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Szulc-Dąbrowska L,

Bossowska-Nowicka M, Struzik J and
Toka FN (2020) Cathepsins

in Bacteria-Macrophage
Interaction: Defenders or
Victims of Circumstance?

Front. Cell. Infect. Microbiol. 10:601072.
doi: 10.3389/fcimb.2020.601072

REVIEW
published: 04 December 2020

doi: 10.3389/fcimb.2020.601072
Cathepsins in Bacteria-Macrophage
Interaction: Defenders or Victims
of Circumstance?
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Macrophages are the first encounters of invading bacteria and are responsible for
engulfing and digesting pathogens through phagocytosis leading to initiation of the
innate inflammatory response. Intracellular digestion occurs through a close relationship
between phagocytic/endocytic and lysosomal pathways, in which proteolytic enzymes,
such as cathepsins, are involved. The presence of cathepsins in the endo-lysosomal
compartment permits direct interaction with and killing of bacteria, and may contribute to
processing of bacterial antigens for presentation, an event necessary for the induction of
antibacterial adaptive immune response. Therefore, it is not surprising that bacteria can
control the expression and proteolytic activity of cathepsins, including their inhibitors –

cystatins, to favor their own intracellular survival in macrophages. In this review, we
summarize recent developments in defining the role of cathepsins in bacteria-
macrophage interaction and describe important strategies engaged by bacteria to
manipulate cathepsin expression and activity in macrophages. Particularly, we focus on
specific bacterial species due to their clinical relevance to humans and animal health, i.e.,
Mycobacterium, Mycoplasma, Staphylococcus, Streptococcus, Salmonella, Shigella,
Francisella, Chlamydia, Listeria, Brucella, Helicobacter, Neisseria, and other genera.

Keywords: cathepsins, bacteria, macrophages, immune invasion, modulation of immune function
INTRODUCTION

Macrophages and neutrophils are major types of phagocytic cells of the innate immune system.
They are specialized to detect, engulf and destroy some bacteria and viruses or other foreign
particles that can be dangerous to the health and proper functioning of the organism. In the
detection and recognition process, a large repertoire of pattern recognition receptors (PRRs) and
other molecules expressed on/in macrophages are engaged, ensuring the distinction between “self”
and “non-self”, which is fundamental to maintenance of tolerance with simultaneous potential for
response to threat by the “non-self” (Mukhopadhyay et al., 2009). Regarding the recognition of
bacteria, the target cell is engulfed through extension of pseudopodia around the target and
formation of a phagosome, which subsequently fuses with the lysosome to form a phagolysosome.
In this compartment, the bacterial cell is exposed to a toxic environment characterized
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by acidification, presence of active proteolytic and lipolytic
enzymes and products of the respiratory burst, including
reactive oxygen species (ROS) and reactive nitrogen species
(RNS) (Russell et al., 2009; Slauch, 2011; Hirayama et al.,
2018). These events eventually lead to destruction of bacteria
and allow processing of peptide antigens that are subsequently
presented on the major histocompatibility class II (MHC II)
molecules leading to activation of helper T (Th) cells, thus
stimulating acquired immune response. Therefore, macrophages,
as antigen presenting cells (APCs), constitute a bridge between
non-specific (innate) and specific (adaptive) immunity (Hirayama
et al., 2018).

The function of macrophages as effective sentinels,
phagocytes and APCs is possible due to the presence of
cathepsins (Cts) – serine, aspartic and cysteine peptidases that
are involved in regulation of innate (PRRs signaling, pathogen
killing, apoptosis) and adaptive (antigen processing and
presentation) immune responses (Conus and Simon, 2010).
Cathepsins are structurally a heterogeneous group of proteases
that were first described as intracellular enzymes of protein
degrading activity in a slightly acidic environment (Willstätter
and Bamann, 1929). Currently, the name “cathepsin” refers to
the two serine proteases (Cts A and G), two aspartic proteases
(Cts D and E) and eleven lysosomal cysteine proteases (Cts B, C,
F, H, K, L, O, S, V, X, and W) (Turk et al., 2001; Rossi et al.,
2004). Cysteine proteases have a similar structure to that of the
plant enzyme papain and, therefore, are included in the C1
family of clan CA (cathepsins) (Barrett et al., 2004). All cysteine
cathepsins are monomeric single domain enzymes, composed of
L (left)- and the R (right)-subdomains, except for Cts C, which is
present in the form of a homotetramer (Figure 1) (Grzonka
et al., 2001; Turk et al., 2012; Löser and Pietzsch, 2015).
Following synthesis as inactive preproenzymes (immature),
cathepsins become mature after cleavage of the N-terminal
signal peptide that occurs in parallel with the N-linked
glycosylation within the endoplasmic reticulum (ER). Then,
cathepsins are transported to the endosomal/lysosomal
compartment using cellular mannose-6-phosphate receptor
pathway, where they are activated after removal of the N-
terminal propeptide (Chwieralski et al., 2006; Turk et al.,
2012). Despite mostly intralysosomal localization, under certain
conditions cathepsins can be released from the lysosomes into
the cytoplasm, where they perform proapoptotic functions by
activating caspases and promoting the release of mitochondrial
proapoptotic factors (Chwieralski et al., 2006). Cathepsins cleave
a variety of proteins and polypeptides in a relatively unspecific
manner. Cts D, E, F, G, K, L, S, and V function as endopeptidases,
Cts A, C, and X are exopeptidases, whereas Cts B and H exhibit
both exopeptidase and endopeptidase activities (Table 1) (Conus
and Simon, 2010). The activity of mature cysteine cathepsins is
regulated by their endogenous protein inhibitors, such as
cystatins, serpins, thyropins and others (Turk et al., 2002).

Cathepsins are generally widely distributed in cells and tissues
in humans and animals, and their level of expression, activity and
ratio varies and depends mainly on the location within the cell.
While most cathepsins are common in certain cell types, some of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
them play a specific role only in particular cell types (Zavasnik-
Bergant and Turk, 2007). Because macrophages are one of the
first cells of the immune system to encounter bacteria, the
presence of a specific repertoire of cathepsins enables them to
perform efficient innate and adaptive antibacterial functions.
Cathepsins can directly interact and participate in killing of
invading bacteria, as well as contribute to stimulation of
protective microbial-specific immune response through
regulation of bacterial antigen processing and presentation. On
the other hand, bacteria can influence cathepsin expression and
proteolytic activity to favor their own intracellular survival in
macrophages and to inhibit the development of a specific
immune response. Further, we discuss recent understanding on
how bacteria interact with cathepsin functions in macrophages
and how dysregulation of expression, ratio and activity of these
enzymes participate in the pathogenesis of bacterial infections.
CATHEPSINS AND THEIR PRESENCE
IN MACROPHAGES

Macrophages express a wide range of cathepsin genes and
proteins, but often the level of enzyme expression and activity
depends on the subtype and activation status of a macrophage
(Abd-Elrahman et al., 2016). In general, macrophages have the
highest cathepsin expression and all serine, aspartic and cysteine
peptidases have been identified in different subtypes of
macrophages (Table 1). The serine protease, Cts A, is expressed
primarily in platelets (Jackman et al., 1990; Ostrowska, 1997),
fibroblasts (Satake et al., 1994), cells of the testis and epididymis
(Luedtke et al., 2000), human B cells, both subsets of myeloid DCs
(mDC1 and mDC2), plasmacytoid DCs (Reich et al., 2010), as
well as in human alveolar macrophages (Jackman et al., 1995) and
established murine RAW 264.7 macrophage cell line (Chen et al.,
2018). Another serine protease, Cts G, is predominantly
expressed in azurophilic granules of neutrophils and, to a lesser
extent, in B cells, myeloid DCs, plasmacytoid DCs, and cells of the
monocyte/macrophage lineage, including primary human
monocytes and murine microglia, the latter of which are
macrophage-related cells of the central nerve system (Reeves
et al., 2002; Burster et al., 2010). The expression and activity of
Cts G was reported to be down-regulated in a THP-1 monocytic
cell line after differentiation into adherent macrophages by
exposure to lipopolysaccharide (LPS) endotoxin. Additionally,
Cts G mRNA was absent in macrophages isolated from
bronchoalveolar lavages (BAL) and normal blood (Rivera-
Marrero et al., 2004). Meanwhile, strong up-regulation of Cts G
mRNA level was observed in alveolar macrophages infected with
Mycobacterium bovis bacillus Calmette-Guérin (BCG) in in vivo
conditions (Srivastava et al., 2006). The aspartic proteases, Cts D
and E, are predominantly distributed in endosomal and/or
lysosomal compartments in APCs, such as macrophages (Sakai
et al., 1989; Rossman et al., 1990; Kakehashi et al., 2007), DCs
(Chain et al., 2005; Kakehashi et al., 2007; Nakken et al., 2011),
B cells (Bever et al., 1989; Bennett et al., 1992; Sealy et al., 1996)
December 2020 | Volume 10 | Article 601072
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FIGURE 1 | Schematic illustration of lysosomal cathepsin maturation. Cathepsins are synthesized as preproenzymes with the N-terminal signal peptide that targets
the protein to the lumen of the rough endoplasmic reticulum (RER). After the removal of the signal peptide (pre) in the ER lumen, the protopeptides use a mannose-
6-phosphate (Man-6-P) receptor pathway for delivery via the trans-Golgi network (TGN) to early/late endosomes. Within late endosomes the pH drops and
procathepsins dissociate from Man-6-P receptor releasing proteolytically active single-chain intermediate cathepsins. Within the lysosome, the single chain protein is
further processed via autocatalysis into mature two-chain form composed of an N-terminal light chain and a C-terminal heavy chain.
TABLE 1 | Cathepsin family members present in macrophages and macrophage-related cells.

Catalytic type Cathepsin Peptidase activity Expression in macrophages Reference

Serine Cathepsin A Endopeptidase + (Jackman et al., 1995)
Cathepsin G Endopeptidase Microglia (Reeves et al., 2002)

Aspartic Cathepsin D Endopeptidase + (Rossman et al., 1990)
Cathepsin E Endopeptidase + (Kakehashi et al., 2007)

Cysteine Cathepsin B Carboxydipeptidase,
Endopeptidase

+ (Rodriguez-Franco
et al., 2012)

Cathepsin C
(J, DPPI)

Aminodipeptidase + (Alam et al., 2019)

Cathepsin F Endopeptidase + (Shi et al., 2000)
Cathepsin H Aminopeptidase, Endopeptidase + (Woischnik et al., 2008)
Cathepsin K
(O2)

Endopeptidase Bone‐resorbing macrophages, epithelioid cells, multinucleated giant
cells

(Bühling et al., 2001)

Cathepsin L Endopeptidase + (Beers et al., 2003)
Cathepsin O Unknown MDMs (Shi et al., 1995)
Cathepsin S Endopeptidase + (Liuzzo et al., 1999)
Cathepsin V
(L2)

Endopeptidase Activated MDMs (Yasuda et al., 2004)

Cathepsin
W
(lymphopain)

Unknown Activated macrophages (Pires et al., 2016)

Cathepsin X
(P, Y or Z)

