. 

The timing of mitotic initiation in S. pombe is controlled 
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1. Abbreviations used in this paper: DAPI, 4'-6-diamidino-2-phenylindole; 
PAA, postanaphase array. 

by the antagonistic interaction of the genes w e d  + and cdc25 ÷ 
with the major cell cycle control gene cdc2 ÷ (reviewed in 
Fantes, 1989). The wee1 ÷ gene product appears to be a 
dosage-dependent inhibitor of the cdc2 protein kinase and 
the cdc25 ÷ gene product an activator, although the molecu- 
lar basis of this control network remains to be determined 
(Russell and Nurse, 1986). Neither gene affects the execu- 
tion of mitosis, merely the timing of its initiation. Mutations 
in wee/÷ can lead to cell size at division being reduced by as 
much as 50% (Nurse, 1975; Nurse and Thuriaux, 1988), 
whereas integration of extra copies of the weep  gene leads 
to incremental increases in size at division (Russell and 
Nurse, 1987). Conversely, mutations in, or a deletion of 
cdc25 ÷ in the presence of wild-type copy of the wee1 ÷ gene 
lead to cell cycle arrest, whereas overexpression results in 
premature mitotic initiation. 

In this paper we have exploited the ability to manipulate 
the cdc25÷/wee1 ÷ mitotic control network to investigate the 
effect of altered cell size upon spindle elongation and the tim- 
ing of mitotic events. We show that when cells initiate mito- 
sis at lengths >21/~m, mitotic spindle length is increased. 
Cinemicroscopy of dividing cells shows that the rate of nu- 
clear separation (anaphase B) is unaffected by manipulation 
of spindle length. Thus, in larger cells the mitotic period is 
increased. By contrast, when cell size is halved the mitotic 
period is not similarly reduced. Rather, nuclei remain at the 
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cell ends until the point corresponding to spindle depolymer- 
ization and postmitotic nuclear migration in wild-type cells. 
These results are discussed in terms of the termination of mi- 
tosis being controlled by a number of different events, one 
of which is spindle elongation. 

Materials and Methods 

Cell  Cul ture  

The strains 972h-, w e e l - 5 0 -  (Nurse, 1975), c d c 2 5 - 2 2 h -  (Nurse et al., 
1976; Thuriaux et al., 1980), a d e 6 - 2 1 0  ura  4 -d !8  : : w e d  + urn4  + (3 x 
weel+),  ade6-210  ura4 -d l8  : : w e e l  + (5 x w e e l  +) (Russell and Nurse, 
1987), were grown in minimal medium EMM2 (Nurse, 1975), supple- 
mented in the case of the wee l  + integrant strains with adenine (250 mg.ml -I) 
to growth state described in the text. 

l ramunof luorescence  Microscopy  

The technique of Hagan and Hyams (1988) was used to stain cells with the 
anti-alpha tubulin antibody YOL 1/34 (Kilmartin et al., 1982) (a generous 
gift from Dr. J. V. Kilmartin). 

Cinemicroscopy  

Yeast extract medium supplemented with adenine, uracil, leucine, histidine, 
glutamate, and lysine (all at 250/~g.ml -I) (Gutz et al., 1974) containing 
0.5% ultrapure agarose and 30% polyvinyl pyrolidine (both from Sigma 
Chemical Co., St. Louis, MO) was maintained in the melted state in an in- 
cubator. 32-mm-diam glass coverslips were cleaned and rested on coins 
smaller than the glass, all placed on a tin lid for subsequent moving. Enough 
of the melted agarose medium was flooded onto the coverslips to just reach 
all edges of the glass. The lid was then covered with the upturned tin. When 
sufficiently set at room temperature to allow movement, the prepared cover- 
slips were placed at 5"C to become firm. For use, the cover glasses were 
allowed to equilibrate to 35.5"C and then picked up at the edge with forceps. 

A drop of early mid-log phase culture was placed on the base of a 5-cm 
hydrophylie Pctriperm dish (Hereas Equipment Ltd., Brentwood, UK). An 
inverted coverglass with the nutrient gel on it was then placed over the drop 
and the dish lid was sealed with tape. To avoid the top coverslip becoming 
misted, a heat-absorbant filter was placed over the dish, thus keeping the 
top of the dish marginally warmer than the coverslip. The gas permeability 
of the dish base allowed satisfactory growth conditions for long periods. Af- 
ter 24 h on the microscope monolayer, individual cells had grown up into 
microcolonies. 

