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Early detection of SARS-CoV-2 variants enables timely tracking of clinically important
strains in order to inform the public health response. Current subtype-based variant
surveillance depending on prior subtype assignment according to lag features and
their continuous risk assessment may delay this process. We proposed a weighted
network framework to model the frequency trajectories of mutations (FTMs) for SARS-
CoV-2 variant tracing, without requiring prior subtype assignment. This framework
modularizes the FTMs and conglomerates synchronous FTMs together to represent
the variants. It also generates module clusters to unveil the epidemic stages and their
contemporaneous variants. Eventually, the module-based variants are assessed by
phylogenetic tree through sub-sampling to facilitate communication and control of the
epidemic. This process was benchmarked using worldwide GISAID data, which not only
demonstrated all the methodology features but also showed the module-based variant
identification had highly specific and sensitive mapping with the global phylogenetic tree.
When applying this process to regional data like India and South Africa for SARS-CoV-
2 variant surveillance, the approach clearly elucidated the national dispersal history of
the viral variants and their co-circulation pattern, and provided much earlier warning
of Beta (B.1.351), Delta (B.1.617.2), and Omicron (B.1.1.529). In summary, our work
showed that the weighted network modeling of FTMs enables us to rapidly and easily
track down SARS-CoV-2 variants overcoming prior viral subtyping with lag features,
accelerating the understanding and surveillance of COVID-19.

Keywords: SARS-CoV-2, mutations, frequency trajectories, weighted network analysis, variant tracing

INTRODUCTION

The severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) causing coronavirus
disease 2019 (COVID-19) has been running rampant all over the world since December 2019. The
current pandemic has triggered an unprecedented scale of whole-genome sequencing and sharing
of the virus’s genome. Surveillance of SARS-CoV-2 variants using sequence data provides insight
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into disease virulence, pathogenesis, host range or immune
escape, as well as the effectiveness of SARS-CoV-2 diagnostics
and therapeutics (Grubaugh et al., 2021; Tegally et al., 2021).
Viral subtyping methods such as GISAID (Han et al., 2019),
Pangolin (Rambaut et al., 2020) and CMM (Qin et al.,
2021) have greatly aided this process. Designating a subtype
(e.g., lineage) for each genome according to predetermined
genetic features (e.g., mutations) followed by continuous risk
assessment of these subtypes serves to identify clinically
important emerging variants. However, subtype assignment
depends on lag features that may delay the detection of newly
emerging variants or the descendants of circulating variants.
In addition, a too detailed subtyping (e.g., Pangolin) of the
SARS-CoV-2 population has resulted in excess burden on
risk monitoring while a rough categorization (e.g., GISAID)
delays the detection and communication of dangerous variants
(Oude Munnink et al., 2021; Qin et al., 2021; Tang et al.,
2021).

It is well known that new SARS-CoV-2 variants with their
specific mutation features gradually dominate through spatial
and temporal expansion (Mascola et al., 2021). The frequencies
of different mutations throughout the viral genome can now
be tracked over time with high resolution and reliability.
Mutations with synchronous frequency trajectories are likely
to define a variant or a group of variants (Zhao et al.,
2020; Bernasconi et al., 2021; Qin et al., 2021). Thereby, the
frequency trajectories of mutations (FTMs) contain information
that could allow very sensitive detection of prevalent mutations
highlighting important variants, e.g., variants under investigation
(VUI) or variants of concern (VOC). Leveraging FTMs to
develop new analytics will allow truly real-time surveillance of
SARS-CoV-2 variants and improve the lead time for public
health interventions.

In this paper, we developed a module-based variant
surveillance method that enables real-time tracking of historical
and circulating SARS-CoV-2 variants without designating
their subtypes in advance allowing newly emerging variants
or the descendants of circulating variants to be tracked
earlier. This method views mutations represented by FTMs
as nodes of a network and describes their relationships
using network connections. We found that closely connected
nodes in the network forming a biologically meaningful
module indicate a potential variant, and module clusters
indicate potential contemporaneous variants. We demonstrate
the FTM network construction and interpretation through
analysis of worldwide data of SARS-CoV-2 genomes and
validate its variant surveillance capability via tracking
the variants circulating in two COVID-19 hotspots, India
and South Africa.

