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ABSTRACT

Microbes play fundamental roles in shaping natural ecosystem properties and functions,
but do so under constraints imposed by their viral predators. However, studying
viruses in nature can be challenging due to low biomass and the lack of universal
gene markers. Though metagenomic short-read sequencing has greatly improved
our virus ecology toolkit—and revealed many critical ecosystem roles for viruses—
microdiverse populations and fine-scale genomic traits are missed. Some of these
microdiverse populations are abundant and the missed regions may be of interest
for identifying selection pressures that underpin evolutionary constraints associated
with hosts and environments. Though long-read sequencing promises complete virus
genomes on single reads, it currently suffers from high DNA requirements and
sequencing errors that limit accurate gene prediction. Here we introduce VirlON2,
an integrated short- and long-read metagenomic wet-lab and informatics pipeline that
updates our previous method (VirION) to further enhance the utility of long-read viral
metagenomics. Using a viral mock community, we first optimized laboratory protocols
(polymerase choice, DNA shearing size, PCR cycling) to enable 76% longer reads
(now median length of 6,965 bp) from 100-fold less input DNA (now 1 nanogram).
Using a virome from a natural seawater sample, we compared viromes generated with
VirlON2 against other library preparation options (unamplified, original VirION, and
short-read), and optimized downstream informatics for improved long-read error
correction and assembly. VirlON2 assemblies combined with short-read based data
(‘enhanced’ viromes), provided significant improvements over VirlON libraries in
the recovery of longer and more complete viral genomes, and our optimized error-
correction strategy using long- and short-read data achieved 99.97% accuracy. In the
seawater virome, VirlON2 assemblies captured 5,161 viral populations (including
all of the virus populations observed in the other assemblies), 30% of which were
uniquely assembled through inclusion of long-reads, and 22% of the top 10% most
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abundant virus populations derived from assembly of long-reads. Viral populations

unique to VirlON2 assemblies had significantly higher microdiversity means, which

may explain why short-read virome approaches failed to capture them. These findings
suggest the VirlON2 sample prep and workflow can help researchers better investigate
the virosphere, even from challenging low-biomass samples. Our new protocols are

available to the research community on protocols.io as a ‘living document’ to facilitate
dissemination of updates to keep pace with the rapid evolution of long-read sequencing
technology.

Subjects Bioinformatics, Ecology, Genomics, Marine Biology, Virology
Keywords Viral metagenomics, Virus, Virome, Metagenome, Nanopore sequencing, Phage,
Long-reads

INTRODUCTION

Microbes are recognized as a major driving force in the functioning and maintenance of
most ecosystems (Cavicchioli et al., 2019); however, research in the past decade suggests
viruses—mostly those that infect bacteria (‘phages’)—are equally important. In the world’s
oceans, viruses (mostly dsDNA phages) modulate microbial gene flow and are integral
to global oceanic nutrient cycles (Brum et al., 2015; Roux et al., 2016; Gregory et al., 2019).
Because most viruses are uncultivated, advances have mainly arisen through metagenomic
approaches, which have rapidly improved with new sequencing technologies (Brum ¢
Sullivan, 2015). The importance of viruses in community composition and nutrient cycling
is also increasingly being recognized across diverse ecosystems, including soils (Emerson
et al., 2018; Trubl et al., 2018), the human microbiome (Shkoporov et al., 2019), glacial ice
(Zhong et al., 2020), and invertebrates (Shi et al., 2016; Wolf et al., 2020). For example,
viruses have the potential to aid in soil carbon flux by encoding plant polysaccharide-
degrading enzymes (Emerson et al., 2018), or can be involved in human gut dysbiosis that
leads to various health issues (Mirzaei ¢ Maurice, 2017).

Just as the scalability afforded by Illumina over 454 sequencing catapulted viromics
from “gene ecology” to “population-based or genome-resolved ecology” (Brum ¢
Sullivan, 2015), long-read sequencing offers promise for another transformative step
forward (Warwick-Dugdale et al., 2019). Recent evidence suggests that current short-
read-sequencing metagenomic methods are not capturing the whole of the virosphere.
Within dsDNA viruses, the most extensively studied, short-read metagenomes capture
abundant viruses at the taxonomic level of species or genera, but not likely genotypes.
This is because complex virus communities contain mixtures of strains (i.e., virus
population variants at the nucleotide level), but assemblers cannot reconstruct individual
strains—instead strain mixtures are collapsed into a single ‘consensus’ genome or multiple
genome fragments (Nurk et al., 2017), thus masking strain-specific features that indicate
the functional diversity within viral community members (Nelson et al., 2016). Though
the extent of populations missed is unknown, two separate studies —one using single-cell
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genomics (Martinez-Hernandez et al., 2017) and the other long-read sequencing (Warwick-
Dugdale et al., 2019)—have demonstrated that strain-level diversity is under-represented
in short-read datasets (with 3-fold higher nucleotide diversity captured in long-read viral
metagenomes compared to short-read viral metagenomes; (Warwick-Dugdale et al., 2019).
Specifically, both studies demonstrate that high genome microdiversity (i.e., the level of
intra-population nucleotide variants for a virus ‘species’) could act as a barrier to full
genome assembly, while masking co-occurring population variants. Moreover, emerging
research suggests that hybrid assemblies (i.e., short- and long-reads co-assembly) could
potentially recover more genomic diversity in natural samples (Cook et al., 2020).