Carboxymonopeptidase + (Obermajer et al., 2008)
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and microglia (Sastradipura et al., 1998; Nishioku et al., 2002;
Kim et al., 2007). In macrophages, Cts D expression is highly
differentiation-dependent and was shown to be increased upon
maturation of monocytes into macrophages (Sintiprungrat et al.,
2010). Macrophages also show the expression of cysteine
cathepsins that appear ubiquitously in human cells, including
Cts B (Rodriguez-Franco et al., 2012), C (also known as Cts J,
dipeptidyl peptidase I or DPPI) (Alam et al., 2019), F (Shi et al.,
2000), H (Woischnik et al., 2008) and L (Beers et al., 2003).
However, their abundance, with the exception of Cts F, often
increases in activated cells (Reddy et al., 1995; Pires et al., 2016).
Despite the presence of Ctso mRNA in 15-day-old cultures of
monocyte-derived macrophages, this transcript was absent in
human alveolar macrophages (Shi et al., 1995). Cysteine Cts K
(also termed O2) is present in specifically differentiated
phenotypes of macrophages located in different anatomical
sites, including bone‐resorbing macrophages, and epithelioid
cells and multinucleated giant cells (MGCs) of soft tissues.
MGCs are probably generated locally during inflammation by
fusion of macrophages and epithelioid cells, which are highly
stimulated macrophages (Bühling et al., 2001). Ctsk mRNA
expression was also found in monocyte-derived macrophages
(MDMs) after 6 or 12 days of differentiation and Cts K protein
was detected in culture supernatants of macrophages (Yasuda
et al., 2004). Cysteine Cts S is preferentially expressed in
macrophages and microglia, however upon phagocyte
activation there is a decrease in cellular Cts S activity and
protein content accompanied by an increase in secreted Cts S
activity (Liuzzo et al., 1999). Cts S is also present in other APCs,
including DCs and B lymphocytes (Riese et al., 1996). Meanwhile,
Cts V (also known as L2), which is closely related to Cts L, is
mostly confined to the thymus and testis but was also found to be
expressed in activated MDMs (Yasuda et al., 2004). Lysosomal
cysteine Cts X (also termed P, Y, or Z) is found predominantly in
immune cells of the myeloid lineage, including monocytes,
macrophages and DCs (Obermajer et al., 2008). In turn, Cts W
(lymphopain) is found almost exclusively in cytotoxic cells, i.e.,
natural killer (NK) cells and CD8+ T lymphocytes (Wex et al.,
2001), however, single-cell RNA-sequencing analysis revealed the
presence of Ctsw gene in one of four newly identified human
monocyte subpopulations, termed Mono4 that resembles natural
killer dendritic cells (NKDCs) based on the signature profile of
cytotoxic genes (Villani et al., 2017). Additionally, Ctsw mRNA
was found to be elevated in activated macrophages (Pires
et al., 2016).

Cathepsin proteases can be distinctively expressed during
differentiation of macrophages into two main functional
phenotypes, named M1 for classical activation phenotype and
M2 for alternative activation phenotype. M1/M2 macrophage
division is based on the character of the immune response they
induce. M1 macrophages, induced by interferon (IFN)-g and/or
LPS, produce high amounts of nitric oxide (NO), ROS and pro-
inflammatory cytokines, including tumor necrosis factor (TNF)-
a, interleukin (IL)-1b, IL-6, and IL-12, therefore are competent
to mount a strong response against intracellular bacteria.
Conversely, M2 macrophages can be generated through IL-4 or
IL-13 stimulation and secrete high amounts of anti-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
inflammatory cytokines, such as IL-10 and transforming
growth factor (TGF)-b, therefore are not effective in bacteria
elimination (Benoit et al., 2008). Stimulation of resting M0
macrophages with IFN-g results in generation of activated M1
macrophages that exhibit a global up-regulation of cathepsin
mRNAs, such as Cts B, C, E, G, H O, S, V, W, and Z, with the
exception of mRNA for Cts F, L, and K, where Cts F mRNA is the
most strongly down-regulated after IFN-g treatment (Pires et al.,
2016). Additionally, mRNA expression and activity of key
cathepsins, i.e., Cts B, L, and S, regulating functions of
macrophages, increase significantly in M2 macrophages
(Salpeter et al., 2015). One study identified cathepsin genes,
which when inhibited or knocked-down cause a shift in
phenotype from M1 to M2 macrophages. For example, Ctsc is
up- and down-regulated in M1 and M2 macrophages,
respectively, whereas its deficiency leads to combined M2 (in
vitro) and Th2 (in vivo) polarization (Herıás et al., 2015).
Treatment of macrophages with an active monomer of Cts C
facilitates their polarization toward M1 phenotype through focal
adhesion kinase (FAK)-induced p38 mitogen-activated protein
kinase (MAPK)/nuclear factor (NF)-kB signaling pathway
activation (Alam et al., 2019). Apparently, gut macrophages
can be polarized toward M2 phenotype by Cts K secreted
through the toll-like receptor (TLR)4 signaling initiated by gut-
microbiota (Li et al., 2019). This diverse representation of
cathepsins underscores their various roles as regulators of
macrophage differentiation and function and possibly
influences the outcome of infectious and other diseases.
ROLE OF CATHEPSINS IN THE FUNCTION
OF MACROPHAGES DURING
HOMEOSTASIS AND BACTERIAL
INFECTIONS

Involvement of individual cysteine cathepsins in many bacterial
infections is now an established fact, and it points to their
potential regulatory role in both innate and acquired
antibacterial immune responses. In particular, cathepsin
activity is fundamental to the effectiveness of macrophages in
recognizing, engulfing, killing, and processing antigens of
infecting bacteria, thus facilitating rapid elimination of the
intruder and induction of long-term immunity. Accordingly,
better understanding of how cathepsins function, their
localization, and properties primarily in specialized phagocytic
immune cells is imperative for establishing new mechanisms for
rational design of therapeutic interventions.
CATHEPSINS AND INNATE IMMUNE
FUNCTIONS OF MACROPHAGES

TLR Signaling and Cytokine Production
Macrophages are equipped with different types of PRRs localized
either on the cell surface, in the cytoplasm or within the
December 2020 | Volume 10 | Article 601072
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membrane of intracellular vesicles, including endosomes,
phagosomes and lysosomes. Such positioning of receptors
facilitates macrophage recognition of bacteria localized in
extra- or intracellular compartments. After recognition by
PRRs, a wide range of signaling events occur, ultimately
leading to induction of a potent inflammatory response.
Cathepsins are engaged in processing membrane PRRs located
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
in the lumen of intracellular endosomes/lysosomes, including
TLR3, TLR7/8 and TLR9, which recognize bacterial nucleic
acids, i.e., double-stranded RNA (dsRNA), single-stranded
RNA (ssRNA) and nonmethylated CpG motifs in DNA,
respectively (Figure 2) (Roberts et al., 2005; Dalpke and Helm,
2012; Kawashima et al., 2013). For instance, upon synthesis,
endogenous TLR3 is transported through the Golgi complex to
FIGURE 2 | The role of cathepsins in macrophage functions during bacterial infection. (A) During phagocytosis of bacteria, the early phagosome quickly develops
due to fusion with early endosomes. The early phagosome contains the following markers: early endosome antigen 1 (EEA1), small GTPase Rab5, vacuolar protein-
sorting 34 (VPS34) and V-ATPase, the latter which ensures a slightly acidic pH. (B) The late phagosome is more acidic and contains Rab7, lysosomal-associated
membrane proteins (LAMPs) as well as cathepsins. Some cathepsins are already active, whereas others [e.g., cathepsin D (Cts D)] are present as procathepsins.
(C) Following fusion of late endosome with lysosome, the phagolysosome with acidic pH is formed. The phagolysosome contains NADPH oxidase responsible for
generation of reactive oxygen species (ROS), and many active cathepsins, including Cts B, D, L, and S and other enzymes with proteolytic or lipolytic activities. In
this compartment, cathepsins participate in direct killing of bacteria, which are degraded into peptides. (D) Major histocompatibility complex (MHC) class II molecules
are transported from the ER via Golgi complex to a specialized acidic compartment called MHC class II compartment (MIIC). During MHC II trafficking, the invariant
chain (Ii) is cleaved by cathepsins (e.g., S, L, and F) leaving CLIP fragment in the MHC peptide binding cleft. In the MIIC, the MHC class II-associated invariant chain
peptide (CLIP) is released and MHC II molecules can finally bind bacterial peptide, travel to the cell surface and present it to T cells. (E) Cts B, D and L may
participate in skewing the T helper (Th)1/Th2 immune response. (F) Cathepsins, including Cts K, L and S participate in processing of endolysosomal Toll-like
receptors (TLRs) and formation of their functional variants, capable of binding ligands. After activation of TIR domain-containing adaptor protein-inducing interferon
(IFN) b (TRIF) and myeloid differentiation factor 88(MyD88), the activation signal is transmitted leading to gene transcription and the synthesis of type I IFNs or
proinflammatory cytokines occurs. (G) Cts X cleaves b2 subunit of the Mac-1 integrin receptor, enhancing phagocytosis and fibrinogen binding. (H) During
autophagy, cathepsins participate in degradation of autophagic material within the autolysosome (formed after fusion of autophagosome with lysosome), therefore
providing bacterial peptides for MHC II antigen presentation pathway. (I) Due to lysosomal membrane permeabilization (LMP), lysosomal enzymes, including
cathepsins, may leak into the cytosol. (J) Within the cytosol cathepsins (e.g., Cts B) may participate in NLR family pyrin domain containing 3 (NLRP3) inflammasome
generation leading to activation of caspase 1, which eventually converts inactive pro-interleukin (IL)-1b into active IL-1b. (K) Cytosolic Cts D enhances apoptosis by
promoting degradation of myeloid cell leukemia factor 1 (Mcl-1) via increased Mule-mediated ubiquitination. (L) Cts B and S may promote pyroptosis by cleavage of
Rip1 kinase. RNA-IC, RNA immune complex; CpG ODN, CpG oligodeoxynucleotide; TCR, T cell receptor; FcR, Fc receptor; LC3, microtubule‐associated protein 1
light chain 3.
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endosomes, where TLR3 ectodomain is rapidly cleaved by
proteases, including Cts B, L, and/or S. In murine RAW 264.7
macrophages, cathepsin cleavage of TLR3 is necessary for
signaling in response to some microbial dsRNA, but not to
polyinosinic-polycytidylic acid [poly(I:C)], a synthetic dsRNA
analog (Qi et al., 2012). On the other hand, treatment of human
U937 macrophages with z-FA-FMK, which inhibits Cts B, L, and
S, resulted in impaired TLR3 signaling in response to poly(I:C)
(Toscano et al., 2013). Interestingly, TLR3 is expressed at low
levels on the surface of macrophages, where it can participate in
modulation of TLR3 responses to dsRNA (Murakami et al.,
2014), adding a complexity that cathepsins may affect only the
intracellular forms of TLR3 or other PRRs. Similarly, TLR7 exists
as a cell surface molecule in uncleaved (trafficking from the ER)
and cleaved (trafficking from the endolysosomes) forms (Kanno
et al., 2015). In this particular case Ewald et al. (2011)
demonstrated the inhibitory effect of z-FA-FMK on cathepsin
protease cleavage of TLR7, and subsequently inhibiting
production of TNF-a in RAW-264.7 cells stimulated with a
TLR7 agonist R848. According to Ewald et al. (2011), the
proteolysis of TLR3, TLR7, and TLR9 proceeds in a similar
manner and is a multistep process. Initial cleavage removes the
majority of the ectodomain and is mediated by multiple
members of cathepsin family or asparagine endopeptidase
(AEP, also known as legumain), whereas the second step
requires exclusively cathepsins and is needed for N-terminal
TLR trimming and generation of the mature form of the cleaved
receptors. In the absence of AEP activity, both initial processing
and trimming of the processed TLR9 are entirely cathepsin-
dependent in macrophages. In contrast, the fully mature form of
TLR9 cannot be formed, when cathepsin activity is block due to
impairment of cleaved receptor trimming (Ewald et al., 2011).