MATERIALS AND METHODS

A comparison of the workflows between subtype-based and
FTM-based variant surveillance methods has been shown in
Figure 1A. The outline of our FTM-based SARS-CoV-2 variant
identification framework using weighted network modeling is

shown in Figure 1B. This framework uses FTMs as an input
and is comprised of the following main steps: sequence curation,
mutation calling, calculation, and filtering of FTMs, network
construction, variant identification and determination using
core mutations, and variant validation. We used the worldwide
data and the pandemic variants (Supplementary Table 1) as a
benchmark and further illustrate the surveillance features of our
method using regional data from India and South Africa. Below,
we focus on the delineation of each step.

Data Curation
SARS-CoV-2 genomes were retrieved from GISAID database
(Shu and McCauley, 2017). Only viruses from human submitted
before 2021-11-30 with sample collection date between 2020-
01-05 and 2021-11-27 were extracted, filtering sequences
with flags, “complete sample collection date”, “complete
genome” (genome length > 29,000 bp) and “low coverage
excluded” (exclude genomes with > 5% Ns). Consequently,
a total of 5,043,950 genomes were collected. Because
significant sampling date errors were found in metadata of
some genomes (Supplementary Figure 1), they were firstly
excluded from downstream analysis according to their mutation
numbers (see below).

Bioinformatic Analysis for Mutation
Calling
Whole genome genetic variations, including single nucleotide
polymorphisms (SNPs) and insertions/deletions (INDELs), were
determined and annotated using a bioinformatic framework
proposed by Massacci et al. (2020) with Wuhan-Hu-1 (GenBank
NC_045512.2) (Wu et al., 2020) as the reference. In summary,
the viral sequences were first aligned against the reference using
the nucmer command with default settings except requiring
only the forward matching of the query sequences (–forward),
provided by the MUMmer package (version 3.23) (Marcais
et al., 2018). The generated delta encoded alignment files
were then parsed by the show-snps command to produce a
catalog of all SNPs and INDELs. Show-snps outputs were
summarized and translated to proteins using a R script adapted
from Mercatelli and Giorgi (2020). Eventually, an annotated
list including 186,399,389 mutational events was exported.
The number of mutational events for each study sample was
firstly calculated. Since high mutation numbers are not likely
to appear in the early stage of the COVID-19 pandemic
(Supplementary Figure 1), we excluded genomes with mutation
numbers far beyond other samples collected in the same
month, where the cutoffs were set to be the average plus 5
standard deviations.

Calculation and Filtration of Frequency
Trajectories of Mutations
Mutations present at least once across all genomes were extracted
and their frequency time series were generated according to
calendar weeks of sampling. Specifically, a mutation frequency,
denoted by yst, at a sampling week t on a specific site s
was calculated as the fraction of genomes with the mutation
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FIGURE 1 | Workflows for SARS-CoV-2 variant surveillance. (A) Workflow
comparison between subtype-based and FTM-based variant surveillance
methods. (B) Outline of a weighted network framework for variant surveillance
using FTMs.

of all genomes sampled at that week. Then the frequency
trajectory of a mutation s (1 = s = S) can be denoted as

ys = {yst : 1 ≤ t ≤ T}, (1)

where t denotes the week number and t = 1 represents the
first complete calendar week of 2020 (from January 5 to
11, 2020). When aggregating the mutation events for each
mutation site, a large amount of multi-directional mutations
(e.g., C→T and C→G) were detected (Supplementary Figure 2).
All possible mutation directions were considered in our study
to allow the distinction of different variant branches (e.g.,
G23012A for B.1.351 and G23012C for B.1.617.1) and to avoid
erroneous clustering in the network construction due to missing
mutation directions.

A myriad of mutations (i.e., large S) were detected
across the viral genome but most were less informative
with the temporal frequency pattern of fluctuating near
zero (Supplementary Figure 3). Therefore, FTMs with
all mutation frequencies less than a threshold [e.g., 1%,
a threshold above which a mutation is considered fixed
in a natural population (Wong et al., 2003)] were first
excluded. For worldwide data, 1,178 (1.4%) were kept after
this filtration and the majority of these FTMs maintained
a frequency of ≥1% only for a limited period, as described
by Chiara et al. (2021). To facilitate the demonstration of
the methodology features, a hierarchical clustering analysis
using Ward’s method (Ward, 1963) was additionally applied
to group and exclude them before investigating the temporal
clustering patterns.