We previously introduced VirlON (Warwick-Dugdale et al., 2019), a custom library
sequencing and informatics workflow that leveraged the strengths of both short- and
long-read sequencing (using Oxford Nanopore Technologies —ONT’). Briefly, this first
entailed shearing of the sample DNA to ~8kb fragments, followed by DNA amplification
through ‘Linker Amplified Shotgun Library’ (LASL; Breitbart et al., 2002; Duhaime et al.,
2012) with a high-fidelity polymerase and 15 PCR cycles to minimize rates of chimera
formation. These steps produced sufficient DNA to meet the minimum DNA input
requirement (1 pg) for ONT sequencing. Long-read sequencing data was then assembled
with an overlap layout consensus strategy (via Canu; Koren et al., 2017), and contigs were
error-corrected with short-reads (with Pilon; Walker et al., 2014). Applying the full VirlON
workflow enabled a two-fold increase in capturing ‘complete’ genomes and improve both
the length and number of recovered niche-defining hypervariable islands. However, the
input DNA requirement (~100 ng extracted from 20 L of seawater) for VirION is a barrier
to generating long-read virome data from samples that yield little viral DNA, either due to
challenges in extraction and/or low-volume, high resolution sampling. Furthermore, since
the introduction of VirlON, additional long-read assemblers and error-correction tools
have been introduced, which have not been evaluated for virus metagenomic datasets. Here,
we introduce VirlON2, which includes significant wet-lab and analytical optimizations at
key protocol steps to reduce input DNA requirements and increase long-read lengths and
accuracy. We applied this new workflow to a concentrated natural seawater virioplankton
community to assess VirlON2’s effectiveness at capturing community features relative to
VirlON and other short-read approaches.

MATERIALS AND METHODS

Phage mock community, DNA extraction and short-read sequencing
Three Pseudoalteromonas phage isolates (PSA-HM1, PSA-HP1 and PSA-HS2; see Table S1
for more details) were used as a mock community. Each phage was grown in culture and
genomic DNA extracted as previously described (Duhaime et al., 2017). To produce the
mock community, equimolar DNA concentrations from each phage extract were mixed.
This mixture was used as template for sequencing library preparation in all sequencing runs
for optimizing VirlON?2 library preparation. Separately, short-read sequencing libraries
of the same mock community was prepared with NEXTFLEX® Rapid DNA-Seq Kit 2.0
(Bio Scientific Corp, cat#NOVA-5188-01). Sequencing was performed at the University of
Exeter on a HiSeq 2500 instrument running the 2 x125 bp paired-end configuration.
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Library preparations prior to Nanopore sequencing

Three DNA library preparations were used: (1) Direct sequencing of DNA with no PCR
amplification and no shearing of viral DNA (referred to as ‘unamplified’), followed by the
manufacturer’s sequencing library protocol (using ligation sequencing kit SQK-LSK109;
see below for sequencing library preparation details). (2) The VirlON pipeline, performed
as previously described (Warwick-Dugdale et al., 2019). Briefly, this entailed shearing of
high-molecular weight DNA, followed by ligation of amplification primers and PCR
amplification of the sheared DNA prior to applying the manufacturer’s library protocol
for sequencing. (3) VirlON2, performed as follows: From the DNA extract, 10 pl were
set aside for short-read sequencing, and the remainder was sheared to 10 kbp or 15 kbp
fragments with Covaris g-TUBE according to the manufacturer’s instruction (except for
the 15 kbp treatment, in which the samples were spun at 2, 075x g for 60 s). Fragmented
DNA was repaired and dA-tailed using the NEBNext FFPE DNA Repair Mix and NEBNext
Ultra II End Repair/dA-Tailing Module, according to the manufacturer’s instructions
except incubation time, which was reduced from thirty to five minutes. The repaired DNA
was cleaned using Ampure Beads (Beckman Coulter) according to the manufacturer’s
instructions (except for the final incubation time, in which 55 °C was used instead of room
temperature) at a 1:1 ratio (v/v) and eluted in nuclease-free water. Ligation of barcoded
adapters (Oxford Nanopore PCR Barcoding Expansion 1-12 kit, cat# EXP-PBC001) used
for linker-amplified shotgun library (LASL) amplification was implemented as follows: A
reaction mix composed of 50 1 NEB Blunt / TA Ligase master mix, 20 pl of the Oxford
Nanopore barcode, and 30 pl of cleaned DNA was incubated for ten minutes at room
temperature. The DNA was then immediately cleaned with Ampure beads with 1:0.4
sample to bead ratio to remove short fragments, and eluted in 15 pl nuclease-free water
at 55 °C. PCR amplification on the cleaned libraries was performed as follows: A reaction
mix using LA TaKaRa Hot Start kit (Takara Bio USA) was prepared according to the
manufacturer’s instructions, using 5 pl of cleaned DNA and 2 pl of the desired barcode
(from the same Oxford Nanopore barcoding kit, as previously). Cycling conditions were
94 °C for 1 min, 15 cycles of 94 °C for 30 s, 62 °C for 30 s, 68 °C for 8-16 min, and
final elongation for 8-16 min at 72 °C. Elongation times varied according to the desired
amplicon size: 8 min for 10 kbp; 12 min for 15 kbp; and 16 min for 20 kbp. Amplicons
were subsequently cleaned with Ampure beads using a 1:0.5 sample to bead ratio, and
eluted in 20 pl nuclease-free water. The cleaned amplified libraries were then used as input
for the 1D genomic DNA by ligation kit (SQK-LSK109, Oxford Nanopore Technologies)
according to the manufacturer’s instructions, with some modifications. In the ‘DNA repair
and end-prep’ step, DNA CS (a standard DNA sequence used as a positive/quality control
by ONT) was excluded, and instead, 48 .1 of input DNA was added. In addition, incubation
temperature was increased to 25 °C from 20 °C. In the ‘Adapter ligation and clean-up’
step, the Long Fragment Buffer (‘LFB’) was used to enrich for longer fragments. In the
bead resuspension step, pellet resuspension was incubated for 10 min at 55 °C (instead
of room temperature) since better DNA dissociation from the beads was observed to be
more efficient at a higher temperature (data not shown). The remainder of the protocol
was unchanged.
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Mock community sequencing tests