The link between cathepsins and TLR signaling in
macrophages is bilateral, because, on the one hand, some TLRs
require cleavage by cathepsins for proper signal transduction, but
on the other, stimulation of TLR signaling affects the activity of
some cathepsins. Treatment of multiple murine macrophage cell
lines with LPS, a TLR4 agonist, increases the activity of Cts B, L,
and S, whereas stimulation with peptidoglycan (PGN), a TLR2
agonist, and Poly(I:C), a TLR3 agonist, enhances proteolytic
activity especially of Cts L and Cts S. Therefore, increased Cts L
and S activities involve engagement of either MyD88-dependent
or -independent signaling pathways, whereas enhanced Cts B
activity involves only MyD88-dependent pathway. However, such
regulation of cathepsin activity does not result from the direct
TLR signaling, but from the pro-inflammatory cytokines
produced during the response of macrophages to TLR agonist
treatment. TNF-a and IL-1b were the primary regulators of Cts L
and S activities in macrophages (Creasy andMcCoy, 2011). IFN-b
and IFN-g were also shown to upregulate cathepsin activity in
macrophages (Lah et al., 1995; Creasy and McCoy, 2011).

Cts E also regulates pro-inflammatory response of
macrophages since peritoneal macrophages derived from
Ctse–/– mice exhibited reduced production of IL-6 and TNF-a
in response to bacterial ligand stimulation, including PGN
(TLR2 ligand), LPS (TLR4 ligand), and macrophage-activating
lipopeptide 2 (MALP2; TLR6 ligand) compared to wild-type
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
(WT) cells (Tsukuba et al., 2006). Moreover, Ctse–/–

macrophages had decreased surface expression levels of TLR2
and TLR4, despite comparable total cellular levels of these TLRs
in WT cells, suggesting that during Cts E deficiency there are
defects in transport of these receptors to the cell surface, most
probably due to elevated lysosomal pH. For that reason, Cts E-
deficient macrophages showed decreased bactericidal activity
toward Staphylococcus aureus, and Ctse–/– mice were highly
susceptible to infection with Gram-positive S. aureus as well as
Gram-negative Porphyromonas gingivalis compared to WT mice
(Tsukuba et al., 2006).

Besides Cts E, Cts K is also involved in IL-6 production by
macrophages in response to S. aureus (Müller et al., 2014).
Moreover, Ha et al. (2008) demonstrated that in response to
the bacterial LPS there is a posttranslational process of TNF-a in
macrophages, in which extralysosomal Cts B functions as an
endopeptidase at neutral pH and regulates the trafficking of
vesicles containing TNF-a to the plasma membrane through
transcriptional or posttranslational regulation of the soluble
N-ethylmaleimide-sensitive factor attachment protein receptor
(SNARE) proteins, which are the major elements of the
intracellular machinery engaged in targeted membrane delivery.

Phagocytosis
Phagocytosis is the first step of the bactericidal activity of
macrophages and is regulated by endolysosomal cysteine
cathepsins due to the close relationship between the phagocytic
and the lysosomal pathways (Müller et al., 2014). Cathepsins act
optimally in reducing and slightly acidic environment, and such
a condition is created within the phagolysosome (Sanman et al.,
2016). Bacteria are degraded in the phagolysosome not only
through oxidative attack, but by nonoxidative killing too, in
which cathepsins are involved directly (Figure 2). Efficient
phagocytosis and killing of S. aureus in macrophages is driven
by cysteine Cts L, the major endoprotease contributing to the
nonoxidative killing pathway. (Müller et al., 2014). In alveolar
macrophages of mice infected with Mycobacterium bovis BCG,
Cts G is strongly upregulated and, together with neutrophil
elastase (NE), participates in effective elimination of the
engulfed pathogens. It is highly likely that Cts G and NE offer
the best proteolytic activity under in vivo conditions, because
engulfed mycobacteria induce the arrest of phagosome
maturation and acidification in macrophages, but Cts G and
NE are neutral serine proteases and so can optimally digested the
engulfed bacteria at neutral pH (Steinwede et al., 2012).

Cathepsins also regulate the activation of b2 integrin
receptors that initiate a variety of macrophage responses
associated with phagocytosis, including cell adhesion,
migration, respiratory burst and degranulation. Cts X cleaves
four C-terminal amino acids within the b2 subunit of the b2
integrin receptor Mac-1 (CD11b/CD18), resulting in the
activation of the receptor and achieving two goals, increase in
phagocytosis and enhancement of macrophage adhesion to
fibrinogen (Figure 2) (Obermajer et al., 2006; Kos et al., 2009).
Extracellular Cts S influences macrophage and monocyte
transmigration through the basal membrane of endothelium
(Sukhova et al., 2003).
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Apoptosis/Autophagy
Macrophages apparently can die through lysosome-mediated
apoptosis. In this pathway of cell programmed death, certain
cathepsins can be released from the lysosomes into the cytosol,
where they initiate the apoptotic cascade upstream of
mitochondria (Guicciardi et al., 2004). Subsequent clearance of
apoptotic cells occurs through their phagocytosis and delivery to
endolysosomes for destruction in phagocytic cells. For instance,
macrophages infected with Streptococcus pneumoniae undergo
apoptosis followed by efficient phagocytosis and successful
bacterial killing (Dockrell et al., 2001). Upon enclosure of
S. pneumoniae into phagolysosomes activity of Cts D increases
accompanied by its translocation to the cytosol resulting from
lysosomal membrane permeabilization (LMP) just before
activation of the mitochondrial pathway of apoptosis (Bewley
et al., 2011a; Bewley et al., 2011b). Within the cytosol, active Cts
D enhances binding of the anti-apoptotic protein Mcl-1 to its
ubiquitin ligase, Mule, which mediates degradation of Mcl-1
(Figure 2) (Bewley et al., 2011a). Proteomic studies revealed that
Cts D regulates multiple proteins engaged in the mitochondrial
pathway of macrophage apoptosis, facilitating intracellular
killing of S. pneumoniae (Bewley et al., 2011b). It is worth
mentioning that in addition to aspartic Cts D, cysteine Cts B,
C, F, H, K, L, O, S, V, W, and X also function as effectors of
lysosomal cell death downstream of LMP in different immune
and non-immune cells (Mrschtik and Ryan, 2015; Yadati
et al., 2020).

As an integral component of autophagy cathepsins have a
prominent role in degradation of autophagic material (Figure 2)
(Uchiyama, 2001). In macrophages, several studies revealed a link
between bacterial infection and activation of autophagy, which
can act as a defense mechanism participating in degradation of
invading pathogens in a lysosome-dependent manner (Vural and
Kehrl, 2014). Tsukuba et al. (2013) have demonstrated that
macrophages with Cts E deficiency exhibit abnormalities in
autophagy process, manifested by altered autophagy-related
signaling pathways and inhibition of autophagosome-lysosome
fusion. Such impaired autophagic flux is accompanied by
accumulation of aberrant mitochondria and increased oxidative
stress in Ctse–/– macrophages (Tsukuba et al., 2013). This
mechanism may partially explain increased susceptibility of
Ctse−/− mice to bacterial infection with S. aureus or P. gingivalis
(Tsukuba et al., 2006). Meanwhile, the level of Cts L in human
monocyte-derived macrophages (HMDM) is up-regulated by
peroxisome proliferator-activated receptor (PPAR) g, which is a
transcription factor engaged in bacterial-induced inflammation,
and such activation of Cts L inhibits autophagy and favors
apoptosis of these cells. It is suggested that the promotion of
macrophage apoptosis via PPARg-induced Cts L may inhibit
atherosclerosis progression, because phagocytic clearance of
apoptotic macrophages is very effective especially in early
atherosclerotic lesions (Mahmood et al., 2011). Currently, it is
strongly suggested that some bacterial agents may contribute to
the development of atherosclerosis (Ma and Li, 2018).

Besides apoptosis and autophagy, cathepsins in macrophages
play a role in necroptosis, a specific form of programmed
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
necrosis. Cts B and S can directly cleave receptor interacting
protein kinase-1 (Rip1), which is a key necroptotic kinase
(Figure 2). Cathepsin-mediated cleavage of Rip1 kinase
promotes macrophage survival and perpetuates their function
within inflammatory sites (McComb et al., 2014).
CATHEPSINS AND MACROPHAGE
CONTRIBUTION TO ADAPTIVE IMMUNE
RESPONSE

Antigen Processing and Presentation
The key role of cathepsins in antigen processing and presentation
is fundamental to the development of effective adaptive
immunity. Through phagocytosis cathepsins participate in
degradation of exogenous antigens into smaller peptides that
are then loaded into appropriate MHC II molecules allowing
formation of MHC-peptide complexes, which are subsequently
presented to CD4+ T cells (Conus and Simon, 2010). Aspartate
Cts D and E and cysteine Cts B, L and S are involved in this
process (Zhang et al., 2000). Additionally, Cts L, S and F are
implicated in peptide loading in macrophages by processing out
the invariant chain (Ii) linked to MHC class molecules (Figure 2)
(Shi et al., 2000; Hsieh et al., 2002). Cts L and S predominate
protease processing of Ii, however, in the absence of those
cathepsins in macrophages, Cts F effectively degrades Ii (Shi
et al., 2000). Moreover, during differentiation of monocytes into
macrophages, Cts A forms a complex with and activates
lysosomal sialidase (neuraminidase) Neu1 and relocates
together with Neu1 from the lysosomes to the cell surface,
where it participates in antigen presentation (Liang et al.,
2006). Another aspartic proteinase, Cts E, is also essential for
class II antigen presentation in macrophages, since Ctse−/−

macrophages show markedly decreased ability to present intact
OVA and OVA-derived antigenic peptide (266–281) to cognate
T cells (Kakehashi et al., 2007). Furthermore, Cts S is important
in antigen presentation by CD1+ macrophages, because Ctss−/−

mice exhibit dysfunctional CD1-restricted antigen presentation
(Riese et al., 1996; Sukhova et al., 2003).

Activation of the Th Immune Response
The development of functional subsets of CD4+ T cells appear to
benefit from the influence of cathepsin proteases. Immunization
of BALB/c mice with OVA adsorbed to alum generated weaker
Th1 and Th2 responses after treatment with Cts D inhibitor
(pepstatin A), whereas mice treated with Cts B inhibitor (CA074)
switched from the Th2-type into the Th1-type response induced
by OVA (Zhang et al., 2000). Therefore, some cathepsins may
create antigenic peptide/motifs that favor development of
polarized Th immune responses (Figure 2). A good example of
this phenomenon is the experimental model of leishmaniasis
where susceptible BALB/c mice treated with Cts B inhibitor
(CA074) acquired resistance to infection with Lieshmania major
characterized by the shift from Th2 to Th1 immune response,
suggesting that Cts B preferentially activates a Th2 response
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(Maekawa et al., 1998). Conversely, treatment of L. major-
infected BALB/c mice with Cts L inhibitor (CLIK148)
suppressed the Th1 response and enhanced a Th2 response,
suggesting that Cts L is crucial in stimulation of a Th1 response
following infection with the Lieshmania parasite (Tianqian et al.,
2001; Onishi et al., 2004). Since DCs are professional APCs with
the most potent activity in priming and polarizing naïve T cells
toward different Th subsets, it is possible that cathepsin
deficiency-mediated shift between Th1 and Th2 responses is
largely dependent on the functioning of DCs in such conditions.
However, the missing knowledge gap toward understanding of
the mechanisms involved is that there are no data indicating the
direct participation of cathepsins in macrophage-driven
polarization of the Th immune response.
CATHEPSINS AS ANTIBACTERIAL
AGENTS AND TARGETS OF BACTERIAL
MODULATION IN MACROPHAGES