Weighted Network Construction
In the network model, nodes correspond to mutations, or more
precisely to scaled FTMs with

y
′

s =
ys −mean(ys)√

var(ys)
(2)

where mean
(
ys
)
=

1
T
∑

t yst and var
(
ys
)
=

1
T−1

∑
t [yst −mean(ys)]2. The edges between mutations are

determined by the pairwise Pearson correlations between FTMs.
Then two FTMs will have a correlation coefficient close to 1 if
they are synchronous, and non-synchronous relationships will
deviate from 1. The connection strength between mutation i and
j were quantified with an adjacency score using a power function
(Horvath, 2011),

Aij = (0.5+ 0.5 · corr(y
′

i, y
′

j))
β
, (3)

wherecorr
(

y
′

i, y
′

j

)
is the Pearson correlation coefficient between

y
′

i and y
′

j. The transformation in the parentheses is applied to map
the correlations onto the interval [0, 1] to satisfy the requirement
of an adjacency matrix and the exponential transformation
with β ≥ 1 is used to emphasize strong correlations at the
expense of weak correlations. This leads to a weighted network
and β is determined based on the scale-free topology criterion
(Zhang and Horvath, 2005).

The network connectivity (ks) of the sth mutation is the
sum of the connection strengths with the other mutations,
ks =

∑
i 6= s Asi. The summation performed over all mutations

in a particular module is the intra-modular connectivity
(ks,intra).
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Network Module Identification
In weighted networks, modules are subsets of mutations which
are tightly connected. Identifying these modules facilitates
rapid identification and designation of a variant. Since the
adjacency between two nodes cannot reflect their connectivity
with other intra- or inter-modular nodes, we use a topological
overlap measure (TOM) instead. The topological overlap is
defined by:

TOMij =


∑

l 6=i,j AilAlj+Aij

min(ki,kj)+1−Aij i6= j
1 i = j

(4)

where
∑

l 6=i,j AilAlj quantifies the indirect connection
strengths between i and j through their shared neighbors
and the denominator serves as a normalization factor.
The topological overlap between mutation i and j reflects
their relative interconnectedness as mediated through
other mutation nodes (Yip and Horvath, 2007). Module
identification was done using the TOM-based dissimilarity
matrix dissTOM = (1− TOMij) coupled with average linkage
hierarchical clustering. Modules corresponded to branches of
the resulting hierarchical clustering tree. We used a dynamic
cut-tree algorithm to determine the branches (Langfelder et al.,
2008). All of these were realized with the R WGCNA package
(Langfelder and Horvath, 2008).

To intuitively display the relationship between nodes of
the weighted network, the topological overlap matrix was
partitioned by different cutoffs (e.g., 0.1 or higher) and visualized
using the R igraph package (Csárdi and Nepusz, 2006). To
distinguish between modules, each module was designated with
a visually friendly color.

Core Mutations for Variant Determination
According to our hypothesis, modules in our network are
expected to be sets of synchronous FTMs that represent
variants. Emerging variants develop mutations quickly, but they
are characterized by a highly correlated set of characteristic
mutations. These characteristic mutations form densely
connected intra-modular sub-networks. These sub-networks
represent the “core” of a module and are detected using a
high-pass adjacency score threshold. The threshold value is
determined empirically by mapping benchmark modules to
the global phylogeny (see below) with statistical evaluation
of specificity and sensitivity. The historical classification and
nomenclature for these variants were extracted from the
GISAID metadata.

Phylogenetic Assessment of Detected
Variants
We assessed variants determined by our module “core”
mutations against a global reference dataset provided by
GISAID using the pipeline proposed by Nextstrain (Hadfield
et al., 2018). First, the metadata of the global SARS-CoV-2
phylogenic tree, with 4,506,129 high quality genomes created

on December 24, 2021, were retrieved from the GISAID
database. A subsample randomly selected from these data
was used for the skeleton construction of global SARS-CoV-
2 phylogenic tree. Second, the module genomes determined
by the module “core” mutations were extracted. Specifically,
the pandemic module genomes pointing to S, V, G, GH,
GV, GR, GRY, and GK were directly taken from the global
reference dataset to show the consistency with the skeleton
tree. Other module genomes were extracted from the source
data but down-sampling was introduced if the number
exceeded 200. Then, the pipeline successively performs an
alignment of genomes in MAFFT (Katoh and Standley, 2013),
phylogenetic inference in IQ-Tree (Minh et al., 2020), tree
dating and ancestral state construction and annotation. The
phylogenetic trees were visualized using the R ggtree package
(Yu et al., 2018).