We tested four high-fidelity and/or long-range DNA polymerases in duplicate to evaluate
improvements of read length during the amplification step: (1) NEBNext (NEB M0541),
(2) NEB Q5 (NEB M0491), (3) NEB LongAmp (NEB M0287) and (4) TaKaRa LA Taq
(TaKaRa RR042). For each library, 15 amplification cycles were used and input DNA (mock
community phage genomes) was sheared at 10 kbp (using Covaris g-TUBE). Influence of
initial shearing length was also tested at 15 kbp with a DNA input of 80 ng/j.l. For TaKaRa
LA Taq, we also tested a shearing length of 15 kbp using 1 ng of input DNA to evaluate
efficiency of VirlON2 when minimal input DNA was available. For PCR cycling tests, 1 ng
of input DNA sheared at 15 kbp was used as template.

Preparation of viral DNA from the Western English Channel

20 L of seawater from the Western English Channel (‘“WEC’) was collected in rosette-
mounted Niskin bottles at a depth of 5m from the Western Channel Observatory
(WCO; http://www.westernchannelobservatory.org.uk/) coastal station L4’ (50°15.00N;
4°13.00W) on 11th February 2019. Seawater was placed in a coolbox at ambient temperature
and upon return to shore, was transported to the University of Exeter for processing within
six hours of collection. The cellular fraction was removed via sequential filtration through
glass fiber (GF/D: pore size 2.7 pm) and polyethersulfone (pore size 0.22 pm) filters

in a 142 mm polycarbonate rig with a peristaltic pump. Viruses were precipitated and
concentrated from the filtrate by iron chloride flocculation and collected on 1.0 pm
polycarbonate filters (John et al., 2011). The viruses were immediately resuspended in
ascorbate-EDTA buffer (0.1 M EDTA, 0.2 M MgCl,, 0.2 M ascorbic acid, pH 6.0) using
two mL of buffer per 1 L of seawater. The resuspended viral fraction was transferred equally
to four Amicon Ultra 100 kDa centrifugal filter units (Millipore UFC910024) which had
been pre-treated with 1% bovine serum albumin buffer to reduce capsid-filter binding
(Deng et al., 2014) and flushed with SM buffer (0.1 M NaCl; 0.05 M Tris—HCI; 0.0008 M
MgCl,). The resuspended viral fraction was concentrated to 500-600 pl and removed
from the filter unit; the Amicon filters were then washed with 200 nl of SM buffer (Bonilla
et al., 2016) to ensure resuspension of all viral particles from capsid-filter adhesion. The
viral fraction was purified with DNase 1 (100 U/mL; 2 h at room temperature) to remove
non-encapsulated DNA. DNase 1 activity was terminated by the addition of 0.1 M EGTA
and 0.1 M EDTA (Hurwitz et al., 2013). Viral DNA was extracted from the concentrated
and purified viral fraction using Wizard DNA Clean-Up System (Promega A7280) to
remove PCR inhibitors (John et al., 2011). The viral DNA was cleaned and concentrated by
a 1.5 Ampure bead cleanup for downstream application.

Long and short read processing of Western English Channel viral DNA
Viral DNA from the WEC was used to prepare three separate long-read sequencing libraries
and one short-read only library for comparison and error correction. (1) VirlON libraries
were prepared as described previously (Warwick-Dugdale et al., 2019), using 100 ng of input
DNA; (2) Unamplified sequencing of viral DNA was performed using ~3 g of unsheared
input DNA in a LSK-SQK109 library preparation (ONT) for genome sequencing according
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to the manufacturer’s instructions, and sequenced on a MinION R9.4 revD flowcell for
48 h. (3) A Vir[ON2 library was prepared by first treating the DNA with the Zymo DNA
Clean & Concentrator Kit (cat# D4013) according to the manufacturer’s instructions. The
clean concentrate (90 pl, final concentration of 14.6 ng) was then sheared into 15 kbp
fragments, used as template for 15 PCR cycles, and processed for MinION sequencing on a
single flowcell according to the manufacturer’s instructions with the modifications stated
in the previous section (“Library preparations prior to Nanopore sequencing”); (4) Short
Read sequencing was performed using 51 ng of input DNA in a 1S Plus (Swift Biosciences)
library preparation and sequenced to a depth of ~25M 2 x 125 bp paired end sequencing
on a HiSeq 2500 at the University of Exeter.