As discussed earlier, cathepsins regulate many innate
antibacterial functions of macrophages including those that
support induction of adaptive antibacterial responses.
Consequently, many bacterial pathogens have evolved multiple
strategies to modulate cathepsin availability and functionality in
macrophages. These strategies include, but are not limited to,
prevention of phagosome-lysosome fusion, alteration in
endosomal/phagolysosomal pH, exclusion of cathepsins from
the bacteria-containing endosomes, inhibition of recruitment of
cathepsins into the phagolysosome, modulation of cathepsin
gene and protein expression, alteration of processing and
maturation of cathepsins, and down-regulation of cathepsin
activity. However, in many cases, cathepsin-modulation
strategies depend on the lifestyle of bacteria, whether they are
primarily extracellular or intracellular pathogens or whether they
lead a dual lifestyle as extracellular/intracellular pathogens.
Farther, we discuss cathepsin antibacterial significance as well
as bacterial mechanisms for controlling cathepsin activity and
functions in macrophages as they relate to individual
extracellular, facultative intracellular and obligate intracellular
bacterial species, which are clinically important especially for
human health.
EXTRACELLULAR BACTERIA

Streptococcus pneumoniae
Gram-positive S. pneumoniae is a causative agent of bacterial
pneumonia, meningitis, acute otitis media, acute sinusitis and
bacteremia. Aspartic Cts D plays an important role in response of
macrophages against S. pneumoniae infection (Bewley et al.,
2011a). Once Cts D is activated and released into the cytosol,
it induces apoptosis through reduction of the Mcl-1 level. The
Cts D-dependent induction of apoptosis in macrophages
provides a late phase of killing of pneumococci in in vitro
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
conditions. Apparently, Cts D activation regulates multiple
signaling pathways engaged in mitochondria-dependent
apoptosis in macrophages, leading to intracellular killing of S.
pneumoniae (Bewley et al., 2011b). Under in vivo conditions, the
protective role of Cts D against pneumococcal infection was
demonstrated using Ctsd−/− mice in which reduced apoptosis
of alveolar macrophages was evident accompanied by
decreased clearance of pneumococci in the mouse lung (Bewley
et al., 2011a). Cat D cleaves streptococcal virulence factor,
pneumolysin (PLY) at two sites: between Trp-435 and Trp-436
residues and in residues 361–366 in the D4 domain, rendering
the protein void of its biological function (Carrasco-Marıń
et al., 2009).

Serine protease, Cts G is implicated in lung-protective
immunity against focal pneumonia induced by low virulence
serotype 19 S. pneumoniae in mice. Deficiency of Cts G in mice
increases bacterial loads in the lung, causes severe respiratory
distress and progressive mortality following infection with S.
pneumoniae. According to Hahn et al. (2011), increased
susceptibility and lung tissue injury was even more progressive
in infected double knockout mice, lacking Cts G and serine
protease NE. However, the primary cellular source of Cts G and
NE are not macrophages, but neutrophils, because specific
depletion of neutrophils resulted in complete loss of alveolar
Cts G and NE bioavailability in mice infected with S.
pneumoniae, which was accompanied by uncontrolled
outgrowth of bacteria in distal air spaces (Hahn et al., 2011).
The bactericidal activity of purified human Cts G and NE against
S. pneumoniae was also demonstrated in in vitro conditions
(Standish and Weiser, 2009).

Many pathogens have evolved their own means of defense,
and so have bacteria against cathepsins. The rat model of acute
otitis media, an inflammatory disease of the middle ear, often
caused by infection with pneumococci exemplifies such
occurrence. S. pneumoniae infection resulted in down-
regulation of Ctsk and Ctsl and dramatic up-regulation of Ctsb
mRNAs in the middle ear mucosa at 12 and 48 hours post
infection (hpi). These results suggest disruption of Cts K and Cts
L protein synthesis and possibly functions, whereas Cts B may
play a role in acute otitis media pathogenesis during S
pneumoniae infection (Li‐Korotky et al., 2004). Although
macrophages are a major cellular component of human middle
ear effusions, S. pneumoniae types 14 and 19F happen to be quite
resistant to phagocytosis by macrophages, and it is likely the
reason they are associated with the highest relapse frequency in
cases of acute otitis media, (Bakaletz et al., 1987). Probably the
imbalance in cathepsin expression influences macrophage
functions and innate immune properties, what, in turn, may
contribute to middle ear effusion by a sustained release of
proinflammatory cytokines or immune injury (Hannaford
et al., 2012). Therefore, further studies are needed to elucidate
the role of cathepsins in the functioning of macrophages during
acute otitis media. The protective role of cathepsins, especially
Cts B, during S. pneumoniae infection was documented using the
z-FA-FMK inhibitor in a mouse model of intranasal
pneumococcal infection. In vivo administration of z-FA-FMK
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to infected animals resulted in increased bacterial growth in
lungs and blood, compared with controls, suggesting it partially
engagement in the control of pneumococcal infection (Lawrence
et al., 2006).

Helicobacter pylori
Gram-negative H. pylori is a major human pathogen responsible
for chronic gastritis, and infection with this bacterium
significantly increases the risk of developing gastric ulcer,
duodenal ulcer, gastric cancer (adenocarcinoma), and mucosa-
associated lymphoid tissue (MALT) lymphoma. DuringH. pylori
infection, there is a persistent infiltration of macrophages and
neutrophils in the gastric mucosa, where these phagocytes
contribute to development of gastric inflammation and
possibly gastric carcinogenesis (Xia et al., 2004; Fu et al., 2016).
Patients suffering from H. pylori-induced gastritis express
significantly more Cts X at both mRNA and protein level than
H. pylori-negative patients. Additionally, up-regulated
expression of Cts X was observed in gastric cancer compared
to non-neoplastic mucosa. Macrophages were found to be a
major source of Cts X in the mucosal stroma and in glands of the
antral mucosa, as well as in the gastric cancer (Krueger et al.,
2005). Up-regulation of Cts X in macrophages during infection
with H. pylori is dependent on the presence of a pathogenicity
island (PAI) encoding the type IV secretion system (T4SS) and
virulence factor CagA (cytotoxin-associated gene A), and
proinflammatory cytokine production. The PAI-or CagA-
positive H. pylori strains induced up-regulation of Cts X
mRNA expression in THP-1 or U937 macrophage-like cells,
respectively, through elevation of TNF-a secretion, leading to
increased expression of Cts X in macrophages (Krueger et al.,
2005; Krueger et al., 2009). Overexpression of Cts X in
macrophages stimulated by H. pylori-induced cytokines via
activation of extracellular signal-regulated kinase (ERK)1/2
signaling pathway (Krueger et al., 2009).

Cts X co-localizes with and probably activates Mac-1 integrin
receptor within the membrane of THP-1 macrophage-like cells
after exposure to antigens of H. pylori therapy-resistant strains
(Obermajer et al., 2009). Interestingly, such translocation of Cts
X was associated with elevated capacity of THP-1 cells to
stimulate proliferation of peripheral blood mononuclear cells
(PBMC); however, inhibition of Cts X with neutralizing 2F12
monoclonal antibody (mAb) further enhanced macrophage
ability to stimulate PBMC proliferation and to form
multicellular clusters with PBMC (Obermajer et al., 2009).
These results indicate that membrane expression of Cts X may
be responsible for inadequate immune response againstH. pylori,
what correlates with the inability to eradicate the infection using
standard antibiotic therapy. It is possible that these events are
responsible for persistence of chronic infection in vivo
(Obermajer et al., 2009). Thus, inhibition of Cts X seems to be
beneficial to the enhancement of the immune response necessary
for eradication of H. pylori infection. Furthermore, it has been
documented that inhibition of Cts X in THP-1 cells treated with
H. pylori strains resistant to clarithromycin increases surface
expression of TLR4 and prevents its cellular internalization,
ultimately decreasing production of cytokines IL-1b, IL-8,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
IL-10, and IL-6. These data confirm that Cts X localization and
activity may impact the efficacy of the immune response during
H. pylori infection and may partially explain the link between
lower immunogenicity and eradication failure of clarithromycin-
resistant strains of H. pylori (Skvarc et al., 2013).

It has been additionally suggested that during chronic
H. pylori gastritis Cts X may increase invasiveness of tumor
cells by proteolytic cleavage of cellular proteins responsible for
cell proliferation and migration (Krueger et al., 2005). On the
contrary, further study supports the hypothesis for a protective
role of Cts X in metaplastic differentiation, since Ctsx–/– mice
showed higher level of infiltrating macrophages, enhanced
epithelial proliferation and more severe spasmolytic
polypeptide expressing metaplasia (SPEM), which is associated
with progression of gastric cancer, than WT animals (Krueger
et al., 2013). Therefore, it will be intriguing to elucidate whether
Cts X plays a protective versus pathogenic role in cancer
development during chronic H. pylori infection.

Another cathepsin-dependent mechanism by which H. pylori
ensures persistent infection in gastric mucosa has been described,
in which abolition of Cts C expression weakens the activation of
neutrophils (Liu et al., 2018). Indeed, in gastric mucosa of human
patients and mice infected with H. pylori there is a decreased
expression of Cts C at both the mRNA and protein levels because
of altered expression and secretion of this protease by infected
gastric epithelial cells. The pathogen-induced down-regulation of
Cts C expression in gastric epithelial cells is achieved through
Src-phosphorylated CagA-ERK and CagA-Janus kinase(JAK)/
signal transducer and activator of transcription 3 (STAT3) non-
phosphorylated pathways, again emphasizing the importance of
H. pylori virulence factor CagA (cytotoxin-associated gene A).
Expression of Cts C in the human gastric mucosa was negatively
correlated with pathogen colonization. Moreover, administration
of active enzyme decreased gastric bacterial burden in mice. In
vitro and in vivo studies revealed that human neutrophils exhibit
increased bactericidal activity in the presence of active Cts C (Liu
et al., 2018). Therefore, H. pylori manipulation of Cts C
represents an immune evasion strategy of the bacterium from
neutrophil clearance leading to infection persistence in
gastric mucosa.

Pseudomonas aeruginosa
The opportunistic Gram-negative P. aeruginosa is the causative
agent of a broad spectrum of diseases, including, but not limited
to, pneumonia, urinary tract infections, bacteremia, septicemia,
and wound infections. These infections are mostly nosocomial and
especially in immunocompromised patients, burn patients and
cystic fibrosis (CF) patients, the latter of which are extremely
susceptible to chronic P. aeruginosa infections with a fatal
outcome (Bhagirath et al., 2016). During CF lung disease, there
is a chronic and unresolved immune response with the
predominant presence of neutrophils and macrophages, which
are unable to clear the airway compartments from various
colonizing and biofilm-forming bacteria, especially P.
aeruginosa. The intense inflammatory response eventually leads
to airway obstruction and bronchiectasis in CF patients (Sedor
et al., 2007).
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Macrophages in CF demonstrate high plasticity of their
phenotype (M1 vs M2), hyperinflammatory potential, altered
lysosomal function and decreased phagocytic activity, resulting
in impaired capacity for directing the resolution of either
infection or inflammation (Bruscia and Bonfield, 2016).
P. aeruginosa has been shown to evade intracellular killing in
macrophages by stimulating the NLRP3 inflammasome and
subsequently activating autophagy (Deng et al., 2016).
Additionally, proteomics analysis revealed that LasB, an
important component of the type II secretions system (T2SS)
of P. aeruginosa, down-regulates the production of many
secreted innate immune components, including C3 and factor
B complement molecules as well as Cts B and Cts H in murine
alveolar macrophages. This probably contributes to reduced
bacterial clearance and increased pathogen virulence (Bastaert
et al., 2018). The aspartic protease Cts D may foster a protective
role, at least as has been reported during infection of RAW 264.7
macrophages with P. aeruginosa. Infected cells upregulated Cts D
at both the mRNA and the protein levels, but deficiency of the
cathepsin allowed survival of bacteria in macrophages.
Therefore, Cts D may directly target bacteria or induce
production of proteins with bactericidal activity (Fu et al.,
2020). In a murine model of endobronchial inflammation the
neutrophil-derived serine protease, Cts G, inhibited clearance of
P. aeruginosa from the murine lung and subsequently stimulated
a greater inflammatory response in the airway (Sedor et al.,
2007). Clearly, cathepsins may interfere with airway defense
mechanisms, for instance, sputum samples from CF patients
whose lungs are colonized by P. aeruginosa have higher
cathepsin activity but reduced ability to inhibit biofilm
formation compared with sputum samples from P. aeruginosa-
negative CF patients (Rogan et al., 2004). Enzymatically
active forms of cysteine cathepsins such as Cts B, H, K, L,
and S are not correlated with bacterial colonization, because
comparable activities of these enzymes were found in sputum of
P. aeruginosa-positive and P. aeruginosa-negative CF patients,
and therefore, they are not suitable markers for this type of
infection (Naudin et al., 2011).
FACULTATIVE INTRACELLULAR
BACTERIA

