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Recently we proposed a mathematical tool set, called selected correlation analysis, that reliably detects positive and negative
correlations between arterial blood pressure (ABP) and intracranial pressure (ICP). Such correlations are associated with severe
impairment of the cerebral autoregulation and intracranial compliance, as predicted by a mathematical model. The time resolved
selected correlation analysis is based on a windowing technique combined with Fourier-based coherence calculations and therefore
depends on several parameters. For real time application of this method at an ICU it is inevitable to adjust this mathematical tool
for high sensitivity and distinct reliability. In this study, we will introduce a method to optimize the parameters of the selected
correlation analysis by correlating an index, called selected correlation positive (SCP), with the outcome of the patients represented
by the Glasgow Outcome Scale (GOS). For that purpose, the data of twenty-five patients were used to calculate the SCP value for
each patient and multitude of feasible parameter sets of the selected correlation analysis. It could be shown that an optimized set of
parameters is able to improve the sensitivity of the method by a factor greater than four in comparison to our first analyses.

1. Introduction

The course of severe neurological events like subarachnoid
hemorrhage (SAH) and traumatic brain injury is influenced
by two main pathophysiological principles: (A) the primary
injury sustained at the time of impact which is mostly
irreversible and therefore not primary object to treatment
[1], (B) the secondary injury consisting of cytotoxic and
vasogenic edema with increased intracranial pressure (ICP),
reduced cerebral blood flowwith consecutive brain ischemia,
and insufficient oxygenation leading to programmed cell
death of neurons that can be detected from hours to days
following injury andmay contribute to neurological dysfunc-
tion [2–4].The primary goal of neurointensive care treatment
is therefore to avoid secondary brain injury by providing
an optimal physiological and biochemical environment [5].
Since the biological changes leading to secondary injury are
highly individual [6], a recent consensus has defined the
necessity for patient specific treatment protocols in contrast
to a rigid all size fits all approach [7]. In this circumstance, the
cerebral pressure autoregulation maintaining a continuous

cerebral blood flow despite variations of systemic arterial
pressure is of paramount importance [8, 9]. Under phys-
iological conditions, an increase of ABP will not induce
higher ICP levels. However, if the autoregulation disturbed,
a positive correlation between ABP and ICP will occur
[10]. Therefore, if the autoregulation is intact, enhancing
the systemic blood pressure leads to improved cerebral
perfusion pressure (CPP) and appropriate cerebral blood
supply. Conversely, in a patient with impaired autoregulation,
augmentation of CPP may cause brain swelling and worse
outcome [11]. Recent studies indicated that a deviation from
the putatively optimal CPP based on the function of cerebral
autoregulation will lead to significantly worse outcome of the
patients [12]. Therefore an individualized treatment strategy
accounting for the autoregulation status of the patient is
necessary [13]. This however requires an array of different
monitoring techniques for the assessment of intracranial
pressure (ICP), oxygenation status, and metabolism [14, 15]
leading to an immense volume of multimodal datasets fre-
quently overwhelming the treating physician [16]. To address
this problem, we have recently developed a mathematical
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tool set termed selected correlation analysis that unmasks
deterioration of the cerebral autoregulation [17] and indicates
reduced intracranial compliance [18]. However, this approach
needs to be validated in a prospective study allowing the
adjustment of treatment ultimately leading to improved
outcome of the affected patients [14]. The goal of our study
was to optimize the parameter of selected correlation analysis
in order to provide themost sensitive and specific tool set for a
randomized clinical trial assessing the benefit of the proposed
method.

