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Metal-assisted chemical etching (MACE) has been widely explored for developing silicon (Si)-based 
energy and optical devices with its benefits for low-cost and large-area fabrication of Si nanostructures 
of high aspect ratios. Surface structures and properties of Si nanostructures fabricated through MACE 
are significantly affected by experimental and environmental conditions of etchings. Herein, we 
showed that surfaces and interfacial energy states of fabricated Si nanowires can be critically affected 
by oxidants of MACE etching solutions. Surfaces of fabricated Si nanowires are porous and their tips are 
fully covered with lots of Si nano-sized grains. Strongly increased photoluminescence (PL) intensities, 
compared to that of the crystalline Si substrate, are observed for MACE-fabricated Si nanowires due 
to interfacial energy states of Si and SiOx of Si nano-sized grains. These Si grains can be completely 
removed from the nanowires by an additional etching process of the anisotropic chemical etching (ACE) 
of Si to taper the nanowires and enhance light trapping of the nanowires. Compared with the MACE-
fabricated Si nanowires, ACE-fabricated tapered Si nanowires have similar Raman and PL spectra to 
those of the crystalline Si substrate, indicating the successful removal of Si grains from the nanowire 
surfaces by the ACE process.

Silicon (Si) nanowires have been extensively studied due to their unique properties and great potentials in appli-
cations for optical and electrical sensors and energy conversion and storage devices1–4. Simple and large-area 
fabrications of vertically aligned Si nanowires have been widely developed for efficient and cost-effective Si photo-
voltaics due to their benefits of efficient light trapping and short carrier collection paths5–7. Metal-assisted chemi-
cal etching (MACE), in which Si is vertically etched in a mixed solution of HF and H2O2 with a patterned catalyst 
of noble metals (e.g., Ag and Au), has attracted significant interest as a simple and cost-effective etching method 
for fabricating vertically aligned Si nanowires8–10.

MACE is based on simple redox reactions those occur on the interfaces of catalytic metals and a Si sub-
strate1,2,11–13. Holes (h+), created by the reduction of H2O2 on the metal surface, are transferred to the underlying 
Si substrate and oxidize the Si atoms of the substrate as schemed in Fig. 1(a)2,11–13. These oxidized Si atoms are 
then etched by HF in the etching solution. The underlying Si substrate can be vertically etched as MACE of the Si 
substrate is proceeded continuously.

In the fabrication of vertically aligned Si nanowires through MACE, the length of nanowires are usually con-
trolled with the reaction time and the diameter and interspace of the nanowires are controlled with the patterned 
structure of catalytic metals, respectively14,15. The reaction rates of MACE and the structures of Si nanowires can 
be critically affected by the reaction conditions including materials and surface structures of catalytic metals, 
reaction temperatures, compositions of the etching solution, crystallographic orientations, and types and concen-
trations of dopants of the Si substrate1,11,16,17. In MACE, the holes transferred to the Si substrate are mainly used 
up for the oxidization of Si atoms near the catalytic metals10,15,18,19. However, these holes can result in additional 
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oxidations and etchings of the surface and interior of the Si nanowires and substrates if excess holes are created on 
the catalytic metals and diffused into the Si substrate and nanowires2,11,16. Since the oxidant concentration in the 
etching solution is critical for hole generations on the catalytic metal surface, surface structures and morphologies 
of fabricated Si nanowires can be significantly affected by the concentration of H2O2 in the etching solution1,13,20. 
By this reason, the concentration of H2O2 needs to be optimized for fabricating Si nanowires through MACE.