Long-read processing and quality control

Raw fast5 files containing ONT long-reads were basecalled with Guppy v2.3.1 (provided
by Oxford Nanopore), using the flip-flop model. Reads were allocated into barcode
bins by porechop (Wick, 2017), using —require_two_barcodes, —discard_unassigned and
—discard_middle parameters in order to limit library cross-talk in multiplexed samples,
and to remove concatenated reads where two strands pass through the same pore in quick
succession. NanoFilt 2.2.0 (De Coster et al., 2018) was used to trim the first 50 bases of
reads (to ensure any residual barcode sequence removal) and remove reads <1 kbp or with
a phred quality score <9. Chimeric PCR products were identified for quantification and
subsequent removal from each demultiplexed run using yacrd (Marijon, Chikhi & Varre,
2020) with default parameters. Remaining reads were kept for further analysis. To compare
read lengths between mock community datasets, we randomly subsampled the reads (with
replacement) using the ‘sample’ package in R version 3.5.0. Differences in bootstrapped
medians (n = 50,000, 1000 replicates) between the barcoded libraries associated with each
treatment (DNA polymerase type, DNA shearing size and PCR cycling number) were
plotted as boxplots with the R package ‘ggpubr’.

Assessing assembly and error profiles

For testing assembly performance of the WEC sample, reads that passed quality control
(described above) were first sub-sampled using bbtools reformat (Bushnell, 2015) in order
to mitigate library size bias in assembly comparisons. Sub-sampling was based on the
number of reads in the smallest library (500,000 reads in the unamplified dataset). We
compared median read length between the full datasets and the sub-sampled datasets

to confirm subsampling had not biased read length distributions (Fig. S1), and observed
negligible shifts between full and sub-sampled datasets in both VirION (median read length:
3,020-3,023 bp 95% CI and 3,018-3,027 bp 95% CI) and VirlON2 datasets (3,906-3,916
bp 95% CI and 3,900-3,917 bp 95% CI). Subsampled reads were used in three assembly
approaches to determine optimal assembly strategy: (1) Overlap-layout consensus assembly
(‘OLC’): All-vs-all alignments were generated using minimap2 v2.17-r941 (Li, 2018), and
used to build an assembly with Miniasm v0.3-r179 (Li, 2016). Minipolish v0.1.2 (Wick
¢ Holt, 2020) was used to iteratively apply Racon-based contig polishing (Vaser et al.,
2017) on Miniasm assemblies. Polished OLC assemblies in GFA format were converted to
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FASTA using the following awk command: “ ‘$1 ~/S/ {print “>"$2“\n”$3}> assembly.gfa
>assembly.fasta”. Fasta-formatted Racon assemblies were further error-corrected with
Medaka v0.11.5 (Oxford Nanopore Technologies Ltd, 2018), with an appropriate model
select to correspond to the sequencing chemistry and basecaller model used. Lastly, Pilon
v1.23 (Walker et al., 2014) was used to correct errors using short-read mapping information
to the polished long-read assemblies. Briefly, short reads were mapped using BWA-MEM
v0.7.17-r1198 (Li, 2013) to the Medaka-corrected assemblies, and the resulting bam files
were used in a single iteration of Pilon correction (using —fix all). (2) Flye assembly: Reads
were first assembled into unitigs using the —nano-raw and —meta parameters in Flye v2.5
(Kolmogorov et al., 2019) , with an estimated assembly size of 15M. Medaka and Pilon
were then used to correct Flye assemblies as previously described. (3) Hybrid SPAdes
assembly: Hybrid assemblies were generated with hybridSPAdes v3.12.0 (Antipov et al.,
2016), using the —meta and —nanopore parameters. For comparison and evaluation of
error in long-read assemblies, short-read only assemblies were assembled with metaSPAdes
v3.12.0 (Nurk et al., 2017) with default parameters. The error-correction performance
(number of mismatches and indels) of each long-read assembly/error-correction strategy
(and intermediary stages) was assessed with Quast v4.5 (Gurevich et al., 2013) using the
-meta option with default parameters against the matching short-read only assembly of the
same WEC sample. Genome completeness was computed using CheckV v0.3.0 (Nayfach
et al., 2020). Per contig median microdiversity () was computed from single nucleotide
polymorphism (SNP) frequencies as described previously (Warwick-Dugdale et al., 2019).
Briefly, short-reads were first mapped to viral contigs using BWA-MEM with mapping
thresholds (70% read coverage at 95% identity) previously established (Gregory et al.,
2019) to define viral populations. Of these mapped genomes, only those that had >70%
of their length covered by reads, and had >10x coverage were further selected. For each
viral population, SNPs were identified using mpileup within samtools (Li et al., 2009) and
BCFtools (Danecek ¢» McCarthy, 2017), and low quality variant call (PHRED < 20) were
removed. SNPs were identified as ‘true’ if an alternate variant nucleotide was present on
at least four mapped reads, and comprised >1% of the base pair coverage for each variant
nucleotide at that position.