Mycobacterium tuberculosis
M. tuberculosis, a poorly Gram-positive bacillus, is the etiological
agent of tuberculosis (TB), which is the single leading cause of
deaths worldwide, especially among HIV-infected people (Guinn
and Rubin, 2017). The most common form of infection affects
the lungs (pulmonary TB), but it can also affect lymph nodes,
bones, brain, spine or other parts of the body (extrapulmonary
TB). The tubercle bacillus is a highly effective pathogen that has
developed a series of strategies for modulating the immune
response of lung macrophages. Within the macrophages, M.
tuberculosis can survive and even proliferate, since it inhibits
phagosome-lysosome fusion, generation of ROS and RNS,
induction of autophagy and apoptosis, production of cytokines,
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and presentation of antigens in the context of MHC molecules
(Bhat and Mukhopadhyay, 2015; Ren et al., 2017). The NF-kB–
dependent impairment of delivery of lysosomal enzymes to
phagosomes is a well-characterized survival mechanism of
mycobacteria, which allows them to avoid contact with active
cathepsins (Gutierrez et al., 2008). Mycobacteria can also prevent
direct digestion by cathepsins in macrophages by escaping from
the phagosome into the cytosol, resulting in activation of the
inflammasome and subsequent stimulation of Cts B–dependent
pyroptosis or pyronecrosis (Welin et al., 2011; Pires et al., 2016;
Amaral et al., 2018). Recently, M. tuberculosis Rv0297 has been
shown to down-regulate Cts D and Rab7 expression in
macrophages, suggesting its role in modulation of phagosomal
maturation (Sharma et al., 2020). Avoidance of cathepsin-
dependent killing by mycobacteria allows them to effectively
replicate and spread to neighboring cells.

In addition to avoiding direct contact with cathepsins, M.
tuberculosis can also modulate the expression of the mRNA or
activity of these enzymes. A comparative study using a
pathogenic strain M. tuberculosis and a non-pathogenic strain
M. smegmatis revealed that following infection with
M. tuberculosis mRNAs for the majority of cathepsins and
cystatins were down-regulated in M0 (Cts B, C, D, E, G, K, O,
S, V, andW and cystatins B, C, D, SA, SN, and E/M) andM1 (Cts
B, C, F, K, S, W, and Z and cystatin C) human primary
macrophages, in contrast to M. smegmatis that induced up-
regulation of most cathepsins in both type of cells. The only
exception in M. tuberculosis infection of M0 and M1
macrophages was Cts L which was up-regulated. Quantitative
analysis of cathepsin biosynthesis and enzymatic activity showed
that M. tuberculosis infection decreases both quantity and
activity of Cts B and S, but not L. Such global downregulation
of cathepsin expression and activity profoundly decreased
pathogen killing and improved its intracellular survival.
Pharmacological treatment with a general inhibitor of cysteine
cathepsins E-64d, natural cystatin C-based inhibition of Cts B,
Cts S, and Cts L or siRNA–mediated gene silencing for Cts B, S,
and L, all resulted in significant increase of M. tuberculosis
survival in primary human macrophages. Additionally,
knockdown of Cts B, D, G, L, V, S, W, and Z using a
lentivirus-based siRNA approach resulted in increased survival
of bacteria within THP1 macrophages, whereas knockdown of
Cts F caused increased pathogen killing in these cells (Pires et al.,
2016). Overall, cathepsins in macrophages are relevant for the
control of M. tuberculosis infection, but the pathogen intricately
manipulates their expression and activity to further its survival.

A somewhat different result was obtained in murine bone
marrow-derived macrophages (BMDMs) infected with
pathogenic M. tuberculosis or M. avium, the latter which
causes opportunistic infections in humans and animals (Nepal
et al., 2006). In BMDMs both mycobacteria species did not alter
activity of Cts B and Cts S, but altered activity of Cts L. The
mycobacteria impaired processing of pro-Cts L into the 24kDa
two-chain form of active Cts L, suggesting that Cts L does not
mature properly in BMDMs infected with mycobacteria (Nepal
et al., 2006). Considering that Cts L plays a significant role in
processing subsets of antigens that shape the repertoire of MHC
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Szulc-Dąbrowska et al. Cathepsins and Bacteria-Macrophage Interactions
class II-associated peptides, this unique evasive mechanism by
mycobacteria presumably prevents the generation of protective T
cell epitopes in antigen-presenting cells, and/or decreases the rate
of class II MHC peptide loading (Hsieh et al., 2002). In support
of this observation experimental data derived by Singh et al.
(2006) also implicated inhibition of Cts D activation in the
impaired processing and presentation of antigens by MHC
class II molecules in macrophages infected with virulent strains
of mycobacteria. In those studies, bacteria were able to exclude
vacuolar proton ATPase (v-ATPase) from phagosomes,
preventing acidification (maturation) and breakdown of
immature Cts D into the active form. Arrest of phagosome
maturation and inhibition of Cts D conversion to active forms
in infected macrophages reduced the generation and
presentation of immunodominant antigen epitopes to T cells
resulting in low IL-2 production (Singh et al., 2006).

Pathogenic species of Mycobacterium, including M.
tuberculosis and M. bovis, can also attenuate intracellular
trafficking and surface expression of MHC class II molecules on
macrophages through post-transcriptional regulation of Cts S
expression (Brown et al., 2020), thus promoting their
intracellular survival. This regulation may be accomplished by a
few factors, including miRNAs. During M. tuberculosis infection,
miR-106b-5p, which can bind to Cts S mRNA, is strongly up-
regulated in macrophages. In contrast, challenge with non-virulent
M. smegmatis has no effect on Cts S gene expression (Pires et al.,
2017). The up-regulation of miR-106b-5p resulted in decreased
Cts S activity accompanied by increased intracellular survival of
M. tuberculosis and reduced expression of human leukocyte
antigen (HLA)-DR class II on macrophages, similar to what
occurs during silencing of Cts S by siRNA (Pires et al., 2017).
Additionally, Mycobacterium bovis BCG has been shown to
interfere with miR-3619-5p control of Cts S activity in the
process of autophagy in THP-1 macrophages (Pawar et al.,
2016). Down-regulation of cathepsin S activity and gene
expression in human macrophages infected with mycobacteria
also depends on IL-10 production (Sendide et al., 2005).
Macrophages infected with M. bovis BCG produce large
amounts of IL-10 concomitant with decreased Cts S activity and
reduced translocation of peptide loaded MHC class II complexes
to the cell surface. However, these negative effects could be
reversed by antibody neutralization of IL-10 or transfection of
BCG-infected macrophages with active recombinant Cts S
(Sendide et al., 2005). Restoration of surface levels of MHC class
II molecules in macrophages could be achieved also by infection of
cells with a recombinant BCG strain engineered to express and
secrete biologically active human Cts S (Soualhine et al., 2007).
Another reason for the impaired trafficking and intracellular
retention of MHC class II molecules in BCG-infected
macrophages was the intraphagosomal production of urease and
subsequent alkalization of endosomes, responsible for MHC class
II processing and loading (Sendide et al., 2004). Endosome
alkalization therefore may not only affect the Cts S but also the
activity of key proteases participating inMHC class II presentation
pathway (Baena and Porcelli, 2009).

Conversely, there is an increase in expression of Cts B and/or
its activity in THP-1 macrophages and BMDMs infected with
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mycobacteria (Rivera-Marrero et al., 2004; Amaral et al., 2018).
These alterations in Cts B byM. tuberculosis are common in lungs
of infected mice, infected rabbits or plasma of human patients
with active TB, suggesting that there is an association between
increased Cts B levels and active TB (Amaral et al., 2018).
Interestingly, during M. tuberculosis infection of macrophages,
mature Cts B is released from the lysosomes into the cytosol, as a
consequence of lysosomal destabilization caused by antigens
encoded by the mycobacterial genome known as region of
difference 1 (RD-1), and secretory mycobacterial antigen ESAT-
6, which forms pores in the phagosome membrane. Within the
cytosol, Cts B drives NLRP3-inflammasome activation with
subsequent production of IL-1b (Amaral et al., 2018). The
understanding here is that the major goal of Cts B activation in
mycobacteria infection is to induce the maturation of IL-1b, the
cytokine that plays a major role in the host protection against M.
tuberculosis infection (Mayer-Barber et al., 2014).

Pathogenic mycobacteria may also influence the level of Cts G
in macrophages. In THP-1 cells the expression and activity of Cts
G is down-regulated upon exposure to a virulent strain of M.
tuberculosis or bacterial LPS. Down-regulation of Cts G
expression positively correlates with increased bacterial
survival, thus creating an immune evasion mechanism for M.
tuberculosis (Rivera-Marrero et al., 2004). Similarly, in vivo
infection of alveolar macrophages with non-virulent M. bovis
BCG strain initially resulted in down-regulation of Ctsg mRNA
at 12 h post infection; however, at 3 and 7 day of infection, Cts G
was strongly up-regulated, suggesting importance of this
protease in the early host defense against mycobacterial
infections (Srivastava et al., 2006). However, Cts G-deficient
mice could not eliminate M. bovis BCG, resulting in increased
bacterial loads in the lungs (Steinwede et al., 2012). Neutrophils
are the main population of professional phagocytes responsible
for delivery of Cts G into the bronchoalveolar space of M. bovis
BCG-infected mice. It is suggested that Cts G and other
proteolytic enzymes may be shuttled into mycobacteria-
infected alveolar macrophages together with phagocytosed
apoptotic neutrophils (Steinwede et al., 2012). Within
macrophages, phagocytosed neutrophil with their granule
contents are then transported to the early endosomes and
colocalize with mycobacteria, promoting the antimycobacterial
activity of macrophages and facilitating the killing of M.
tuberculosis (Tan et al., 2006; Steinwede et al., 2012). The
bacterial protein Rv3364c, secreted by infected macrophages,
binds to and inhibits activity of membrane Cts G leading to
suppression of activation of caspase-1-dependent apoptosis
(Danelishvili et al., 2012). A recent report shows that Cts X, in
the presence of the nitric oxide (NO), is involved in rapid killing
of pathogenic Mycobacterium avium subsp. hominissuis in host
macrophages, and the virulence factor MAV_4644 serves to
protect the pathogen from the killing process (Lewis et al., 2019).