In this study, we investigate the influences of H2O2 on Si nanowire surfaces and on their interfacial energy 
states during the MACE process with electron microscopy, and Raman and photoluminescence (PL) spectros-
copy studies. Surfaces of MACE-fabricated Si nanowires are highly porous and their tips are covered with lots 
of Si nano-sized grains which could be easily oxidized during and after the MACE process. The formation and 
oxidization of the Si nano-sized grains on the nanowire surfaces are strongly affected by etching procedures and 
conditions8,18,20–22, contributing in significant increases in PL intensities of the nanowires9,17. These Si nano-sized 
grains and their interfaces can be completely removed from the nanowire surface by selective etching of reac-
tive Si atoms with the anisotropic chemical etching (ACE). The Si nanowires are vertically tapered during the 
ACE processes, to afford sharp tip ends, significantly enhanced light trapping and highly suppressed PL emis-
sion5,6,8,21–23. To better understand how surface oxidation of the Si nanowires during the MACE process will 
affect on crystallinities and interfacial energy states of the tapered Si nanowires of the ACE process, which is the 
post-etching process of the MACE process, changes in surface morphologies and optical properties of the tapered 
nanowires are compared with those of the MACE fabricated nanowires.

Results and Discussion
The MACE mechanism is generally considered to involve several redox reactions near the catalytic metal surface 
including H2O2 reduction in the etching solution on the catalyst surface (Eq. 1), injection of holes into the under-
lying Si substrate, oxidation of Si atoms due to the injected holes (Eq. 2) and etching of the oxidized Si atoms by 
HF1,11. The half reactions of reduction and oxidation involved in MACE with Au catalysts can be described as 
follows9,23,24:

⟶+ ++ +Cathode: H O 2H 2H O 2h (1)2 2
Au

2

+ + → ++ − +Anode: Si 6HF 4h SiF 6H (2)6

As described in Fig. 1(a), the holes injected into the underlying Si substrate are mainly consumed by oxidi-
zation of Si atoms near the catalytic Au. These oxidized Si atoms are etched by HF in the etching solution. These 
redox reactions proceed continuously on the Si substrate with the patterned Au catalyst and vertically etched Si 
nanowires of high aspect ratio are formed by MACE. Although there might be differences depending on the type 
and concentration of dopants of the Si substrate, holes excessively produced and injected into the Si substrate 
can be diffused and accumulated in the interior of the substrate or along the nanowires. These excess holes can 

Figure 1.  Schematic of the fabrication processes of vertically etched flat and tapered Si nanowires. (a) Si 
nanowires are vertically etched by MACE of a Si (100) substrate. The holes, generated excessively on the 
interface of the Au mask and the Si substrate during the MACE process, can be diffused and accumulated 
in the Si substrate and Si nanowires. These accumulated holes can make the nanowire surfaces oxidized and 
porous with Si nano-sized grains during and after the MACE process. (b) Unstable Si atoms and Si grains can 
be effectively removed from the nanowire surface by performing multiple rounds of ACE, which etches the 
nanowires selectively to obtain tapered shapes.
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contribute to additional etchings of the structures and could increase the surface porosity of the nanowires with 
Si nano-sized grain formation, as described in Fig. 1(b)2,12,13.

As mentioned in the introduction, the structures of the MACE-fabricated Si nanowires can be affected by 
several experimental factors such as temperature, humidity, materials and structures of catalysts, and composi-
tion of the etching solution1,11,14. The rates of reduction reaction on the Au surface and the hole injection into the 
Si substrate are critically increased with the oxidant concentration in the MACE process. Surface morphologies 
and interfacial energy states of the etched Si nanowires are significantly affected by the H2O2 concentration in the 
etching solution.