Generating ‘enhanced’ viromes with short- and long-read assemblies
To produce ‘enhanced’ virome datasets, each assembly type (i.e., metaSPAdes,
hybridSPAdes, long-read ‘OLC’) were independently searched for virus contigs (contigs
> 2.5 kbp) using VirSorter v1.0.5 (Roux et al., 2015) in —virome search mode. In each
assembly type, only viral contigs > 5 kbp belonging to VirSorter categories 1, 2, 4,
and 5 were kept. Filtered virus contigs from each assembly were pooled and subsequently
dereplicated into viral populations with ClusterGenomes (Roux, 2015), using 70% coverage
and 95% nucleotide identity clustering thresholds (sensu (Brum et al., 2015)).
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Figure 1 Overview of wet lab optimization experiments and informatic benchmarking. (A) Laboratory
optimization (‘Experiment 1°) in which a mock community of three phages was used to conduct three ex-
periments aimed at producing longer reads from less input DNA. (B) Informatics benchmarking (‘Experi-
ment 2’) in which a seawater virome was sequenced with short-reads (Illumina) and long-read sequencing
(Oxford Nanopore). Three distinct long-read libraries were generated, error-corrected and assembled, and
were compared to short-read assemblies to assess accuracy and assembly performance.

Full-size Gl DOL: 10.7717/peer;j.11088/fig-1

RESULTS AND DISCUSSION

Experimental overview

Two sets of experiments were performed (Fig. 1) to evaluate and optimize our long-read
laboratory protocol in terms of increased read length, reduced DNA input requirements,
and minimized error in assembled genomes. Experiment 1 sought to maximize read length
and minimize chimera formation from sheared, amplified DNA extracted from a mock
community of cultured phages. This community contained a representative member of the
main families of tailed phages (Myoviridae, Siphoviridae, and Podoviridae) and ranged in
genome sizes (38.2 kbp—129.4 kbp) and GC content (35.7%—44.7%) (see Methods, Fig. 1A,
and Table S1). We evaluated four DNA polymerases (Experiment 1A) using input material
sheared to 10kbp; optimized DNA shearing size to generate long-read viromes from a
natural seawater sample (Experiment 1B), and evaluated the influence of the number of
PCR cycles of chimera formation and read length (Experiment 1C). In Experiment 2 we
optimized informatic approaches to maximize viral genome recovery and reduce error
using the long-read virome datasets from Experiment 1B in combination with short-reads.
We evaluated two assembly/error-correction strategies (Experiment 2A) and benchmarked
these against assemblies from short-read approaches, which were assumed to have negligible
sequencing error (Experiment 2B).

Experiment 1A: Amplification with TaKaRA LA yields highest median
read lengths

Among the four polymerases tested, amplification with TaKaRa LA Taq yielded the highest
median read length (6,965 bp; 6,957-6,973 bp 95% CI). This was a significant increase
(p < 0.0001) of 2,866 bp compared to the performance of NEBNext used in the VirlON
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workflow (Warwick-Dugdale et al., 2019), but retained a low proportion of chimeric reads
(0.08-0.19%). Therefore, we proceeded with TaKaRa LA Taq for all subsequent tests.

Experiment 1B: Longest read lengths are achieved at low DNA
concentrations sheared to 15 kbp

We next sought to evaluate if increased fragment length of 15 kbp provided a concomitant
increase in final read length compared to 10 kbp, and whether this was also compatible
with low-input DNA concentrations typical of some environmental viromes. Previous
work using VirlON had shown a discrepancy between expected fragment length (~8
kbp) and final median read lengths (~4.1 kbp), suggesting that longer fragments do not
necessarily yield significantly longer reads. Final read length may be constrained by the
amplicon size produced by the DNA polymerase or preferential amplification of smaller
fragments (Shagin et al., 1999; Warwick-Dugdale et al., 2019). Here, shearing 80 ng of input
DNA to 15 kbp reduced final median read lengths (6,240 bp; 6,238-6,242 bp 95% CI)
in comparison to the 10 kbp shearing treatment (median: 6,965 bp; see Experiment 1A)
(Fig. 2B). However, the longest median read lengths were observed when 1 ng of input
DNA was sheared to 15 kbp (median: 7,223 bp; 6,899-7,540 bp 95% CI), an increase of
216 bp and 983 bp over shearing 80 ng DNA to 10 kbp and 15 kbp, respectively. There was
significant variance in read length between replicates (Fig. 2B), suggesting that: (1) final
read lengths may be strongly influenced by variance in downstream library preparation
flowcell properties; (2) Interactions between input DNA and centrifugal force selected for
shearing may be complex. Both DNA inputs <100 ng and a shear size of 15kbp are outside
the official parameters of Covaris g-tube specifications. Therefore, additional optimizations
may be required to reduce variance between samples.

To assess our revised protocol on real world samples, three long-read libraries (from 14.6
ng of input DNA) from a virus-enriched marine sample were generated and sequenced
(Fig. 2C). These libraries were (1) a ‘no amplification’ library (‘unamplified’), (2) our
previous VirlON protocol, and (3) this study (‘VirlON2’). The ‘unamplified’ library had
the highest median length (5,601 bp; 5,560 —5,645 bp 95% CI). Between the amplified
datasets, the read size distribution from the VirlON2 library was significantly higher than
VirION. However, in both libraries read sizes were generally lower than those observed
in the mock community (at identical shearing size), a phenomenon also observed in
our previous study (Warwick-Dugdale et al., 2019). This is likely due to shearing and/or
degradation during the FeCl; precipitation, giving smaller fragments for amplification
in the natural sample. Further optimization into maximizing DNA integrity from viral
metagenomes could be beneficial to improving long-reads.