Neisseria gonorrhoeae
N. gonorrhoeae is a Gram-negative pathogen responsible for the
sexually transmitted disease, gonorrhea with substantial
morbidity in humans. This pathogen primarily infects the
urogenital tract; however, it may spread from the local site of
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infection contributing to development of pelvic inflammatory
disease, endocarditis, arthritis and dermatitis. Gonococcal
infection is characterized by a local inflammatory response
driven by a large number of neutrophils and macrophages,
especially during acute gonorrhea. N. gonorrhoeae is able to
survive within macrophages, which are quite important cells
involved in the pathogenesis of gonorrhea (Château and Seifert,
2016). This pathogen induces activation of the NLRP3-
dependent signaling pathway in THP-1 cells and primary
human monocytes, which is required for secretion of mature
IL-1b and induction of the cell death via pyronecrosis (Figure 2).
All these processes are dependent on activation of Cts B by the
gonococcus, since selective inhibition of this protease with Ca-
074-me resulted in reduced NLRP3-mediated IL-1b secretion
and pyronecrosis (Duncan et al., 2009). Therefore, modulation of
Cts B activity may represent an important bacterial mechanism
involved in regulation of inflammatory response and
pathogenesis of infections caused by N. gonorrhoeae. Cts B
targets bacterial penicillin-binding protein 2 (PBP2), which is
an essential peptidoglycan transpeptidase engaged in cell division
(Shafer et al., 1990; Tomberg et al., 2017). Moreover, the
structure of PBP2 and/or intracellular availability may
determine the level of gonococcal susceptibility to this
cathepsin (Shafer et al., 1990).

On the other hand, lysosomal serine Cts G can directly kill N.
gonorrhoeae (Shafer et al., 1986; Shafer and Morse, 1987). It does
so by degrading porin and colony opacity-associated proteins
(Opa) in the N. gonorrhoeae outer membrane (Shafer and Morse,
1987). Opa-expressing N. gonorrhoeae strains are more sensitive
to killing inside primary human neutrophils than Opa-deficient
strains. However, bacterial exposure to Cts G resulted in a
comparable dose-dependent killing of both Opa-expressing
and Opa-deficient strains. The increased susceptibility of Opa-
expressing gonococci to neutrophil killing is mediated by
CEACAM-dependent triggering of Src family kinase signaling,
which promote bacteria trafficking into mature, degradative
phagolysosomes where the bacteria are exposed to components
with antigonococcal activity, including bactericidal-
permeability-increasing protein (BPI) (Johnson et al., 2014).

Listeria monocytogenes
L. monocytogenes is a Gram-positive intracellular food-borne
pathogen that infects humans and many animal species. It is
responsible for listeriosis, affecting mainly pregnant women,
their fetuses, and immunocompromised individuals, causing
meningoencephalitis, meningitis, septicemia, and brain abscess
(Farber and Peterkin, 1991). Early resistance to listeria infection
is mediated by IFN-g production by NK cells and pro-
inflammatory response of macrophages, which in turn enhance
IFN-g producing capacity of NK cells (Tripp et al., 1993; Unanue,
1997). Macrophages are generally thought to be the major
population of phagocytes responsible for intracellular
elimination of L. monocytogenes, however the bacterium has
evolved many strategies to evade immune defense mechanisms
mediated by macrophages (Wang et al., 2017).

Cts D expression increases in macrophages infected with L.
monocytogenes and plays an important listeriobicidal role in
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these cells (del Cerro-Vadillo et al., 2006; Fu et al., 2020).
RAW 264.7 macrophages up-regulate Cts D expression at both
mRNA and protein level during Listeria infection. Cts D-
deficiency achieved either by treatment with pepstatin A (a
specific inhibitor of cathepsin D) or generation of Ctsd–/– cells,
results in increase in the number of viable bacteria (Fu et al.,
2020). Furthermore, BMDMs of Cts D-deficient mice showed 4-
to 5-fold higher replication index of Listera than BMDMs of
Ctsd+/+ mice. Additionally, Ctsd–/– cells contained higher
number of freely localized bacteria within the cytosol
compared with WT cells. In vivo studies underline the
importance of Cts D in early resistance to listeriosis, since
infection of Ctsd–/– mice resulted in 10-fold increase in
bacterial burden in spleen and livers compared to Ctsd+/+

littermates (del Cerro-Vadillo et al., 2006). The molecular
mechanism by which Cts D influences L. monocytogenes
virulence was described by Carrasco‐Marıń et al. (2009) and
involves specific cleavage of listeriolysin O (LLO). LLO, a pore-
forming thiol-activated cytolysin, and phosphatidylinositol
phospholipase C (PI-PLC), are two major virulence factors of
L. monocytogenes, allowing the bacterium to escape from the
phagosomes to the cytoplasm within host cells, including
macrophages (Lauer et al., 2002). Specifically, Cts D-mediated
cleavage of LLO occurs between Trp‐491 and Trp‐492 residues in
the domain 4(D4) of LLO. Neither Cts D nor Cts L showed any
effect on PI‐PLC. Therefore, lysosomal and soluble active Cts D
forms that are present abundantly in bacteria phagosomes can
cleave LLO monomers and participate in intraphagosomal
killing of L. monocytogenes (Carrasco‐Marıń et al., 2009). In
addition to Cts D, also Cts G, derived from human neutrophils,
can destroy Listeria in in vitro conditions (Alford et al., 1990).

Staphylococcus aureus
S. aureus is a Gram-positive bacterium causing both community-
and hospital-acquired infections with significant morbidity and
mortality (Magill et al., 2014a; Magill et al., 2014b). Methicillin-
resistant S. aureus (MRSA) is responsible for invasive, drug-
resistant skin and soft tissue infections contributing to the
development of diseases, such as endocarditis, osteomyelitis, or
bacteremia (Klevens et al., 2007; Brann et al., 2019).
Macrophages are the major cells responsible for clearance of
bacteria from infected tissues, however S. aureus survives and
even replicates inside these cells (Lacoma et al., 2017). After
phagocytosis, the S. aureus containing phagosomes (SaCPs) are
formed, which quickly acquire early (Rab5) and then late
(LAMP‐1 and Rab7) endosomal markers (Moldovan and
Fraunholz, 2018). Nevertheless, SaCPs lack the key lysosomal
hydrolases, including beta‐glucuronidase and cathepsin D,
suggesting the absence of fully matured phagolysosomes in
infected macrophages (Jubrail et al., 2016; Tranchemontagne
et al., 2016). More than 60% of phagosomes containing live or
heat-killed (HK) highly virulent community-acquired USA300
clone of S. aureus co-localized with cathepsin D at 1 hpi, whereas
significant reduction of co-localization between live bacteria and
cathepsin D was noted at 4 and 8 hpi compared to that observed
in HK bacteria-treated macrophages. Additionally, USA300
strain persisted and replicated within the phagosome, and the
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acidification of this compartment was necessary for bacteria
survival. This indicates that live S. aureus clone USA300 can
actively disturb phagosomal accumulation of lysosomal
hydrolyses, limiting pathogen exposure to degradative enzymes
(Tranchemontagne et al., 2016). In in vitro experimental models
such as RAW 264.7 cells, Cts D expression increases during
S. aureus infection and plays an important role in controlling the
growth and viability of this bacterium within macrophages (Fu
et al., 2020). The pathogen is degraded in Cts D-positive active
lysosomes in primary human macrophages, but still the majority
of bacteria survive in late phagosomes (Brann et al., 2019).

During S. aureus invasion, the phagolysosomal biogenesis in
macrophages is tightly controlled by the proteins belonging to
the COMMD (copper metabolism gene MURR1 domain) family,
which regulate intracellular trafficking. COMMD10-deficient
BMDMs have decreased expression of numerous genes
important for the functioning of lysosomes, including Cts B
and D, but not K, at 2 and 4 hpi with S. aureus. In addition,
COMMD10-deficient macrophages infected with S. aureus, there
is altered exchange of RAB5 to RAB7, peripheral mislocation of
LAMP-1 and reduced acidification of phagosomes, all which
contribute attenuated bacteria-induced phagolysosomal
maturation. This impaired phagolysosomal biogenesis in
COMMD10-deficient cells favors the survival of bacteria
within macrophages (Shlomo et al., 2019).

Besides Cts D, Cts L is also responsible for nonoxidative
killing of S. aureus within macrophages, because in the absence
of Cts L in primary BMDMs, S. aureus can survive intracellularly
for at least 3 hpi compared to WT cells, whereas single knockout
cells for Cts B, Cts H, Cts K, or Cts Z comparably killed the
bacteria as WT macrophages. Although the cysteine cathepsin
Cts K is not involved in direct killing, it is critical for efficient
production of IL-6 by infected macrophages through the
MyD88-dependent TLR signalling (Müller et al., 2014).

In cell types other than macrophages, e.g., neutrophils,
lysosomal cysteine cathepsins may indirectly regulate
bactericidal and inflammatory activities against S. aureus. For
instance, Cts C contributes to indirect killing of S. aureus in
neutrophils through generation of bactericidal proteins or
activation of antimicrobial enzymes within the phagolysosomes
(Liu et al., 2012). Neutrophil-derived Cts G has limited and
delayed bactericidal effect, because S. aureus EapH1 inhibits the
activity of the enzyme via formation of highly complementary,
non-covalent complex with this protease that blocks substrate
access to the enzyme active site (Herdendorf et al., 2020).

Francisella tularensis
F. tularensis is a gram-negative facultative intracellular bacterium
that causes tularemia—a potentially fatal infection in humans.
This pathogen replicates predominantly in macrophages, but can
proliferate in other cell types too (Pechous et al., 2009; Santic
et al., 2010). Four subspecies of F. tularensis are currently known:
tularensis, holarctica, mediasiatica, and novicida, wherein
subspecies tularensis and holarctica are mainly responsible for
disease in humans (Keim et al., 2007; Santic et al., 2009).
Following uptake by macrophages, F. tularensis enters a
phagosome that acquires minimal amounts of the late
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13
endosomal-lysosomal markers, including CD63, LAMP1, and
LAMP2, but excludes cathepsin D (Clemens et al., 2004; Asare
and Kwaik, 2011). Late endosomal Francisella-containing
vacuole (FCV) disintegrates within a few hours allowing the
pathogen to escape into the cytoplasm, where it replicates.
Interestingly, T cells from vaccinated mice can provide a
functional assistance in arresting Francisella attenuated live
vaccine strain (LVS) replication and inhibiting the spread of
LVS infection between macrophages in in vitro conditions. Co-
culture experiments of LVS-infected macrophages with naïve or
LVS-immune lymphocytes revealed that LVS-immune T cell
control of replication and spread of LVS in macrophages is
mediated by a direct effect on the viability of bacteria in the
cytoplasm, rather than intracellular trafficking of bacteria into
lysosomes for degradation in infected macrophages (Bradford
and Elkins, 2020).

Pathomechanisms of tularemia infection have best been
studied in mice and rabbits. Removal of Cts B in mice
rendered them resistant to infection with F. novicida since they
had significantly lower bacterial loads in the liver and spleen
compared to individuals with normal expression of this protein.
Measured at 3 day after infection, Cts B-knockout animals
produced less pro-inflammatory cytokines and chemokines in
the liver (Qi et al., 2016). Macrophages are the frontline in
controlling intracellular growth and dissemination of Francisella
(Hall et al., 2008) and the lack of Cat B in these cells enhanced
their bactericidal activity against the pathogen (Qi et al., 2016).
Interestingly, cell structure analysis by transmission electron
microscopy revealed that uninfected macrophages lacking
cathepsin B contained larger lysosomes and autophagosomes,
and accumulated partially digested vesicles in autophagosomes,
compared to WT cells. Mechanistically, the increased
bactericidal activity against F. novicida in macrophages with
genetic deletion or pharmacological inhibition of Cat B is a result
of upregulated lysosomal biogenesis and autophagy due to
downregulation of mechanistic target of rapamycin (mTOR),
lysosomal calcium channel TRPML1 and others such as
transcription factor EB (TFEB) and phosphorylation of
autophagy initiation kinase ULK1 (unc-51-like kinase 1) (Man
and Kanneganti, 2016; Qi et al., 2016).