RESULTS

Variant-Specific Frequency Trajectories
of Mutations Present Synchronous
Temporal Changes
A total of 5,043,950 SARS-CoV-2 sequences during our study
period were retrieved. After excluding those with probable
sampling date error, 5,042,287 (>99.9%) were eventually
included. These viral sequences have been accumulating over
time at an unprecedented speed, from a few to hundreds of
thousands a week according to their sampling time (Figure 2A).
Changes in the prevalence of the SARS-CoV-2 variants over
time have been imprinted through these sequences (Figure 2B).
Using Wuhan-Hu-1 genome (NC_045512.2) as the reference,
186,253,697 mutation events were detected at 29,825 nucleotide
sites, including 28,972 (97.1%) sites with 2 or more mutation
directions (Supplementary Figure 2). The time series plots of
FTMs showed that majority of them had very low occurrence rate
over time (Supplementary Figure 3), indicating a high chance
of random or unstable mutations, or even sequencing artifacts.
A few mutations with synchronous temporal changes (e.g.,
C241T, C3037T, C14408T and A23403G) were also observed.

To show the association of epidemic variants and genetic
variations of SARS-CoV-2 across time, a clustering process
using Ward’s method was done for the FTMs. Due to ultra-
high analytic dimensionality, the cluster having randomly
fluctuated series was firstly identified and excluded (see
section “Materials and Methods”). In consequence, 158
time series were left. The clustering analysis showed that
mutations with consistent temporal change patterns were
clustered together and some of these clusters were clearly
linked to variant features (Figure 2C). This suggests that
frequency trajectories of variant-specific mutations can be
used for identifying and tracking variants. Moreover, there
exist other mutation trajectories within each cluster having
synchronous temporal changes (Figure 2C), which indicates
the availability of more information that can be used to trace
the same variant.
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FIGURE 2 | Synchronous temporal changes between variant-specific FTMs and variant prevalence. (A) Weekly distribution of SARS-CoV-2 genome sequences
according to sampling time. (B) Time course of major variant distribution in collected sequences. (C) A Wald’s linkage hierarchical cluster tree of frequency
trajectories of mutations. One hundred and fifty-eight mutations passing filtration were analyzed, annotated and displayed. Variant-specific mutations were flagged.

Identification of Variants Using the
Weighted Network
The weighted network workflow for SARS-CoV-2 variant
tracking has been summarized in Figure 1B and detailed
in section “Materials and Methods”. Briefly, the Pearson
correlation coefficient is calculated for all pair-wise comparisons
of the scaled FTMs across the viral genome. This correlation
matrix is then transformed into a matrix of connection
strengths using a power function (connection strength = (0.5
+ 0.5 × correlation)β). Mutations with similar patterns
of connection strengths are speculated to form network

modules while each node represents an FTM-related mutation.
Topological overlaps are used to assess the similarity of
the synchronous relationship of two FTMs with all the
other FTMs in the network. Modules with high topological
overlaps are detected using average linkage hierarchical
clustering coupled with a dynamic tree-cutting algorithm. Each
module is analyzed separately to identify “core” mutations for
variant determination.

We used the 158 most frequent mutations from worldwide
data for module detection and variant identification to show
the capability of the method to track variants using a
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FIGURE 3 | A benchmark to use weighted network framework for identification of worldwide pandemic variants. (A) Clustering dendrogram of 158 FTMs from
GISAID worldwide data. The module numbers are labeled and module clusters are highlighted with different colors. (B) The heatmap of module-based variant
prevalence. The variants were determined by core mutations within each module. The modules were reordered and colored according to their module clusters and
time course. (C) Network graph with topology overlap values > 10-3 to show the relationship between nodes and modules of the weighted network. (D) Network
graph with topology overlap values > 0.1. (E) Phylogenic evaluation of detected worldwide pandemic variants. Time-resolved maximum clade credibility phylogeny is
shown and identified variants are highlighted and annotated with visually friendly colors.
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weighted network. This may lead to some information loss
about the endemic variants, but we will illustrate later that
this workflow will be more sensitive when it is applied
to regional data. As showed in Figure 3A, FTMs were
grouped into 20 distinct modules with 5 module clusters.
Most modules (19/20, 95.0%) point to well-defined variants
supported by the module genomes, which were identified
from the viral population through the module core mutations
(Supplementary Table 2). More precisely, 8 modules were
clearly linked to global epidemic clades (S, V, G, GH, GV,
GR, GRY, and GK) and 11 were identified as variants or
sub-variants causing tens of thousands of COVID-19 cases,
including two sub-variants of GRY that were not assigned
Pangolin lineages. All the identification showed a very high
specificity approaching 100% and a high sensitivity exceeding
70% when using the global phylogeny as a reference with
an adjacency cutoff 0.7, an appropriate compromise between
area under the receiver-operating characteristic curve and
module-based variant discovery (Supplementary Table 3).
Another module showed low connection strengths (<0.4)
between nodes indicating asynchronous FTMs; thus, it was
ignored. In addition, the time course prevalence of the
module-based variants suggested that the 5 module clusters
represented the five worldwide epidemic stages until the
late of November, 2021, with co-circulation of multiple
major variants defined by intra-cluster modules during each
period (Figure 3B).