Experiment 1C: VirlON2 libraries can be prepared with very low input
DNA and increased PCR cycles without increasing chimeric reads
Samples with low DNA concentrations require increased numbers of PCR cycles to meet the
input requirements (1 pg) of Nanopore sequencing. To maximize VirlON2’ s applicability
to various sample types, including those with very low input DNA concentrations (~1 ng),
we next tested how amplification cycling (15, 18, 20, and 22 cycles with TaKaRa LA Taq)
impacted read lengths and chimeras (Fig. 2D). Starting with the mock community DNA at

Zablocki et al. (2021), PeerdJ, DOI 10.7717/peerj.11088 9/23


https://peerj.com
http://dx.doi.org/10.7717/peerj.11088

Peer

*
9000 * 9000 -
* *

8000 - x 8000 +
= 1 e
£ 7000{ T 7000 I
£ — — ..+..
o
§ 6000 6000 +
o —
3 é +
& 5000 T 5000

4000 4000

NEB Q5 NEBNext 15 15~1ng
DNA polymerase DNA shearing size (kb)
c . D
*
12500 - *
* 9000 -

10000 8000 + +

7000

‘ 6000
5000
5000
2500
4000
VirlON2 15 18 22
Long-read virome library Nbr. of PCR cycles

7500

Read length (bp)
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and quartiles of the read length distribution between four DNA polymerases. (B) Boxplots showing the
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Ing concentration, the 20-cycle treatment generated significantly longer reads compared

to all other treatments (Wilcoxon rank test, p < 2.22 x 10716; median = 8,125 bp). Across
all treatments and replicates in this experiment, the number of chimeric reads remained

near constant (range: 0.01 —0.04%) and therefore, at least within the range tested here, is

not an obstacle to increasing cycle number to generate sufficient DNA for sequencing.

Experiment 1 conclusions

Together, the optimization of experiment 1 improve the VirlON method in two critical
ways. First, the median read length was significantly increased (p < 0.0001) by 76%
over the original VirlON approach. Second, we were able to generate long-read data
from 1ng libraries with a negligible number of chimeric reads, which removed the one
microgram requirement for standard MinION libraries, and reduced VirlON’s DNA
input requirement 100-fold (Warwick-Dugdale et al., 2019). These laboratory protocol
improvements should permit a broader diversity of samples to be investigated with
long-read sequencing technology. Since Nanopore sequencing is constantly evolving, we
have posted the VirlON2 method at protocol.io to ensure continued protocol development
as the research community identifies new opportunities.
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Experiment 2 —Informatics benchmarking

In a second experiment (Fig. 1B), we assessed two informatic approaches for combining
long- and short-read data to maximize recovery and accuracy of viral genomes from
natural viral communities. A single, virus-enriched seawater sample (‘WEC’; see Methods
and Experiment 1B) was used, along with the corresponding Illumina short-reads. Adding
short reads served two purposes: (1) as a gold standard for long-read sequencing accuracy
estimates and (2) for use in hybrid assemblies and error correction of long-read assemblies.

Experiment 2A: Performance of long-read assemblers and
error-correction tools
We first tested an ‘overlap-layout consensus’ (‘OLC strategy’) assembly approach
(performed by Miniasm), followed by the successive application of three error-correction
tools: Racon, Medaka, and Pilon (the latter uses short-read correction). Of note, assembly
of long-read data from this study with Canu (Koren et al., 2017), as used in VirlON,
(Warwick-Dugdale et al., 2019) failed to finish running within 48 h wall time on an high-
performance computing node with 48 CPU cores and 1Tb RAM (data not shown), likely
due to the high volume of data generated in contemporary MinlON runs (Amarasinghe
et al., 2020). In the ‘OLC strategy’, Racon was used to correct raw contigs by generating
genomic consensus through multiple iterations of long-read self-mappings, however there
is no set standard for how many rounds of Racon to use. Therefore, we first assessed
the impact of Racon iterations on error correction by testing 1, 2, 3, 5 and 10 rounds of
Racon polishing. Two rounds of polishing were sufficient to produce a sharp decrease
(2-3-fold drop) into the number of mismatches (per 100 kbp of sequence), while a single
round resulted in a 5 - 8.5-fold reduction in insertion/deletion (‘indels’) events (Fig. S2A).
Further rounds of polishing made no significant difference to the number of mismatches
and indels removed. Concomitantly, a single round of polishing significantly improved
median predicted protein lengths from 71 a.a to 107 a.a but additional rounds resulted
in no significant improvements (Fig. S2B). Next, we estimated the effectiveness of error
correction between three types of long-read libraries prepared from the same WEC sample
(i.e., ‘unamplified’, “VirION and ‘VirlON2’), compared to short-read only assemblies.
Applying Medaka and Pilon provided a moderate reduction (range: 2-13%) of mismatches
and a major reduction in indels (range: 70-73%; Fig. S3A) across all three library types.
Short-read error correction of long-read assemblies with Pilon had the greatest impact in
partially restoring the expected median protein size of 142 a.a predicted from short-read
only data (dotted line, Fig. S3B). This was most effective in the VirlON2 library, reaching
131 a.a median size (130-132 a.a 95% CI), compared to 113 a.a (112-115 a.a 95% CI) in
VirlON and 112 a.a (111-113 a.a 95% CI) in the ‘unamplified’ dataset. Therefore OLC
assembly of VirlON2 reads, coupled with two rounds of Racon polishing, followed by one
round of Medaka and additional short-read polishing with Pilon is our recommended
approach, and yielded the most improved assembly correction between the three long-read
libraries, as well as reaching median protein size closest to the short-read assembly.