Brucella abortus
B. abortus is an intracellular Gram‐negative cocobacillus that
survives and replicates within host monocytes and macrophages.
This pathogen is the causative agent of brucellosis in humans and
livestock. In humans, B. abortus evokes fever, endocarditis,
arthritis and osteomyelitis; in livestock, it is responsible for
abortion and infertility (Pappas et al., 2005; Oliveira et al.,
2011). Upon internalization, Brucella arrests phagosome
maturation between the steps of acidification and phagosome-
lysosome fusion and cannot be destroyed within the Brucella-
containing vacuole (BCV) (Rittig et al., 2001; Celli et al., 2003). In
human macrophage-like cell line THP-1, delivery of Cts D to
phagosomes occurred simultaneously with the arrival of LAMP-
1 and acidification of the lumen of the phagosomes at the early
stages of infection (60 min pi) with virulent or HK B. abortus
2308. Together with the time progression, the number of Cts
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D-positive phagosomes containing live B. abortus 2308 was
significantly reduced when compared to phagosomes with HK
bacteria, and after 24 h such vesicles contained multiple
brucellae, indicating efficient replication of the pathogen
within such compartments (Bellaire et al., 2005). During later
stages of infection, BCVs were shown to fuse with lysosomes,
what is needed for further maturation of BCVs into an
endoplasmic reticulum (ER)-derived organelle, in which
bacteria is able to replicate (Bellaire et al., 2005; Starr et al.,
2008). Several virulence factors determine Brucella survival in
macrophages, including zinc-dependent metalloproteinase
(ZnMP). Its deletion causes an increase in the co-localization
of bacteria with phagosomal Cts D, reducing intracellular
replication of the pathogen within RAW 264.7 cells (Gómez
et al., 2020). Importantly, B. abortus persistence in macrophages
is associated with the presence of anti-inflammatory cytokine,
IL-10 (Xavier et al., 2013). This cytokine suppresses lysosome-
mediated killing of bacteria in macrophages via two distinct
regulatory mechanisms. Firstly, IL-10 inhibits recruitment of
membrane trafficking regulators, including RAB family proteins,
LAMP-1, LAMP-2 and cathepsins (Cts A and Cts D), to
B. abortus phagosomes through a STAT3-independent
pathway. Secondly, IL-10 down-regulates the expression of
proinflammatory cytokines through activation of the STAT3/
SOCS3 (suppressor of cytokine signaling 3) pathway in RAW
264.7 macrophages (Hop et al., 2018).

Although, there are no available data concerning the influence
of Brucella on cathepsin activity in macrophages and the role of
these enzymes during Brucella infection, Coria et al. (2016) have
demonstrated that unlipidated outer membrane protein 19 (U-
Omp19) of Brucella partially limits the activity of purified
lysosomal proteases, including Cts L, Cts C, Cts B, and papain
in vitro and also inhibits the digestive capacity of microsomal
content derived from murine BMDMs and BMDCs.
Additionally, U-Omp19 reduces the ability of macrophages and
DCs to degrade extracellular Ag but increases the amount of Ag
inside DCs due to inhibition of its intracellular proteolysis within
lysosomal compartments. Thus, intracellular half-life of Ag is
extended allowing prolongation of intact peptide export to the
cytosol, eventually providing long-term Ag cross-presentation
and stimulation of Ag-specific CD8+ T cell responses in vivo.

Shigella flexneri
S. flexneri, a Gram-negative enteroinvasive bacteria, is the
causative agent of shigellosis – a gastrointestinal disease
associated with watery or bloody diarrhea, cramping, and
dehydration. Shigella infection occurs particularly in young
children (under 5 years old) and immunocompromised adults
in developing countries and causes significant morbidity and
mortality (Kotloff et al., 2013; Kotloff et al., 2018). Shigella crosses
the intestinal epithelium by transcytosis through microfold cells
(M cells), reaching resident macrophages and DCs in the M cell
pocket. Bacteria can survive and replicate in macrophages,
escape the phagocytic vacuole, and kill the host cell by
inducing caspase-1-dependent pyroptotic cell death, allowing
subsequent invasion of epithelial cell layer (Schroeder and
Hilbi, 2007; Ashida et al., 2014).
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Currently, the role of cathepsins during S. flexneri replication
in macrophages is not known, although the importance of these
enzymes in the regulation of the pathogenesis of Shigella
infections was hghlighted more than 35 years ago. The activity
of Cts D in splenocytes of CBAmice infected with Shigella strains
was variable in the cytoplasmic and lysosomal cell compartments
and depended on the virulence of Shigella strains. Strong and
prolonged activation of Cts D was observed in both
compartments after infection with virulent Shigella strains,
whereas avirulent strains induced only temporary Cts D
activity in the lysosomes (Belaia et al., 1984). According to
authors, determination of the Cts D activity in splenocytes of
animals infected with Shigella allows differentiation of virulent
and from avirulent strains of the pathogen. Future studies should
elucidate the major implications of cathepsins in host defense
and pathogenesis of Shigella infections.

Salmonella enterica serovar Typhimurium
S. Typhimurium is a pathogenic Gram-negative rod bacterium
that causes foodborne salmonellosis in humans and a wide range
of animal species (McSorley, 2014). Infection of laboratory mice
with S. Typhimurium results in disseminated infection with
some similarities to human disease caused by the human-host
restricted S. enterica serovars Typhi and, to a lesser extent,
Paratyphi (Mathur et al., 2012). Therefore, S. Typhimurium
infection of mice is widely accepted as an experimental model
for human disease (Hilgenberg et al., 2014).

Salmonella penetrates the epithelium of the small intestine
following oral ingestion, and preferentially infects phagocytes,
including macrophages, within lamina propria. S. Typhimurium
can reside and replicate in macrophages (Salcedo et al., 2001);
therefore, these cells are a niche for intracellular survival and from
where bacteria can disseminate to distal organs, such as liver and
spleen (Vazquez-Torres et al., 1999). To survive in macrophages,
the bacteria avoid intracellular killing by preventing lysosome
fusion with the modified endosome, known as Salmonella-
containing vacuole (SCV) (Alpuche-Aranda et al., 1994; Salcedo
et al., 2001; Steele-Mortimer, 2008; Gogoi et al., 2019). It is likely
that S. Typhimurium blocks maturation of its phagosome,
because phagosomes isolated from S. Typhimurium-infected
macrophages contained only pro-Cts L and not mature Cts L
(Mills and Finlay, 1998), whereas Cts B activity is decreased in
macrophages (Sarkar et al., 2017).

Acidification of SCV is necessary for bacteria virulence
(Arpaia et al., 2011), so there is a possibility that the
Salmonella can be digested by endosomal proteases such as
cathepsins, which are mostly active at acidic pH values.
Therefore, S. Typhimurium excludes active cathepsins from the
SCV in primary murine macrophages (Hang et al., 2006; Sanman
et al., 2016). But other studies have reported that upon initial
infection of BMDMs (2 h), the cysteine cathepsins gained access
to S. Typhimurium in compartments of varied pH (Sanman
et al., 2016). Bacteria also induced the increase in lysosomal pH
resulting in an overall decline in cysteine cathepsin activity not
only in infected but also in a fraction of bystander cells,
indicating a mechanism by which Salmonella can alter the
functionality of nearby uninfected cells (Sanman et al., 2016).
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In S. Typhimurium infection, cathepsins may not directly
target the bacteria but may be involved in triggering pyroptotic
cell death of infected macrophages. As reported by Selkrig et al.
(2020) in their spatiotemporal proteomic study, infected
macrophages secreted large amounts of lysosomal hydrolases,
including Cts C, Cts L, Cts D, Cts Z, and Cts A to the
extracellular space, part of which were trafficked to the
nucleus. Nuclear cathepsins were active and had a higher
molecular weight compared to their lysosomal counterparts.
Nuclear cathepsin activity was responsible for pyroptosis
through the non-canonical inflammasome activation (Selkrig
et al., 2020).

Mycoplasma sp.
Mycoplasmas are the smallest self-replicating bacteria that
completely lack a cell wall. They colonize mucosal surfaces of
respiratory and urogenital tracts in humans and many different
animal species. Mycoplasmas are mainly facultative intracellular
organisms, however some of them are considered obligatory
intracellular microorganisms (Nascimento et al., 2005). Among
pathogenic mycoplasma species, those of greatest clinical
importance for humans are: M. pneumoniae, associated mainly
with atypical and community-acquired pneumonia (CAP);
M. genitalium, responsible for acute and chronic urethritis in
men; and M. hominis that causes inflammation of the urethra,
cervix and vagina in women. M. pneumoniae and M. genitalium
are also involved in pelvic inflammatory disease (Metwally
et al., 2014).

In vitro and in vivo studies point to macrophages are as the
major cells engaged in elimination of mycoplasma (Erb and Bredt,
1979; Schimmelpfeng et al., 1980; Hickman-Davis et al., 1997;
Hickman-Davis et al., 1999; Lai et al., 2010). The macrophage-
mediated killing of bacteria uses the MyD88-NF-kB pathway,
as shown in a mouse model of M. pneumoniae infection
(Lai et al., 2010) where bone marrow-derived macrophages
(BMDMs) were able to phagocytose bacteria followed by
formation of phagosomal compartment that eventually fused
with lysosomes to form an acidified phagolysosome (Lai et al.,
2010). It is therefore possible that cathepsin proteases may
participate in elimination and control of mycoplasma infections.
Cts L-deficient mice present significantly lower percentage of
macrophages and higher mycoplasma burden in lungs and exhibit
more severe pneumonia, compared to WT animals, following
infection with M. pulmonis. Cts L probably has no direct toxic
effect on mycoplasma, since it alters neither bacterial viability nor
growth of M. pulmonis incubated with this protease in vitro.
Instead, Cts L indirectly controls mycoplasma infection by
promoting lymphangiogenesis and antibacterial cellular immune
responses (Xu et al., 2013). Cts L can also promote mucosal
immune response, which provides protection against mycoplasma
pneumonia in piglets infected with M. hyopneumoniae.
Enhancement of mucosal response by Cts L is mediated by
stimulation of sIgA secretion through efficient Ii processing and
antigen presentation. Treatment of animals with rCts L before
challenge with M. hyopneumoniae resulted in milder clinical
symptoms, little histopathological damage of lungs and lower
mycoplasma burden accompanied by higher secretion of sIgA,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 15
higher percentages of CD4+ T cells and increased expression of
MHC II molecules compared to the control group without rCts L
exposure. Interestingly, Cts L levels were higher in DC than
macrophages in most tissues of piglets infected with M.
hyopneumoniae (Zhang et al., 2019).
OBLIGATE INTRACELLULAR BACTERIA

Coxiella burnetii
C. burnetii, a small Gram-negative bacterium, is the etiological
agent of Q fever that infects a wide range of animals, from
arthropods to humans. Q fever can cause acute or chronic
infection, and the most frequent clinical sign of chronic Q
fever is endocarditis (Eldin et al., 2017). This pathogen exhibits
strong tropism to mononuclear phagocytes, such as monocytes
and macrophages. It possesses a unique ability to replicate in a
lysosome-like intracellular niche termed the Coxiella-containing
vacuole (CCV) through activation of a Dot/Icm-type IVB
secretion system. This secretion system allows the pathogen to
translocate a large repertoire of effectors to the host cytosol,
allowing the remodeling of host cell processes and the creation of
a replicative niche while still maintaining the host cell
homeostasis (Newton et al., 2020). C. burnetii undergoes phase
variation with antigenic transition from a virulent phase I
(characterized by the presence of full LPS) to an avirulent
phase II (containing severely truncated LPS that lacks the O
antigen and some core sugars) upon serial passages in cell
cultures or embryonated eggs (Hotta et al., 2002; Howe
et al., 2010).