2. Methods

2.1. Patient Population. The study was conducted in accor-
dance with the ethical guidelines of the University of Regens-
burg Institutional Review Board. Informed consent was
obtained from the patient’s relatives; all study results were
stored and analyzed in an anonymized fashion. We prospec-
tively investigated a cohort of 25 adult patients (13 females, 12
males) who were treated at the neurosurgical intensive care
unit for traumatic brain injury (TBI) or subarachnoid hem-
orrhage in 9 and 16 cases, respectively. We have exclusively
included patients with critical neurological diseases in our
study since only in this patient subgroup multimodal brain
monitoring is clinically indicated. The mean age was 43.4
years (range: 18.4–72.4); the median Glasgow Coma Scale
(GCS) at the time of admission was 6 (range: 3–15). Follow-
up was completed up to January 2015 by reviewing outpatient
records and contacting the patient’s family member or the
patient’s primary physician. The mean follow-up time was
39.8 months; no patient was lost to follow-up.The neurologi-
cal outcome was measured by the Glasgow Outcome Scale at
last follow-up; the median score last follow-up was 3 (range:
1–5). All patients were sedated and mechanically ventilated
during the observation period and received an intra-arterial
catheter for the continuous measurement of arterial blood
pressure as part of the standard treatment procedure in
our institution. ICP monitoring was performed continuously
using either an external ventricular drain equipped with an
electronic pressure device (EVD) or a parenchymal ICPprobe
(both fromRaumedic,Helmbrechts, Germany).TheABP and
ICP data were acquired continuously using a data logger
(Daq USB 6210, National Instruments, Munich, Germany)
with a sample frequency of 1000Hz. For the correlation
analysis, the data were resampled to 0.2Hz (one data point
every five seconds) to reduce noise effects and to smooth out
fast oscillations or spikes. Additionally, the above-mentioned
resampling rate ensures that the low homeostatic variations
of the data are contained within the window sizes we will
discuss.

2.2. Correlation Index Calculations. In the following we will
roughly sketch the mathematical framework used by selected
correlation analysis. For a more detailed description of the
different applied characteristics, especially the calculation of
the error rates, please see [17].

To identify the above-mentioned positive correlation
between ABP and ICP in monitoring data from the ICU,

we use a windowing approach combined with the multitaper
method (mtm [19]) to determine the coherence between
segments of two time series thatwere synchronously recorded
with a sampling rate of 0.2Hz. From the isochronous time
series 𝐴, 𝐼 we select windows 𝑤𝐴
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As the mtm provides a built-in significance test, each single
frequency 𝑓

𝑖
is tested for significance. Building on this, we

define the pointwise selected correlation (PSC) assuming a
fixed significance level 𝐶 for the built-in significance test:
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The requirement of being significant for a frequency 𝑓
𝑖
in

both spectra guarantees that only frequencies are considered
that essentially contribute to the original signals, whereas, in
case of the coherence the requirement assures that specific 𝑓

𝑖

exhibits a correlation between the input signals. Repeating the
PSC calculations for𝑁 pairs of isochronous windows leads to
the mean pointwise selected correlation (MPSC):

MPSC𝐴,𝐼 =
𝑗=𝑁

∑

𝑗=1

PSC𝐴,𝐼 (𝑗, 𝑗) . (3)

The elements of the MPSC list represent the percentage of
a significant occurrence in both spectra and the coherence
calculation for each single frequency 𝑓

𝑖
. With MPSC we are

able to determine frequency intervals that contain relevant
correlations within a whole dataset. After having identified
such a frequency interval 𝑈 = (𝑓

𝑚
, . . . , 𝑓

𝑛
) by examining

several different datasets, we want to determine periods in
the dataset where strong correlation with respect to𝑈 occurs.
Therefore we first estimate the degree of correlation of a
distinct pair of windows with respect to 𝑈 by calculating the
sum of all elements psc

𝑘
of PSC belonging to the frequency

band𝑈.This sum divided by the length of𝑈 is called selected
correlation (sc):
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A pair of windows is called selected correlated if sc >

𝑙sc for a predefined threshold 𝑙sc. The sc value therefore
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serves as a measure for the degree of correlation of a pair
of data windows with respect to a specific frequency range
𝑈. To obtain time resolved information about the selected
correlation we determine the index sc𝐴,𝐼

𝑚,𝑛
(𝑙, 𝑙) for isochronous

windowswhile shifting the starting point 𝑙 along the time axis.
Additionally we use a statistical test, calculating error rates of
false positives, to determine the significance of the threshold
𝑙sc.