Network graphs were used to further demonstrate the
relationships among nodes within a module as well as to
inspect how any module is related to the rest of the network
and how closely any two modules are related. The continuous
network topology was dichotomized by different cutoffs, and
modules were individually colored. These network graphs
highlighted our FTM-based weighted network conglomerated
variant-specific mutations as modules with contemporaneous
variants forming module clusters. First, mutations pointing
to the same variant were clustered together to form closely
connected modules (Figure 3C). Second, the modules pointing
to cotemporaneous variants were likely to be connected to
each other (Figure 3C). Third, with the increasing cutoff,
linkages were broken in turn, first between module clusters
and then between intra-modular nodes (Figure 3D and
Supplementary Figure 4). All of these method features provided
us with fresh insights to track down the historical, current, or
emerging variants.

Validation Using Phylogenic Analysis
Variants determined by core mutations (Supplementary Table 2)
were evaluated using phylogenic analysis. Data randomly
sampled from the global SARS-CoV-2 phylogenic tree of the
GISAID repository were used to establish the phylogenic
skeleton (Supplementary Figure 5A). Genomes with module
“core” mutations of S, V, G, GH, GR, GRY, and GK in
the skeleton showed almost perfect consistency with the
expectation (Supplementary Figure 5B). Samples with other
module “core” mutations were selected from the source data,
an updated phylogenetic tree was generated, and nodes were

colored by their modules. As shown in Figure 3E, module
“core” mutations detected by our weighted network successfully
identified their lineages.

Workflow Application for Variant
Surveillance in India and South Africa
After showing the capability of weighted network analysis
of FTMs in module-based variant identification, we applied
this workflow for SARS-CoV-2 variant surveillance in regional
data and further tested its efficacy. All 59,069 SARS-CoV-2
genomes in the study period from India were first included.
Since the genome numbers in the sampling weeks showed a
high fluctuation (Figure 4A), from zero to several thousand,
we only kept mutations that have occurred in 10% or more
of genomes with occurrences > 10 in at least one sampling
week. This resulted in 165 FTMs left for the weighted network
construction. Following the automatic parameter selection
and clustering process, these mutations were grouped into
33 modules among which 30 (30/33, 90.9%) had sets of
mutations with strong synchronous FTMs (Supplementary
Table 4). Five module clusters were detected in this process
(Supplementary Figure 6). According to this module clustering
feature, the heatmap of module-based variant prevalence clearly
showed the SARS-CoV-2 epidemic in India by November
2021 could be divided into at least five stages, with the
major variants during each stage determined by the module
core mutations (Figure 4A). Phylogenetic assessment through
a module-based sampling confirmed the results of network
analysis and showed the modules corresponded to B.1.617.2
(Delta), B.1.617.1 (Kappa), B.1.1.7 (Alpha), B.1.36, B.1.1.306,
B.1.1.326 or their sub-variants (Figure 4B). It is noteworthy
that the weighted network would provide much earlier warning
of Delta (B.1.617.2) than the date it was reported as VUI
by WHO (January 3 2021 vs. April 4 2021, Figure 4A),
if the time delay between sample collection, sequencing
and analysis could be sufficiently overcome. In addition,
the phylogenetic tree suggested that the network analysis
detected multiple descendants of the major SARS-CoV-2 variants
previously or currently circulating in India. Specifically, four
primary descendent variants of B.1.617.2 (Figure 4B), which
continued circulating as a dominant lineage in India until
the end of November 2021, were tracked down. In contrast,
CMM classified this variant to G3.14.1 with no subtype
surveillance and Pangolin gave various subtypes of this variant
(Supplementary Table 5).