We next tested the effectiveness of assembly by repeat graphs using Flye (see Methods)
to process our virome. Recent reports (De Maio et al., 2019; Moss, Maghini ¢ Bhatt, 2020)
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suggest good performance in terms of assembly accuracy and scale in prokaryotic datasets,
however its performance with viromes remains untested. Assembly of WEC long-read
datasets with Flye was followed by the same error-correction tools as described for
‘OLC strategy’, except for Racon (Racon is designed for Miniasm only, and Flye has

an internal error-correction module). Despite repeated attempts and large computing
allowances (48 CPU cores/1Tb RAM), we could not generate a Flye assembly from the
‘unamplified’ library. This could be due either to sequence complexity in the sample,
which can complicate estimating the required genome size parameter of the program,
and/or insufficient resources to run (Wick ¢~ Holt, 2020). However, both VirION and
VirlON2 datasets were successfully assembled by Flye without large resources, therefore
we focused our analysis on these. Similar to the OLC strategy, indel reduction was more
successful (range: 74-75% removed) compared to mismatches. Surprisingly, mismatches
in Flye-assembled contigs marginally increased with polishing by Medaka —a feature that
was not entirely corrected with subsequent application of short-read polishing with Pilon,
resulting in an overall 1.25% removal in VirlON2 only, but an increase of 4.53% in
VirION) (Fig. S3C and Table S2). Corrected Flye assemblies had shorter median protein
sizes compared to the OLC strategy results in both VirlON and VirlON2 datasets (by 5
and 21 amino acids, respectively, Fig. S3D), perhaps due to greater indel reduction in the
OLC strategy. Therefore, in terms of correction performance, the OLC strategy is preferred
over the Flye strategy, at least for assembly of long-read viral metagenomes with current
software versions.

Experiment 2B: VirlON2 coupled with OLC assembly provides
greatest gains in assembly and predicted gene lengths

Using the results generated in experiment 2A, we compared all the corrected long-read
assembly types to hybrid assemblies (i.e., short read assemblies scaffolded by long-reads)
and short-read only assemblies (Fig. 3). Across all assembly types (hybrid, OLC and Flye)
and libraries (unamplified, VirlON and VirION2), sequence accuracy of polished long-read
assemblies ranged from 99.61% to 99.98% (Table 52). The VirlON2 OLC strategy offered
an increased accuracy of ~0.05% over ‘unamplified’ and VirlON-amplified reads. Although
seemingly small, this increased accuracy translated into a much-improved median protein
size of 131 a.a (130-132 a.a; 95% CI), compared to 112 a.a (111-113 a.a; 95% CI) in the
unamplified library and 113 a.a (112-115 a.a; 95% CI) for the VirION library. Regardless
of library method, Flye assemblies consistently yielded the lowest median protein sizes. In
terms of contigs lengths, N50 metrics were markedly improved (~4-fold) in all assembly
strategies in comparison to short-read only assemblies (Table S3). Between VirlON and
VirlON2 specifically, the N50 from VirlON2 contigs was superior in both OLC (31,496
bp versus 16,840 bp) and Flye strategies (31,130 bp versus 21,231 bp). The same was true
for maximum contig sizes reached: 194,588 bp versus 115,168 bp (OLC), and 570,045
bp versus 140,205 bp (Flye). Overall, between library preparation (unamplified, VirlON
and VirlON2) and long-read assembly/correction strategies (OLC and Flye), combining
VirlON2 with the OLC strategy performed best (99.71% accuracy, Table 52) and is the
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preferred option for accurate long-read virome datasets, with the critical advantage of
lowering the input DNA requirement by 100-fold.

VirlON2-enhanced viromes recovers longer and more microdiverse
viral populations

Next, we evaluated how well short- and long-read assemblies recovered viral populations
from a natural viral community, in terms of genome size, genome completeness and
microdiversity (i.e., intra-population genomic variation). Specifically, we compared a short-
read-only virome against ‘enhanced’ viromes that maximize the benefits of both short-
and long-read technologies (derived from combining multiple assemblies from both read
types; see Methods and Fig. 4A). Genome size, genome completeness, and microdiversity
were all significantly improved in VirlON2-enhanced viromes, compared to short-read
and VirlON-enhanced viromes (Figs. 4B—4D and Table 54). Notably, recovery of >100
kbp genomes in the VirlON2-enhanced virome was increased by 13- and 2-fold (Fig. 4B),
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relative to short-reads only and VirlON-enhanced, respectively. Accurate and contiguous
assembly of large phage genomes could increase the detection of jumbo’ phages throughout
ecosystems, as there is currently limited data on the distribution and genome diversity
for large phages (Yuan & Gao, 2017; Al-Shayeb et al., 2020). Microdiversity (measured as
7, Fig. 4D) increased by 2.4-2.5-fold in both VirION- and VirlON2- enhanced viromes,
respectively, compared to the short-read assemblies. A similar increase was reported