Preparations were allowed to equilibrate on the microscope stage for 
'x,1 h, at a temperature of 35.5"C, during which time any tendency for dis- 
placement between the gel and membrane had ceased. Isolated groups of 
two or four ceils were selected for filming. 

Cultures were filmed on an Olympus IMT microscope Mkl with 
Olympus control units and a Bolex camera. The stage area was maintained 
at constant temperature as described in Riddle (1979). The thin membrane 
of the dishes allowed the use of Wild x50 or x l00 Fluotor lenses and a 
Wild long-working distance condenser, which was substituted for the 
Olympus lenses. The ultimate field width was ,o80-160 #m, depending 
upon the objective. Accurate size measurements were recorded at the start 
of films by making a few exposures of a stage micrometer. 

The film used was Kodak Infoeapture AHU microfilm, which was devel- 
oped in a laboratory bench top developing unit using Kodak Dektol or 
equivalent developers. 

Results 

Correlat ion o f  Cell  S i ze  wi th  Spindle  Leng th  ~ 3o 

By manipulating the S. pombe cell division control genes ~ 23 
wee1 + and cdc25 +, it was possible to create cells that enter _~ 
mitosis at lengths ranging between 7 and 60 #m (Fig. 1). The ~ ,6 
mutant weel.50 divides at 7 #m (Nurse et al., 1976) com- 
pared with the wild-type length of 14 #m (Mitchison and 0 
Nurse, 1985). Strains containing three or five extra copies 

Figure 1. Spindle length in 
fission yeast strains of increas- 
ing cell length. (a) Anti-tubu- 
lin immunofluorescence and 
DAPI/phase images of late mi- 
totic cells. The rather ragged 
appearance of the spindle and 
the presence of the post-ana- 
phase array at the center of 
each spindle both mark the end 
of anaphase. (a) weel-5Oh-; 
(b) wild-type 972h-; (c) 3X- 
wee1÷; (d) 5Xweel÷; (e) cdc- 
25,22h-. a was grown at 36°C, 
b--d at 25°C. The cells in e 
were arrested at the G2/M 
boundary by growth at 36°C 
for 4.25 h then allowed to 
enter mitosis at 25°C. Bar, 
10 #m. 

of the weep  gene divide at 21 and 28 #m, respectively 
(Russell and Nurse, 1987). To generate cells of even greater 
length than the 5 x wee1 ÷ integrants, cultures of the mutant 
cdc25-22h- were grown to early log phase at 25°C and 
shifted to 35.5°C. These cells arrest at the G2/M boundary 
but continue to elongate (Hagan and Hyams, 1988). By re- 
turning such cultures to the permissive temperature at the 
appropriate time, cells entering mitosis at 60 #m were ob- 
tained (Fig. 1). All of these strains were prepared for im- 
munofluorescence microscopy using an anti-tubulin anti- 
body. In each case, ceils were seen to contain all of the 
typical microtubule arrays observed in wild-type cells (Ha- 
gan and Hyams, 1988; data not shown). However, it was 
clear that when the longer cells underwent division, spindle 
length considerably exceeded that in wild-type ceils. Corre- 
lation of spindle length with cell length requires an accurate 
marker of maximal spindle elongation. In wild-type cells, 
the activation of the PAA occurs when the spindle reaches 
its maximum length (14/an) and starts to exhibit a ragged 
appearance, indicative of the early stages of spindle break- 
down (Fig. 1 b). In cells having longer spindles, the relation- 
ship of the PAA to spindle breakdown was clearly main- 
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Figure 2. Spindle length is ex- 
tended in a cell volume-de- 
pendent fashion in cells longer 
than 21 #m. Spindle and cell 
lengths were measured from 
projected immunofluorescence 
micrographs of cells contain- 
ing intact late mitotic spindles 
and early PAAs. 3Xweel + ( t r i -  
a n g l e s ) ;  5Xweel ÷ (circles); 
cdc25,22h- (squares). 
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Figure 3. Mitosis in wild-type fission yeast cells. Negative prints of phase-contrast images made from 16-mm cinefilm records. Fifty seconds 
separates consecutive images. During interphase, the DNA-containing and nucleolar regions of the nucleus are easily distinguishable. Just 
before separation, the nucleus appears more amorphous and dynamic, moving in and out of the plane of focus. Immediately before nuclear 
separation a degree of chromosome condensation can be seen (third panel). This is followed by the typical U-shape of early anaphase 
(Toda et al., 1981). During their initial separation, daughter nuclei undergo a series of oscillations, appearing to twist back and forth until 
separation is complete. Bar, 2.5 ttm. 