2.3. Statistical Test. The statistical test for significance of 𝑙sc,
a kind of perturbation test, is based on the model prediction
of isochronous correlations between ABP and ICP. Two
segments should not be correlated if their starting points
are quite apart from each other. Assuming that a sc value is
meaningful if higher predefined threshold 𝑙sc, we can count
how often these separated windows produce sc values higher
than 𝑙sc. The amount of wrong hits is interpreted as the error
rate of sc with respect to 𝑙sc and therefore determines the
significance of sc with respect to 𝑙sc. To identify a sufficient
offset for the input window we use the so-called mean
windowed autocorrelation (mwa):
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If the time shift 𝑜 is large enough to exclude autocorrela-
tion artifacts, the subsequent mwa values should be small
and stable. With this offset we can calculate the error
index, ei𝐴,𝐼

𝑚,𝑛
(𝑎, 𝑏) indicating whether the selected correlation
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(𝑎, 𝑏) is higher than a predefined limit 𝑙sc, and the error
rate 𝑎sc, that is, the rate of obviously wrong hits with respect
to 𝑙sc:
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Accordingly a pair of data segments is called significantly
correlated if the sc value of this pair is higher equal to the
predefined limit 𝑙sc. The significance of this correlation is
specified by the appropriate error rate.

2.4. Hilbert Phase Differences. Having identified a pair of
windows exhibiting sufficient high correlation index sc, we
have to determine the phasing between the twodatawindows.
This is done by calculating the mean Hilbert phase difference
(mhpd) of the corresponding data segments, leading to values
of mhpd between 0 and 180 deg [17]. The above-described
error rate calculations for the sc value can easily be adapted
to calculate the error rates of mhpd by substituting the 𝑙sc
criterionwith appropriate criteria called 𝑙mhpdpos. If mhpd <
𝑙mhpdpos the correlation between the data will be called
positive.

2.5. Parameter Optimization. With the above-described tools
we are now able to calculate the percentage of pairs of

Table 1: Parameter ranges utilized for the optimization of SCP
analysis tools.

Parameter Range
Window size 1024, 2048
mtm built-in statistical test significance 50, 90, 95, 99%
Upper limit of frequency interval 𝑈 0.002–0.008Hz

lsc All possible values
in 𝑈 with 𝛼lsc <0.4

𝑙mhpdpos 0–70 degrees

Table 2: Range of target variables influenced by parameter opti-
mization.

Parameter Range
𝑝 value (outcome correlation) 0.0570–0.0007
Yield 0.1170–0.0047
sig. 60.0445–99.8998

windows that are significantly positive correlated for each
individual patient. This percentage is called selected corre-
lation positive (SCP). As SCP describes the percentage of
measurement time in which the cerebral regulatory systems,
autoregulation, and compliance are distinctively disturbed,
this index is a reliable predictive value for the patients out-
come [17]. But the magnitude of an individual SCP depends
on several parameters needed by the above-mentionedmath-
ematical tools. In detail this parameter is the significance of
the mtm built-in statistical test, the window size of the data
pairs, the frequency interval 𝑈 used for the sc calculations
and the limits, 𝑙sc, and 𝑙mhpdpos for the selected correlation
and the mean Hilbert phase of the data. To find the best
set of parameters we first vary all parameter belonging to
sc in some natural limits (see Table 1) and calculate for each
resulting parameter set the SCP for each patient assuming a
𝑙mhpdpos of 50 deg, an appropriate offset for the error rate
calculations as used in our previous study [17]. Then we
determine the predictive capability of a specific parameter
set with respect to our patient cohort by calculating the 𝑝
value of the Pearson correlation between the patients SCP
and GOS. Additionally, we calculate a parameter called yield,
which is the SCP value of the complete dataset. In other
words, yield describes the sum of all SCP values derived
from the entire patient population weighted by the patients
individual observation time and therefore serves as ameasure
of the sensitivity of the method. Having found an optimal set
of parameters for the sc calculations we subsequently vary
𝑙mhpdpos for this fixed sc parameter set and test the impact
on SCP and yield exactly as described above.