In this study, Si nanowires are fabricated in etching solutions with different HF compositions (ρ, ρ = [HF]/
([HF] + [H2O2]) to investigate the influence of the oxidant on their morphology and structure, as shown in 
Fig. 2(a–c). The HF concentration is fixed at 3.5 M, while the ρ value is adjusted to 0.85, 0.90, and 0.95 for each 
etching solutions by controlling the H2O2 concentration to 0.62, 0.39, and 0.18 M, respectively. All MACE pro-
cesses are proceeded in etching solutions of different ρ values and the reaction time is changed to control the 
length of the Si nanowire for each condition, as shown in Fig. 2(d). As the HF composition is increased and the 
H2O2 concentration is decreased in the etching solution, the hole-generation and injection into the Si substrate 
would be decreased during the MACE processes. As a result, the etching rate, determined from the length of the 
etched nanowires, is decreased to 0.1, 0.08 and 0.06 µm/min with an increase in the ρ value, respectively. In this 
study, the nanowires are vertically etched to obtain lengths of 3−4 µm for effective light trapping without agglom-
eration during drying. The reaction times are controlled within 30 to 70 min with ρ values increased from 0.85 
to 0.95. Lengths of fabricated nanowires are measured as 3.0 ± 0.3, 3.6 ± 0.2, and 3.6 ± 0.2 µm for each etching 
conditions. As shown in Fig. 1(b), the ACE processes are performed with these MACE-fabricated Si nanowires 
to make the nanowires having pencil-like sharpened tip ends for their enhanced light trapping3,6,22–24. The ACE 
process involves reduction of Ag ions (Eq. 3) and oxidation and etching of Si atoms (Eqs. 4 and 5) and these redox 
reactions are proceeded selectively on reactive Si atoms of sharp edges or Si nano-sized grains of the nanow-
ires8,18,22. Ag nanoparticles are grown on the Si nanowire surface during the reduction and completely removed 
from the Si surface completely in the HNO3 solution. These multiple processes are repeated seven times, sequen-
tially to form tapered Si nanowires as shown in Fig. 2(e–g).

+ →+ −Cathode: Ag e Ag (3)

Anode: Si 2H O SiO 4H 4e (4)2 2+ → + ++ −

SiO 6HF [SiF ] 2H O 2H (5)2 6
2

2+ → + +− +

Besides changes in the tip ends of the Si nanowires, the lengths of the nanowires are decreased in the ACE 
process and are measured to be 1.7 ± 0.1, 2.2 ± 0.2, and 2.7 ± 0.1 µm, with an increase in ρ values. Compared the 
lengths of flat and tapered Si nanowires fabricates with the MACE and ACE processes, tapered nanowires of ACE 
are shorter than flat nanowires of MACE, showing that length ratios of the tapered nanowires relative to the flat 
nanowire increase from 0.57 (ρ = 0.85) to 0.73 (ρ = 0.95) with an increase in the ρ value. This dependence can be 
attributed to that the nanowire surface, etched by MACE of a higher ρ value, i.e., lower H2O2 concentration, is 
stable and less oxidized during the MACE process.

As expected, due to anti-reflection enhanced by their sharpened tip structures, the surface reflection of tapered 
Si nanowires is measured as much lower compared to those of the flat Si nanowires, as shown in Fig. 3(a)25,26. 
Compared to the average reflectance in the wavelength region of 450–900 nm (Ravg) of 35% of the bulk c-Si 

Figure 2.  SEM images of vertically etched flat and tapered Si nanowires. Flat nanowires are fabricated in MACE 
etching solutions of different HF compositions (ρ = [HF]/([HF] + [H2O2])) of (a) 0.85, (b) 0.90 and (c) 0.95. 
(d) The reaction time is controlled from 30 min to 70 min for each MACE process to obtain Si nanowires with 
similar lengths of 3 µm. (e–g) Flat Si nanowires of different ρ values are anisotropically etched to taper the tip 
ends of nanowires.
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substrate, Ravg of the flat Si nanowires etched by MACE is significantly decreased to less than 7% for all nanowires. 
With an increase in ρ values from 0.85 to 0.95, Ravg of the flat nanowires decrease from 6.1% to 4.1%. The Ravg 
values of all tapered nanowires fabricated by ACE, further decrease to less than 2% showing a minimum value of 
1.1% for the nanowire of ρ = 0.95. Figure 3(b) shows the reflectance spectra of flat (solid lines) and tapered (dots 
lines) Si nanowires simulated with the FDTD method3,6,27,28. The lengths of the Si nanowires considered in the 
simulation are used according to the SEM images of the nanowires shown in Fig. 2. MACE-fabricated flat nano-
wires and ACE-fabricated tapered nanowires are assumed to have roughed tip surfaces considering their TEM 
images shown in Fig. 5 (See the Supporting Information, Figure S1 for detail).