tained (Fig. 1, c-e). Thus the appearance of the PAA is 
progressively delayed in these strains. 

Using the PAA as a marker of the end of mitosis, maximal 
spindle extension was compared with cell length, as shown 
in Fig. 2. This shows that in cells dividing at wild-type length 
or below, the spindle extends the entire length of the cell. In 
longer cells this is not the case, although, in cells longer than 
21/zm, spindle length exceeds the maximum value for wild- 
type cells in a manner related to total cell length. 

The Mitotic Period Is Extended in Cells Containing 
Five Copies o f  the wee1 + Gene 

We were interested to discover whether the rate of nuclear 
separation in cells having longer spindles was the same as 
in wild type, and thus the cell spends a correspondingly 
longer time in mitosis, or whether nuclear separation was ac- 
celerated so that the duration of mitosis remained un- 
changed. Wild-type cells and cells with five extra copies of 
the wee1 ÷ gene were analyzed during cell division by phase- 
contrast cinemicroscopy. Fig. 3 shows an example of the im- 
ages obtained with wild-type cells. Nuclei moved to the cell 
ends at a rate of 1.6 + 0.2/zm-min -~ (Table I), often paus- 
ing briefly before moving back down the cell in a postana- 
phase movement, which is initiated 513 + 14 s after the first 

Table L Rates of  Nuclear Movement in Various 
S. pombe Strains at 35.5 ° C 

Strain Nuclear separation rate 
Postmitotic nuclear 

migration rate 

/tm • min -I i zm.  min -j 

972 h- !.59 + 0,22 (n = 9) 1,36 + 0.48 (n = 9) 
5X w e e l  ÷ 1.39 5 :0 .10  (n = 4) No consistent movement 
w e e l - 5 0  1.68 5:0.31 (n = 5) 1.56 + 0.29 (n = 4) 

Rates of anaphase nuclear separation and postanaphase nuclear movement de- 
termined from graphs such as those shown in Fig. 3. n = number of determi- 
nations. 

signs of nuclear separation and which returns the nuclei to 
the centers of the new daughter cells (Table II). The events 
are plotted graphically in Fig. 4 a. 

Nuclear movement in the strain carrying five extra copies 
of the wee1 ÷ gene occurred at a similar speed (Fig. 4 b; Ta- 
ble I). Postanaphase nuclear movement was either greatly re- 
duced or not observed at all in these cells, presumably be- 
cause the separated nuclei are at, or very near to, their 
ultimate position at the center of the daughter cells. How- 
ever, it is clear from Fig. 4, a and b that the duration of 
anaphase B (843 + 46 s; Table II) is considerably extended 
in this strain. Nuclear separation is not a smooth, uninter- 
rupted process but is punctuated by occasional pauses. The 
phases of movement were used to calculate the overall rate 
of 1.4 + 0.1 #m-min -t (Table I). Interestingly, around half 
of the 5 × wee1 ÷ cells initiated two septa, although these in- 
variably collapsed into a single structure (not shown). 

The Mitotic Period Is No t  Reduced in weel-5Oh- Cells 
That  Initiate Mitosis at a Reduced  Cell Size 