Virulent and avirulent C. burnetii variants are phagocytosed
by macrophages and are localized within early CCV containing
endosome antigen 1 (EEA-1) and the small GTPase Rab5. The
early CCV is then converted into a late CCV containing
lysosome-associated membrane protein 1 (LAMP-1), LAMP-2,
LAMP-3 (CD63), the mannose-6-phosphate receptor (M6PR),
flotillin 1 and 2, autophagosome markers LC3 and the vacuolar
type H+ ATPase responsible for the moderately acidic pH (pH
∼5) of the compartment (Ghigo et al., 2002; Voth and Heinzen,
2007; Howe et al., 2010). Virulent C. burnetii blocks maturation
of CCV at late endosomal stage through inhibition of Cts D and
small GTPase Rab7 recruitment, thus avoiding degradation in
the phagolysosome and increasing pathogen survival.
Conversely, CCV hiding avirulent C. burnetii recruits Rab7
and matures into bactericidal phagolysosomal compartment
that contains active lysosomal enzymes, including Cts D. This
trafficking behavior correlates with avirulent C. burnetii
elimination by THP-1 macrophage-like cells (Ghigo et al.,
2002). However, these prior findings are contradicted by Howe
et al. (2010) who reported that CCV harboring virulent or
avirulent variants of C. burnetii mature similarly through the
endolysosomal route and reach the phagolysosome stage
containing proteolytically active cathepsins. Another study
supports the notion that lysosomal hydrolases, including Cts
D, are not required for C. burnetii growth or viability in CCV
(Miller et al., 2019). Specific antibodies found in chronic Q fever
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patients likely favor C. burnetii replication in human MDM,
because opsonization of bacteria with these antibodies prevented
the phagosome conversion. The large CCV containing C.
burnetii found in such cases were devoid of a specific
phagolysosome marker Cts D (Desnues et al., 2009).

C. burnetii down-regulates Cts B activity, but does not
significantly affect LAMP-1 in murine alveolar macrophages
(MH-S) or HeLa cells, suggesting that cells may contain less
proteolytically-active lysosomes. Reduction of lysosomal content
inC. burnetii-infected cells was independent of autophagy process.
Additionally, HeLa cells overexpressing the transcription factor EB
(TFEB), which coordinates expression of lysosomal genes for
lysosomal proteases and hydrolases, led to increased Cts B
activity, indicating an increase in the number of proteolytically-
active lysosomes. TFEB-induced lysosome biogenesis significantly
reduced C. burnetii CCV formation and intracellular growth due
to acidification and increased protease activity (Samanta et al.,
2019). These data underscore the importance of Cts B in the
control of C. burnetii intracellularly and present a mechanism
where a bacterial intracellular niche is created by regulating the
acidity of the vacuoles-containing bacteria and blocking
endosomal maturation.

Chlamydia spp.
Gram-negative C. trachomatis is a leading cause of sexually
transmitted infections in humans worldwide. In women, it can
cause cervicitis, and in both men and women the infection can
lead to urethritis and proctitis. Mice inoculated with the murine
pathogen C. muridarum serve as a model of C. trachomatis
infections in women (Conrad et al., 2016). Chlamydia exists in
two morphologically distinct forms: elementary body (EB), which
is infectious and extracellular, and reticulate body (RB), which is
intracellular and divides within a specialized intracellular vacuole
forming a microcolony, termed an ‘inclusion’ (Kosma, 1999).
During experimental genital infection with Chlamydia, there is
recruitment of monocytes and macrophages to the genital tract
which phagocytose and eliminate the pathogen intracellularly,
limiting the development of disease. However, when intracellular
killing is not effective, especially in M2 macrophages, bacteria can
be easily disseminated to the lymphatic system and further
replicate in the draining lymph nodes (Lausen et al., 2018;
Tietzel et al., 2019).

C. trachomatismay survive within macrophages by inhibiting
fusion between Chlamydia vacuoles and lysosomes (Coutinho-
Silva et al., 2003), thus limiting access to lysosomal enzymes,
including cathepsins. Cts B activity was increased in murine
RAW 264.7 macrophages infected with a moderate dose of C.
muridarum, and treatment of infected cells with Ca-074Me, a
selective Cts B inhibitor, resulted in increased production of
chlamydial inclusion forming units (IFU). Cts B activity
depended on ROS production, because incubation of infected
macrophages with N,N′-dimethylthiourea (DMTU), a potent
scavenger of hydroxyl radicals, significantly reduced activity of
this protease. In macrophages infected with C. muridarum, Cts B
and ROS were involved in activation of inducible nitric oxide
synthase (iNOS) that correlated with and was responsible for
chlamydial clearance (Rajaram and Nelson, 2015). Furthermore,
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the accumulation of active lysosomal protease Cts D within
bacteria inclusions has been demonstrated in different types of
C. muridanum-infected cells, including THP-1 macrophages,
after treatment with penicillin G (pG). Accumulation of Cts D
clearly preceded the decrease in transcription of pre-16S rRNA,
suggesting the involvement of this protease in bacterial death.
Activation of Cts D in pG treatment was independent of the
activation of lysosomal H+v-ATPase; therefore, the mechanism
of lysosomes fusion with the bacterial vacuoles in pG-treated
infected cells remains to be elucidated (Dumoux et al., 2013). Cts
D and Cts S are engaged in MHC I–mediated cross-presentation
pathway of chlamydial antigens in DCs required for efficient
stimulation of bacteria-specific CD8+ T cells (Fiegl et al., 2013).

Rickettsia spp.
Gram-negative rickettsiae are important causative agents of
various ailments within the group of arthropod-borne diseases.
Rickettsia are classified into four distinct groups based on their
genome sequences, including the typhus group (TG with
Rickettsia typhi and Rickettsia prowazekii), the spotted fever
group (SFG), the ancestral group (AG), and the transitional
group (TRG) (Snowden and Bhimji, 2018). Macrophages may
play an important role in the pathogenesis of rickettsial diseases,
because various bacteria species show some ability to proliferate
within these cells depending on their virulence (Curto et al.,
2016; Curto et al., 2019a). The dichotomy regarding Rickettsia
ability to survive within macrophages has been extensively
documented in SPG members that cause human tick-borne
diseases with varying severity (Curto et al., 2016; Curto
et al., 2019a; Curto et al., 2019b). A pathogenic R. conorii is
responsible for Mediterranean spotted fever (MSF) associated
with high morbidity and mortality, whereas non-pathogenic
R. montanensis causes infections with mild or no systemic
symptoms in humans (Rovery et al., 2008; McQuiston et al.,
2012). In THP-1 macrophages, R. conorii cells display normal
morphology and do not co-localize with lysosomal markers, Cts
D and LAMP-2, suggesting that the bacteria do not enter the
phagolysosomal compartment and/or can escape from the
phagosome to the cytosol. Therefore, they can efficiently
proliferate within THP-1 cells. In contrast, R. montanensis co-
localizes with Cts D and LAMP-2 and is rapidly destroyed, thus
disrupting its ability to survive and proliferate in THP-1
macrophages (Curto et al., 2016). Transcriptomic analysis
using RNA-seq revealed down-regulation of Ctsd and Ctsz
mRNA expression in THP-1 macrophages infected either with
R. conorii or R. montanensis (Curto et al., 2019a), whereas
quantitative proteomic studies using a SWATH-MS strategy
indicated decreased Cts G level only in macrophages infected
with R. conorii (Curto et al., 2019b). Overall, pathogenic and
non-pathogenic SFG Rickettsia trigger differential transcriptomic
and proteomic signatures in THP-1 cells, what may partially
explain different intracellular fates of these pathogens within
macrophages (Curto et al., 2019a; Curto et al., 2019b). It should
be also added that pathogenic SFG rickettsiae may possibly
increase their intracellular survival within macrophages by
avoidance of digestion by lysosomal enzymes, including
cathepsins. Therefore, the role of these proteases in the host
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response to Rickettsia infection should be elucidated in
future studies.
CONCLUSION

Cathepsins are undoubtedly important proteases that participate
in killing various bacterial pathogens both directly or indirectly.
Experimental evidence indicates that survival of many bacterial
species within macrophages is achieved by pathogen interference
with intracellular trafficking events, leading to disruptions of
fusion events between the phagosome and lysosomes,
modification of the intraphagosomal environment or escape
from the phagosome/phagolysosome into the host cytosol. In
doing so, pathogens escape toxic bactericidal lysosomal
compounds, including cathepsins, therefore, they can survive
and even replicate within specialized engulfing cells, such as
macrophages. Further, certain intracellular pathogens are able to
modify and exclude cathepsins from bacteria-containing vacuoles,
allowing them to adapt to this hostile endolysosomal system as a
niche for efficient growth. Cathepsins regulate many innate
functions of macrophages including those that support adaptive
immune responses that ultimately control of bacterial infections.
Consequently, bacterial pathogens manipulate expression, activity
and bioavailibility of cathepsins, thus compromising their ability
to kill bacteria, and ultimately leading to disease exacerbation.
However, the exact mechanisms engaged by bacteria remain
unclear in many cases and further investigation are warranted
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to better define their role in human diseases and to identify new
therapeutic targets or vaccines. Because cathepsins are enzymes
they can directly digest pathogens and thus contribute to
derivation of antigenic epitopes required for the generation of
adaptive immunity. However, many studies summarized in this
review were performed using in vitro-generated murine
macrophages or leukemia-derived monocytic cell lines, which do
not accurately reflect physiological conditions. Therefore, the role
of cathepsins in regulation of mechanisms of the antimicrobial
immune response and pathogenesis of bacterial diseases requires
further in vivo studies in animal models and humans.
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Beck, C., Leyva-Cobián, F. L., et al. (2006). Cutting edge: a novel nonoxidative
phagosomal mechanism exerted by cathepsin-D controls Listeria
monocytogenes intracellular growth. J. Immunol. 176 (3), 1321–1325.
doi: 10.4049/jimmunol.176.3.1321

Deng, Q., Wang, Y., Zhang, Y., Li, M., Li, D., Huang, X., et al. (2016). Pseudomonas
aeruginosa triggers macrophage autophagy to escape intracellular killing by
activation of the NLRP3 inflammasome. Infect. Immun. 84 (1), 56–66.
doi: 10.1128/IAI.00945-15

Desnues, B., Imbert, G., Raoult, D., Mege, J. L., and Ghigo, E. (2009). Role of
specific antibodies in Coxiella burnetii infection of macrophages. Clin.
Microbiol. Infect. 15 (s2), 161–162. doi: 10.1111/j.1469-0691.2008.02208.x

Dockrell, D. H., Lee, M., Lynch, D. H., and Read, R. C. (2001). Immune-mediated
phagocytosis and killing of Streptococcus pneumoniae are associated with
direct and bystander macrophage apoptosis. J. Infect. Dis. 184 (6), 713–722.
doi: 10.1086/323084

Dumoux, M., Le Gall, S. M., Habbeddine, M., Delarbre, C., Hayward, R. D.,
Kanellopoulos-Langevin, C., et al. (2013). Penicillin kills Chlamydia following
the fusion of bacteria with lysosomes and prevents genital inflammatory lesions
in C. muridarum-infected mice. PloS One 8 (12), e83511. doi: 10.1371/
journal.pone.0083511

Duncan, J. A., Gao, X., Huang, M. T. H., O’Connor, B. P., Thomas, C. E.,
Willingham, S. B., et al. (2009). Neisseria gonorrhoeae activates the proteinase
cathepsin B to mediate the signaling activities of the NLRP3 and ASC-
containing inflammasome. J. Immunol. 182 (10), 6460–6469. doi: 10.4049/
jimmunol.0802696
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