in the original VirlON method from WEC seawater samples (3-fold; Warwick-Dugdale
et al., 2019). However, there was no significant difference between VirlON and VirlON2
datasets (Mann Whitney U-test, p-value = 0.536). Although it is tempting to speculate that
residual sequencing error in long-read datasets could artificially increase SNP frequency
and therefore higher microdiversity (7) values, we found that its impact is negligible
due to the error-correction pipeline applied, along with the error distribution patterns
(mostly indels) of Nanopore reads (for more details, see Analysis S1). Alternatively, the
higher microdiversity in ‘enhanced’ datasets compared to short-read data could be due to
novel viral populations uniquely captured with long-reads (discussed below). In addition,
it is worth noting that during the multiple rounds of polishing of long-read assemblies,
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genuine biological diversity may be removed from consensus sequences, leading to an
underestimation of microdiversity.

Long-read viromics improves capture of abundant viral populations
compared to short-read only methods

In addition to better genomic metrics, we assessed how the ‘VirlON2-enhanced” assembly
from the WEC seawater sample could alter our biological interpretations of complex viral
communities. We first evaluated if more viruses could be detected by adding long-reads,
and by counting the number of shared and unique viruses in each constituent assembly that
make the VirlON2-enhanced virome (i.e., long-read only, short-read only, and hybrid).
Among the total number of viral populations (1 =5,161), 68% were represented in all
assembly types. Within the pool of viral populations observed only within a single assembly
method, populations from the hybrid assembly were the majority (23%), followed by the
OLC assembly (7%), and short read assembly (2%). We surmise that adding long reads
permitted a more complete view of a virome, and viral genomes that would otherwise have
been missed by short-read assembly alone.

Next, we looked at patterns in abundance of viral populations as a function of assembly
method within the VirlON2-enhanced virome (Fig. 5A). Among all viruses, the majority
of these unique viruses were low abundance populations, and were short fragments from
the hybrid assembly. However, within the top 10% most abundant viruses (n =516), 164
were unique to a particular assembly method and 70% of these were derived from the
long-read only assembly. Taken together, the addition of long-reads uniquely enabled the
recovery of 22% of the most abundant viruses—that would have been missed in short-read
only assemblies. We queried whether microdiversity could be a contributing factor as to
why these unique viruses would be missed. Indeed, when we looked at the fraction of
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‘unique’ viral populations within each assembly type in the ‘enhanced’ virome, unique
viral populations had significantly higher microdiversity compared to the shared pool of
viruses in each assembly, most predominantly observed in the ‘OLC assembly (Fig. 5B).
Thus, our data suggest that high intrapopulation nucleotide variation in a subset of virus
genomes can lead to these genomes being fragmented (Roux et al., 2017) and overlooked
in a short-read only viral metagenome experiment.

Current limitations and future directions

Despite the advances of VirlON2, several limitations remain. First, an assembly step (due
to the required shearing of input DNA), as well as corresponding short-reads, remain

a necessity to ensure the highest level of error-correction, and to enable microdiversity
estimates. Ongoing developments that increase recovery of full-length genomes as single
long-reads and optionally use short-reads for correction (Beaulaurier et al., 2020) will
certainly help. However, this workflow cannot be used for low-input samples, as it requires
micrograms of high molecular weight DNA to yield full genomes as single reads. Moreover,
even if sufficient DNA is obtained, our tests using ‘unamplified” datasets indicated that
compared to the VirlON2 approach, viral populations from the unamplified library
had shorter median proteins sizes (112 a.a versus 131 a.a, respectively). Second, the
revised long-read library protocol was designed and evaluated for the recovery of dsDNA
virus genomes. Future refinements could include modifying the current protocol for the
inclusion of ssDNA and RNA genomes (through direct RNA or cDNA libraries). Third,
due to the amplification step within the VirlON2 laboratory protocol, we cannot leverage
base modification capabilities from Nanopore sequencing, as these can only be detected
if intact, non-amplified high molecular weight DNA is used as template for sequencing.
Lastly, we have not evaluated VirION2 on the latest R10 flowcells, which promises further
sequencing accuracy, especially within homopolymeric regions. Adapting VirlON2 to R10
chemistry (R9.4 flowcells were used in this study) to generate long-read viromes, as well
as sequencing depth available from the PromethION (the higher throughput version of
the MinION sequencing platform) remain to be tested, but we do not anticipate major
protocol (either wet-lab or informatics) modifications will be required. Lastly, additional
laboratory optimizations parameters could be tested, including whether further increases
in DNA shearing sizes (e.g., 20kbp or higher) may further improve long-read sizes, albeit
with likely diminishing returns.

CONCLUSIONS

Though short-read sequencing has become the gold standard in viral metagenomics, it is
increasingly clear that this approach does not capture the full extent of virus macrodiversity
(i.e., species richness) and microdiversity (i.e., intra-population genomic diversity). The
latter in particular, can cause genome fragmentation and mask genes under active selection
pressures (e.g., genomic islands) and important indicators of virus-host dynamics. Long-
read sequencing, combined with short-reads, can further increase estimates of viral
diversity and capture ecologically important taxa. Owing to the substantial decrease in
DNA requirements for VirlON2, long-read viral metagenomics may now be applied to
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a broader range of samples, thus constituting an invaluable addition to our current viral
ecogenomics toolkit for the better exploration of viromes and their impacts in nature.
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