One prediction of a model in which the duration of mitosis 
was determined by cell volume would be that a reduced cell 
size should result in a corresponding reduction in mitotic 
time. To investigate this, cells containing a ts mutation in the 
weel + gene, weel.50 were analyzed by cinemicroscopy. Fig. 
4 c shows that there is no reduction in the period between 
the initiation of nuclear separation and postanaphase nuclear 
movement in wee1.50, despite the fact that nuclear separation 
again proceeds at a rate comparable to wild-type cells (1.7 
+ 0.3 #m.min-t; Table I), and is therefore completed much 
earlier. This is accounted for by the fact that nuclei remain 
at the cell ends for longer than in wild-type cells before initi- 
ating spindle breakdown and postanaphase migration (Fig. 
4 c). In some instances premature septation was observed in 
weel- cells, in extreme cases before the initiation of mito- 
sis, indicating that some level of premature mitotic initiation 
may be occurring (Hagan and Hyams, 1988). 
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Figure 4. Time-course of nuclear separation in S. pombe. (a) The 
wild-type strain 972h-; (b) 5Xweel÷; (c) wee1-50. Films of divid- 
ing cell were projected onto a desktop screen and the two most dis- 
tal points of the nuclei, in every frame where a clear image could 
be obtained, were measured and plotted against time. Data shown 
are representative examples of each strain• Note that nuclear sepa- 
ration is completed earlier in weel-50 than in wild type but that 
postanaphase nuclear movement occurs at about the same time (see 
also Table II). 

Discussion 

In this paper, we exploit the cdc25/wee1 mitotic control net- 
work in the fission yeast S. pombe to investigate the effect 
of cell length at the initiation of mitosis on spindle length 
and, hence, the duration of anaphase B. The product of the 
cdc25 ÷ gene is a predicted activator of the cdc2 protein ki- 
nase and weel ÷ an inhibitor although direct tests of these 
predictions are still awaited (Fantes, 1989). Because cells 
undergo normal divisions in the absence of functional copies 
of either gene (Fantes, 1979; Russell and Nurse, 1986), it 

is reasonable to assume that it is just the timing, and not the 
mechanical events, of mitosis that are perturbed by these 
manipulations. Increasing cell length at division either by in- 
creased expression of the wed  + inhibitor or by temporary 
inactivation of the cdc25 + inducer, leads to increased maxi- 
mum spindle length, in other words, an extended anaphase 
B, in cells longer than 21 /zm. By contrast, in the mutant 
wee1-50, both cell length and spindle length are reduced to 
7 #m. 

Mitosis in living cells over a range of sizes was analyzed 
using a modification of methods first described by Robinow 
(1981) to visualize nuclei in living fission yeast cells using 
a high refractive index medium. This employed a growth 
chamber freely permeable to oxygen that supported repeated 
cell divisions. Our measured rate of nuclear separation 
(anaphase B) in wild-type S. pombe cells was in good agree- 
ment with that reported by others (Tanaka and Kanbe, 1986)• 
In the longer spindles of the weel ÷ integrant strains the ap- 
parent mean rate was somewhat slower (1.39 + 0.1/~m.min -~) 
and the nuclei repeatedly paused during separation• Video 
analysis of mitosis in the fungus Fusarium also shows non- 
continuous movement of nuclei (Aist and Bayles, 1988) and 
it may be that these long cells are revealing a normal feature 
of mitosis in S. pombe, which is undetectable in wild type. 
In these long cells, mitosis lasts ,o6 min longer than in wild 
type at 35.5°C. If anything, this is likely to be a conservative 
estimate due to the lack of postanaphase movement of these 
nuclei, which acts as a clear marker for spindle breakdown 
in wild type cells. 

Immunofluorescence microscopy shows that the appear- 
ance of the PAA is linked to the delayed spindle breakdown. 
Septation is also delayed, indicating that the extension of mi- 
tosis results in the coordinate delay of other cell cycle events. 
Further evidence for a correlation between mitotic progres- 
sion and the status of the spindle is provided by the nda3, 
cold-sensitive ~-tubulin mutants ofS. pombe (Hiraoka et al., 
1985)• These cells arrest with condensed chromosomes indi- 
cating that mitotic processes have been initiated, however, 
they fail to septate. Because the only defect in these cells is 
the inability to form a spindle, the initiation of a set of late- 
division events evidently requires spindle formation. 

In wee1-50 cells, which divide at a reduced size, the mi- 
totic period is the same as in wild type. This strongly sug- 
gests that although the mitotic period can be extended it 
cannot be abbreviated. Thus, the mitotic period may be de- 
termined by an internal "timer control" analogous to that 
controlling the minimum duration of G2 (Fantes and Nurse, 
1978), G1 (Nasmyth et al., 1979; Thuriaux et al., 1979) and 
the intitiation of bipolar growth (Mitchison and Nurse, 1985) 
in S. pombe. 