The same pipeline was applied in South Africa for SARS-
CoV-2 variant tracking. The weighted network modeling
for FTMs generated by the total available 17,778 SARS-
CoV-2 genomes showed viral population in South Africa
has gone through four prevalent stages with variant cluster
pattern (Figure 5A), including a rapid surging of suspected
variants with numerous spike protein mutations detected
since November 7, 2021 (Supplementary Table 6 and
Supplementary Figure 7). The newly circulating variants
seemed to split from module 25 with mutation C10029T
and C22995A according to the prevalence rate. Phylogenetic
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FIGURE 4 | A demonstration to identify SARS-CoV-2 variants prevalent in India using the weighted network. (A) Weekly distribution of SARS-CoV-2 genome
sequences according to sampling time (top) and the heatmap of module-based variant prevalence (bottom). Core mutations within each module were used to define
the variants. The modules were reordered and colored according to their module clusters and time course. The weeks when Delta (B.1.617.2) was identified as a
prevalent variant by network model (green) or reported as a VUI by WHO (blue) are highlighted by rectangles. (B) Phylogenic evaluation of detected endemic
SARS-CoV-2 variants in South Africa. The detected variants are highlighted and annotated with visually friendly colors.

analysis using module-based sampling data showed that
the dominant variants at the four stages were B.1.1.529
(Omicron), B.1.617.2, B.1.351, and C.1, respectively, from
near to far (Figures 5B–E). The descendants of these variants
were also tracked down by the weighted network, having
consistent but more dedicated subtypes compared with
Pangolin classification and more detailed than CMM grouping
(Supplementary Table 7).

DISCUSSION

Scientists are keeping their eyes open for the mutating
SARS-CoV-2 virus and making every effort to detect, investigate,
and monitor clinically important variants (Chakraborty et al.,
2021; Grubaugh et al., 2021; Mascola et al., 2021). In
this study, we proposed a module-based variant surveillance
framework through weighted network modeling of FTMs,
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FIGURE 5 | SARS-CoV-2 variant surveillance in South Africa using the weighted network. (A) Weekly distribution of SARS-CoV-2 genome sequences according to
sampling time (top) and the heatmap of module-based variant prevalence (bottom). Core mutations within each module were used to define the variants. The
modules were reordered and colored according to their module clusters and time course. The weeks when Omicron (B.1.1.529) and Beta (B.1.351) were identified
as prevalent variants by network model (green) or reported as VUI or VOC by WHO (blue) are highlighted by rectangles. (B–E) Phylogenic evaluation of every major
SARS-CoV-2 variant detected in South Africa, including Omicron (B), Delta (C), Beta (D) and C.1 (E). The module-based variants having consistent classification
with Pangolin lineages are labeled.

enabling us to rapidly gain insights into the time-scaled
dispersal history of SARS-CoV-2 variants without requiring prior
lineage assignment of each viral sequence (Figure 1A). This
framework modularizes the FTMs, with synchronous FTMs
conglomerating together to represent the variants and module
clusters reflecting contemporaneous variants (Figure 3C).
The module-based variants are assessed by phylogenetic tree
through sub-sampling to facilitate communication and control
of the epidemic.

The ad hoc viral classification may delay the detection of
newly emerging variants or their descendants. Viral subtyping
followed by their characterization, prevalence monitoring and

risk assessment is continuing to be used in SARS-CoV-
2 variant surveillance (World Health Organization [WHO],
2021). Either phylogenetic-tree-based partition of GISAID
(Han et al., 2019), Nextstrain (Hadfield et al., 2018) and Pangolin
(Rambaut et al., 2020), or genetic-feature-based grouping of
CMMs (Qin et al., 2021) and ISMs (Zhao et al., 2020),
captured viral subtype features according to historical data,
resulting in lag signals of classification, and then false subtyping
at the early stage of their emergence delayed the public
health response. Our module-based variant surveillance would
have provided much earlier warning about newly surging
variants of B.1.617.2 in India (Figure 4A) and B.1.351/B.1.1.529
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in South Africa (Figure 5A) prior to their announced
VUI/VOC dates by WHO.