3. Results

Using the above-defined variations of the parameters for
the sc optimization we get 5507 different parameter sets.
The complex variations in the command variables, that is, 𝑝
values, significance, and yield of all the parameter sets, are
summarized in Figure 1 and Table 2. To identify an optimal
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Figure 1: 3D mesh graph illustrates the variability of SCP detection
in correlation with the parameter settings: 𝑥-axis displays the 𝑝

value of a Pearson correlation between the relative time of SCP per
observation time and clinical outcome measured by the Glasgow
Outcome Scale; 𝑦-axis shows the significance of error testing; 𝑧-axis
shows the yield (frequency of SCP detection).

parameter set we first introduced a restriction to the 𝑝 value,
to safeguard a valid medical evidence of the SCP value. In
accordance with the biomedical literature we have chosen a
𝑝 value < 0.01 for the further optimization process. After
that we executed a two-dimensional binning of the data with
respect to the significance and the 𝑝 value. We choose delta
for the significance intervals of 1 deg and 0.001 for the 𝑝

value intervals. In contrast to the most binning modes we
did not take an average of the yield value for each bin but
took the highest yield, respectively, the parameter set in this
bin leading to the highest yield. Using this approach, we have
achieved retaining of the highest level of sensitivity for SCP
per bin. This procedure reduces the amount of parameter
set drastically to 40 different sets. The interrelation between
significance and yield value of this parameter set is depicted
in Figure 2.

Accounting for the need of a significance level for the sc
error testing higher than 75% an “optimal” parameter set is
clearly found at significance of 81.89% and a yield of 0.10.

The resulting parameter set, consisting of wsize = 1024,
mtm stattest = 90%, upper limit 𝑈 = 0.0068359, and 𝑙sc =

0.0555556, is now used for the optimization of the mean
Hilbert phase difference mhpdpos.

3.1. Hilbert Phase Difference Optimization. For the above-
mentioned wsize = 1024 we found that 𝑙mhpdpos is allowed to
be a maximum of 70 deg to meet a 𝛼mhpdpos lower equal to
81.8% and is therefore reproducing an equivalent significance
as for the sc calculations. The variations of the 𝑝 value for
increasing 𝑙mhpdpos are depicted in Figure 3. It can be clearly
seen that 𝑙mhpdpos of 70 deg still meets the target of a 𝑝

value < 0.01. With this setting for 𝑙mhpdpos the yield rises
to 0.2129. Comparing this result with the yield value reached
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Figure 2: Scatter graph of datasets upon stratified parameter
optimization. Identification of optimal parameter set as mtm signif-
icance test C90; window size 1024; upper limit 𝑈 = 0.0068359; and
𝑙sc = 0.0555556 (encircled).
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Figure 3: Scatter graph of the correlation between the limit mean
Hilbert phase (positive) and patient outcome correlation (𝑝 value of
Pearson correlation SCP with GOS).

by the parameter set used in our previous study [18] we
find an improvement of yield and therefore an enhancement
of the methods sensitivity by a factor of 4.27. To visualize
the impact of parameter optimization, we have performed a
Pearson correlation between percentage of observation time
patients displayed SCP and the clinical outcome,measured by
GOS (Figure 4). The three scenarios indicate that depending
on the parameter setting the correlation with outcome varies
significantly; in addition, sensitivity expressed by yield and
accuracy as indicated by error test significance is also highly
dependent on the parameter settings.