Our observations further suggest that the duration of mito- 

Table II. Duration of  Anaphase B in Fission Yeast Strains 
having Different Cell Lengths 

Strain Mean cell length Duration of Anaphase B 

/ zm s 

w e e l - 5 0  7 .0  570 + 70  (n = 15) 
972h-  14.0 513 + 14 (n = 26) 
5 X w e e l  ÷ 28 .0  8 4 3 : 1 : 4 6  (n = 12) 

Measurements taken from cine records, n = number of determinations. 
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sis is a function of the coordinate and/or sequential execution 
of a number of events, the final one being the turning off of 
the mitotic state, resulting in the dissolution of the spindle 
and the movement of the nuclei back down the cell. In this 
case the minimum period is defined by the longest rate- 
determining step. We envisage that there are two classes of 
mitotic events, those whose completion is essential for the 
activation of a spindle dissolution signal and those which are 
not. Spindle elongation is an example of the former category 
and becomes the rate limiting step when driven, for example 
by increased levels of spindle components, for alonger time 
in cells >21 #m. Below this threshold, some other event is 
rate limiting and accounts for the maintenance of the mitotic 
period in small cells. The occurrence of aberrant mitoses in 
wee1- mutants (Hagan and Hyams, 1988) suggests that some 
mitotic processes are dependent upon the completion of G2 
events that are not required for the initiation of mitosis but, 
if delayed, also have the potential to be rate limiting. Al- 
though much is known about the events mediating entry into 
mitosis in eukaryotic cells through the cdc2/cyclin mitotic 
kinase (Lohka, 1989), there is little information about how 
the process is terminated. The recent identification of mitotic 
genes encoding protein phosphatases in both fission yeast 
and Aspergillus (Booher and Beach, 1989; Ohkura et al., 
1989; Doonan and Morris, 1989), however, suggests that the 
molecular basis of the control elements identified in this 
study might soon be revealed. 

We thank Dr. Paul Russell for strains and advice, Dr. Paul Nurse for his 
hospitality and invaluable advice during the project and to Drs. Peter 
Fantes, John Marks, Viesturs Simanis, Ry Young, and various members 
of the Imperial Cancer Research Fund Cell Cycle Control Laboratory in 
Oxford for their comments on the manuscript. 

I. M. Hagan was supported by a Science and Engineering Research 
Council postgraduate studentship. 

Received for publication 23 August 1989 and in revised form 23 January 
1990. 

References 

Aist, J. R., and C. J. Bayles. 1988. Video motion analysis of mitotic events 
in living cells of the fungus Fusarium solani. Cell Motil. Cytoskel. 9:325- 
336. 

Booher, R., and D. Beach. 1989. Involvement of a type 1 protein phosphatase 
encoded by bwsl + in fission yeast mitotic control. Cell. 57:1009-1016. 

Doonan, J. H., and N. R. Morris. 1989. The bimG gene of Aspergillus nidu- 
lans, which is required for completion of anaphase, encodes a homolog of 
mammalian phosphoprotein phosphatase 1. Cell. 57:987-996. 

Fantes, P. A. 1979. Epistatic gene interactions in the control 6f division in 
fission yeast. Nature (Lond.). 279:428-430. 

Fantes, P. A. 1989. Cell cycle control and cloning of cell cycle genes. In Molec- 
ular Biology of the Fission Yeast. A. Nasim, P. Young, and B. F. Johnson, 
editors, pp. 127-204. Academic Press, New York/London. 

Fantes, P. A., and P. Nurse. 1978. Control of the timing of cell division in 
fssion yeast. Exp. Cell Res. 115:317-329. 

Gutz, H., H. Helost, U. Leupold, and N. Loprieno. 1974. Schizosaccharo- 
myces pombe. In Handbook of Genetics. R. C. King, editor, pp. 395-446. 
Plenum Publishing Corp., New York. 

Hagan, I. M., and J. S. Hyams. 1988. The use of cell division cycle mutants 
to investigate the control of microtubule distribution in the fission yeast 
Schizosaccharomyces pombe. J. Cell Sci. 89:343-357. 