Our investigation also reveals other advantages of module-
based variant monitoring. First, the surveillance system will
automatically divide the whole epidemic period into multiple
stages and detect variant co-circulation pattern during each
stage (Figures 3B, 4A, 5A). This may give an important
insight into viral evolution (Kostaki et al., 2021). Second,
the methodology provides variant surveillance at moderate
resolution, facilitating an overview of epidemic variants. Our
framework focuses on the tracking of prevalent variants rather
than comprehensive surveillance. In spite of a rough filtration
process, the benchmark analysis using worldwide data tracked
down all the major pandemic variants and some regionally
epidemic variants (Figure 3E). National level analysis in India
and South Africa further demonstrated that this approach not
only provided a variant profile (Figures 4B, 5B–E) consistent
with previous studies (Singh et al., 2021; Tegally et al., 2021),
but also gave more detailed variant monitoring than CMM.
The weighted network analysis also provided a much more
enriched variant investigation than Pangolin (Supplementary
Tables 5, 7), which were confirmed by previous reports. Third,
our framework allows insertion, deletion and recombination
events to be included. This highly extends the surveillance
because current variant monitoring mainly involves substitution
events (Zhao et al., 2020; Qin et al., 2021) and poses a great
challenge in phylogenetic inference (Liu et al., 2021).

Our approach can be an alternative method for rapid
investigation and early detection of prevalent variants to facilitate
regional SARS-CoV-2 genomic surveillance. An efficient variant
surveillance is firstly dependent on the timely availability of
viral genomes (Kalia et al., 2021). To compensate and minimize
the time delay between sample collection and submission,
surveillance activities at national and sub-national levels, where
first hand data are actually acquired, are highly recommended
(World Health Organization [WHO], 2021). Meanwhile, simple
surveillance systems, especially employing time-based analysis
of SARS-CoV-2 mutations, are developed to assist in the
identification of candidate variants of clinical importance.
Nevertheless, most of them focus on trend survey of viral
mutations (Wada et al., 2020; Showers et al., 2022) or their
phenetic clustering (Yang et al., 2020; Chiara et al., 2021)
but not real variant monitoring. Based on similar motivation,
Bernasconi et al. (2021) applied standard time-series clustering
to group 1-month-long FTMs for detection of all SARS-CoV-2
variants at national level. Due to the segmenting and complete
analysis of FTMs, they have to face the challenge of handling
the discrepancies between cluster features of the same variants,
especially when these variants are new and not included in
the lineage dictionary. Our module-based variant monitoring
overcomes these difficulties by concentrating on high-frequency
FTMs for prevalent variant identification.

Some limitations are also acknowledged. First, the mutation
modules detected by our workflow may not represent a
nominated lineage, but the analysis offers perceptive insights
into novel variants which could be causing more transmission.
Second, the independence between FTMs were assumed in the

analysis. This might not be true especially for multiple direction
mutations at the same nucleotide sites. However, as we can see
in our analysis, the assumption may not highly influence our
results. Lastly, the threshold value of FTM filtration is empirically
chosen. This may result in the loss of less frequent variants. We
believe it is a trade-off between detectability and discriminability
in variant monitoring. When more samples are available and
the cutoff is thought to be too big, analysis at a higher spatial
resolution is recommended.

In summary, an efficient and easy-to-use weighted network
framework was proposed for SARS-CoV-2 variants tracing that
could help to accelerate the understanding, surveillance, and
control of the emerging viral variants.
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Supplementary Figure 3 | Frequency trajectories of mutations by SARS-CoV-2
genome regions. UTR, Untranslated region; NSP, non-structural protein; S, Spike
protein; ORF, Open reading frame; M, Membrane protein; N, Nucleocapsid
protein; E, Envelope protein.

Supplementary Figure 4 | Network graphs with different topological overlap
cutoffs for identification of worldwide pandemic variants.

Supplementary Figure 5 | The global SARS-CoV-2 phylogenic skeleton. (A) The
SARS-CoV-2 phylogenic skeleton generated by the Nextstrain pipeline based on a
random sample of the global phylogenic tree from the GISAID database, with the

edges colored by the GISAID clade nomenclature system. (B) Comparison of the
genome classification consistency between the expectation and those determined
by the “core” mutations.

Supplementary Figure 6 | Clustering dendrogram of 165 FTMs from India, with
dissimilarity based on topological overlap. The module numbers were labeled and
module clusters were highlighted with different colors.

Supplementary Figure 7 | Clustering dendrogram of 223 FTMs from
South Africa, with dissimilarity based on topological overlap. The module numbers
were labeled and module clusters were highlighted with different colors.
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