4. Discussion

Theprognosis of severe neurological events such as subarach-
noid hemorrhage or brain trauma remains exceptionally poor
[20, 21]. Despite promising preclinical data, most of the trials
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Figure 4: Impact of parameter settings in correlation with patient outcome. (a)Worse scenario with nonsignificant correlation and low yield.
(b) Intermediate scenario with improved outcome correlation but low yield resulting in poor data distribution. (c) Optimized scenario with
high correlation with patient outcome, maximal yield leading to improved data distribution, and sensitivity for SCP detection.

prospectively evaluating new therapeutic approaches have
invariably failed to demonstrate any significant improvement
of outcome [22, 23]. Based on this paucity of causative
treatment options, themain intention ofmodern neurointen-
sive care is to prevent secondary neuronal injury and foster
maximal neuronal recovery by adjusting systemic blood
pressure, ICP, CPP, and cerebral oxygenation [24, 25]. Since
the univariate focus on only one parameter such as ICP
has been demonstrated to be unsuccessful [26], it became
evident that the entire pathophysiological system following
catastrophic neurological injury needs to be monitored and
therapeutically adjusted in order to improve patient outcome
[27]. Modern approaches in computerized interpretation of
multimodal brain monitoring parameter utilizing time series
analyses have provided clinical support tools for the real time
interpretation of gradual changes in monitoring parameters
to unmask systematic changes such as reduced intracranial
compliance [18] and disturbed autoregulation [17, 28]. These
systems have recently been validated using positron emission
tomography [29], microdialysis [30], transcranial Doppler

sonography [31], and patient outcome [12, 17], to ensure the
predictive value and clinical utility of this approach. As a
limitation of our approach, SCP has not been compared
to the most established index for disturbed autoregulation
(PRx) developed by Czosnyka and coworkers [32]. However,
the major task is now to implement these platforms into a
prospective clinical trial setting in order to assess the benefit
of this approach for treatment adjustment and improvement
of patient outcome [7]. Our results clearly demonstrate
that SCP detection is highly dependent on the parameter
setting. To identify the optimal parameter setting for a future
clinical trial employing SCP as real time clinical tool, we
have followed three main objectives: (A) high correlation
rate to patient outcome in order to avoid false positive SCP
detection rates which may lead to overtreatment of patients
with potential side effects, (B) maximal sensitivity for SCP
occurrence indicated by a high yield (percentage of SCP per
observation period), and (C) highest possible accuracy by
avoiding autocorrelation events expressed by the significance
of the built-in error testing. In conclusion, the proposed
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parameter optimization stratified to meet the major clinical
needs results in a highly specific, sensitive, and reliable
method for the detection of intracranial dynamics of patients
treated in neurointensive care.We are in the process to utilize
these optimized parameters derived from the existing set for
a prospective study addressing the clinical usefulness of this
approach.
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[13] B. Depreitere, F. Güiza, G. Van den Berghe et al., “Pressure
autoregulation monitoring and cerebral perfusion pressure
target recommendation in patients with severe traumatic brain
injury based on minute-by-minute monitoring data: clinical

article,” Journal of Neurosurgery, vol. 120, no. 6, pp. 1451–1457,
2014.

[14] D.G. Barone andM.Czosnyka, “Brainmonitoring: doweneed a
hole? An update on invasive and noninvasive brain monitoring
modalities,” The Scientific World Journal, vol. 2014, Article ID
795762, 6 pages, 2014.

[15] G. Citerio, M. Oddo, and F. S. Taccone, “Recommendations for
the use of multimodal monitoring in the neurointensive care
unit,” Current Opinion in Critical Care, vol. 21, no. 2, pp. 113–119,
2015.

[16] G. Morris and R. Gardner, “Computer applications,” in Princi-
ples of Critical Care, J. Hall and G. Schmidt, Eds., pp. 500–514,
McGraw-Hill, New York, NY, USA, 1992.

[17] R. Faltermeier, M. A. Proescholdt, S. Bele, and A. Brawan-
ski, “Windowed multitaper correlation analysis of multimodal
brain monitoring parameters,” Computational and Mathemati-
cal Methods in Medicine, vol. 2015, Article ID 124325, 8 pages,
2015.