Hiraoka, Y., T. Toda, and M. Yanagida. 1984. The NDA 3 gene of fission yeast 
encodes/3-tubulin. A cold sensitive nda 3 mutation reversibly blocks spindle 
formation and chromosome movement in mitosis. Cell. 39:349-358. 

Kilmartin, J. V., B. Wright, and C. Milstein. 1982. Rat monoclonal antitubulin 
antibodies derived by using a new nonsecreting rat cell line. J. Cell BioL 
93:576-582. 

Lohka, M. J. 1989. Mitotic control by metaphase-promoting factor and cdc pro- 
teins. J. Cell Sci. 92:131-135. 

McCully, E. K., and C. F. Robinow. 1971. Mitosis in the fission yeast 
Schizosaccharomyces pombe: a comparative study with light and electron 
microscopy. J. Cell Sci. 9:475-507. 

Mitchison, J. M. 1970. Physiological and cytological methods for Schizosac- 
charomycespombe. In Methods in Cell Physiology. Vol. 4. D. M. Prescott, 
editor. Academic Press, New York/London. pp. 131-154. 

Mitchison, J. M., and P. Nurse. 1985. Growth in cell length in the fission yeast 
Schizosaccharomyces pombe. J. Cell Sci. 75:357-376. 

Nasmyth, K., P. Nurse, and R. S. S. Fraser. 1979. The effect of cell mass on 
the cell cycle timing and duration of S-phase in fission yeast. J. Cell Sci. 
39:215-233. 

Nurse, P. 1975. Genetic control of cell size at cell division in the fission yeast 
Schizosaccharomyces pombe. Nature (Lond. ). 256:547-551. 

Nurse, P., and P. Thuriaux. 1980. Regulation genes controlling mitosis in the 
fission yeast Schizosaccharomyces pombe. Genetics. 96:627-637. 

Nurse, P., P. Thuriaux, and K. Nasmyth. 1976. Genetic control of the cell divi- 
sion cycle of the fission yeast Schizosaccharomyces pombe. Mol. Gen. Ge- 
net. 146:167-178. 

Ohkura, H., N. Kinoshita, S. Miyatani, T. Toda, and M. Yanagida. 1989. The 
fission yeast dis2 + gene required for chromosome disjoining encodes one of 
two putative type I protein phosphatases. Cell. 57:997-1007. 

Riddle, P. 1979. Time-lapse cinemicroscopy. In Biological Techniques. J. E. 
Treherne and P. H. Rubery, editors. Academic Press, New York/London. 
p. 121. 

Robinow, C. F. 1981. The view through the microscope. In Current Develop- 
ments in Yeast Research. G. G. Stewart and I. Russell, editors. Pergamon 
Press, London, Canada. pp. 623-633. 

Robinow, C. F., and J. S. Hyams. 1989. General cytology of fission yeast. In 
Molecular Biology of the Fission Yeast. A. Nasim, P. Young, and B. F. 
Johnson, editors. Academic Press, New York/London. pp. 273-330. 

Russell, P. R., and P. Nurse. 1986. cdc 25 + functions as an inducer of mitotic 
control of fission yeast. Cell. 45:145-153. 

Russell, P. R., and P. Nurse. 1987. Negative regulation of mitosis by weel ÷, 
a gene encoding a protein kinase homolog. Cell. 49:559-567. 

Tanaka, K., and T. Kanbe. 1986. Mitosis in fission yeast Schizosaccharomyces 
pombe as revealed by freeze substitution electron microscopy. J. Cell Sci. 
80:253-268. 

Thuriaux, P., M. Sipiczki, and P. A. Fantes. 1980. Genetical analysis of a ster- 
ile mutant by protoplast fusion in the fission yeast Schizosaccharomyces 
pombe. J. Gen. MicrobioL 116:525-528. 

Toda, T., M. Yamamoto, and M. Yanagida. 198 I. Sequential alterations in the 
nuclear chromatin region during mitosis of the fission yeast Schizosac- 
charomyces pombe: video fluorescence microscopy of synchronously grow- 
ing wild type and cold-sensitive cdc mutants by using a DNA-binding 
fluorescent probe. J. Cell Sci. 52:271-287. 

Hagan et al. A Mitotic Timer in S. pombe 1621 