[18] R. Faltermeier, M. A. Proescholdt, and A. Brawanski, “Comput-
erized data analysis of neuromonitoring parameters identifies
patients with reduced cerebral compliance as seen on CT,” Acta
Neurochirurgica. Supplementum, vol. 114, pp. 35–38, 2012.

[19] B. Babadi and E. N. Brown, “A review of multitaper spectral
analysis,” IEEE Transactions on Biomedical Engineering, vol. 61,
no. 5, pp. 1555–1564, 2014.

[20] R. D. Stevens and R. Sutter, “Prognosis in severe brain injury,”
Critical Care Medicine, vol. 41, no. 4, pp. 1104–1123, 2013.

[21] C. E. Lovelock, G. J. E. Rinkel, and P. M. Rothwell, “Time
trends in outcome of subarachnoid hemorrhage: population-
based study and systematic review,” Neurology, vol. 74, no. 19,
pp. 1494–1501, 2010.

[22] R. K. Narayan, M. E. Michel, B. Ansell et al., “Clinical trials in
head injury,” Journal of Neurotrauma, vol. 19, no. 5, pp. 503–557,
2002.

[23] R. L. Macdonald, R. T. Higashida, E. Keller et al., “Randomized
trial of clazosentan in patients with aneurysmal subarachnoid
hemorrhage undergoing endovascular coiling,” Stroke, vol. 43,
no. 6, pp. 1463–1469, 2012.

[24] J. M. Caplan, G. P. Colby, A. L. Coon, J. Huang, and R. J.
Tamargo, “Managing subarachnoid hemorrhage in the neuro-
critical care unit,” Neurosurgery Clinics of North America, vol.
24, no. 3, pp. 321–337, 2013.

[25] A. S. Sarrafzadeh, P. Vajkoczy, P. Bijlenga, and K. Schaller,
“Monitoring in neurointensive care—the challenge to detect
delayed cerebral ischemia in high-grade aneurysmal SAH,”
Frontiers in Neurology, vol. 5, article 134, 2014.

[26] R. M. Chesnut, N. Temkin, N. Carney et al., “A trial of
intracranial-pressuremonitoring in traumatic brain injury,”The
NewEngland Journal ofMedicine, vol. 367, no. 26, pp. 2471–2481,
2012.

[27] P. J. D. Andrews, “Cerebral perfusion pressure and brain
ischaemia: can one size fit all?” Critical Care, vol. 9, no. 6, pp.
638–639, 2005.

[28] C. Zweifel, A. Lavinio, L. A. Steiner et al., “Continuousmonitor-
ing of cerebrovascular pressure reactivity in patients with head
injury,” Neurosurgical Focus, vol. 25, no. 4, article E2, 2008.

[29] L. A. Steiner, J. P. Coles, A. J. Johnston et al., “Assessment
of cerebrovascular autoregulation in head-injured patients: a
validation study,” Stroke, vol. 34, no. 10, pp. 2404–2409, 2003.

[30] I. Timofeev,M. Czosnyka, K. L. H. Carpenter et al., “Interaction
between brain chemistry and physiology after traumatic brain



Computational and Mathematical Methods in Medicine 7

injury: impact of autoregulation and microdialysis catheter
location,” Journal of Neurotrauma, vol. 28, no. 6, pp. 849–860,
2011.

[31] K. P. Budohoski, M. Czosnyka, N. de Riva et al., “The
relationship between cerebral blood flow autoregulation and
cerebrovascular pressure reactivity after traumatic brain injury,”
Neurosurgery, vol. 71, no. 3, pp. 652–660, 2012.

[32] M. Czosnyka, P. Smielewski, P. Kirkpatrick, R. J. Laing, D.
Menon, and J. D. Pickard, “Continuous assessment of the
cerebral vasomotor reactivity in head injury,”Neurosurgery, vol.
41, no. 1, pp. 11–19, 1997.