For further understanding of the light trapping of the Si nanowires, we investigate the cross-sections of the 
time-averaged Poynting vectors, <S>, near the flat and tapered nanowires of ρ of 0.95 at wavelengths rang-
ing from 400 to 900 nm, as shown in Fig. 3(c). <S> represents the power distribution near the structures29. 
Cross-sections of power distributions near the nanowires show significant light trapping of shorter wavelength 
of <700 nm near the tip of the Si nanowire, indicating that the tip structure of the Si nanowire is critical for its 
light trapping.

Figure 3(d) shows the averaged values of the simulated (red) and experimental (black) reflectance over the 
entire wavelength range from 450 to 900 nm of flat (square) and tapered (triangle) Si nanowires with respect to 
their ρ values. As described above, the significant decrease in the surface reflection, and thus, the enhancement 
of light trapping of the nanowires through a change of their tip structures is confirmed. The surface reflections of 
Si nanowires fabricated with MACE and ACE show a slight decrease with an increase in ρ values and this slight 
change can be explained with increased light trappings of porous nanowires due to the surface structures in their 
length directions.

Figure 4(a) shows the EDS line profiles for a comparison of element distributions of O and Si in the longi-
tudinal direction of the Si nanowires, etched by MACE of ρ = 0.95. In these EDS line profiles, the intensity of 
O was observed more strongly at the tip end of the nanowire than near the substrate20,30. The Fig. 4(b) shows a 
comparison of the photoluminescence (PL) spectra of flat (upper) and tapered (lower) Si nanowires of different 
ρ values, indicating significant dependence of PL spectra of the nanowires with characteristic PL emissions of 
porous Si structures near λ = 700 nm on their etching procedures and structures31–34. Especially, the flat and 

Figure 3.  Comparison of (a) experimental and (b) simulated reflectances of (solid) flat and (dot) tapered Si 
nanowires of different etching compositions (ρ) of (black) 0.85, (red) 0.90 and (blue) 0.95 and of the (violet) 
bulk c-Si substrate. (c) Cross-sections of distribution of the time-averaged Poynting vector (<S>) near the 
(upper) flat and (lower) tapered nanowires of ρ = 0.95, calculated in wavelength region of 400–900 nm. (d) 
(black) Experimental and (red) simulated reflectance spectra of flat (■) and tapered (▲) nanowires of each 
ρ value are averaged in the wavelength range of 450–900 nm for comparison. All of simulations have been 
performed with a commercialized FDTD solution (Lumerical Solution, Lumerical Inc.)41.
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tapered nanowires of ρ = 0.95 are observed to exhibit lower PL intensities, similarly to the PL intensity of the bulk 
c-Si substrate. These EDS line profiles (red) and PL spectra (black) of the flat (■) and tapered (▲) Si nanowires 
are compared in Fig. 4(c). To compare the O and Si compositions of the flat and tapered Si nanowires fabricated 

Figure 5.  TEM images taken from flat Si nanowires of (a1–a3) ρ = 0.95 and (b1–b3) ρ = 0.90 and from tapered 
Si nanowires of (c1–c3) ρ = 0.95 and (d1–d3) ρ = 0.90, respectively. Inset figures of HRTEM images of a3, b3, 
c3 and d3 are diffraction patterns achieved by using the fast Fourier transform (FFT) of the HRTEM images to 
compare crystallinities of the flat and tapered Si nanowires.

Figure 4.  (a) EDS line profiles of Si (black) and O (red) components along the flat Si nanowire of ρ = 0.95, 
indicated as a dash line on the Si nanowire in the SEM image (inset), (b) PL spectra of flat (upper) and tapered 
(lower) Si nanowires of ρ of 0.85 (blue), 0.90 (red), and 0.95 (green) and the PL spectrum of the bulk c-Si 
substrate (black). (c) Comparison of integrated PL intensities of flat (■) and tapered (▲) nanowires at the 
wavelength range of 550–900 nm and ratios of integrated EDS intensities of O (IO) and Si (ISi) of flat (■) and 
tapered (▲) nanowires. The black dash line indicates the integrated PL intensity of the bulk c-Si substrate.
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under MACE conditions with different ρ values, EDS line profiles of O and Si were measured from five different 
nanowires. Ratios of integrated EDS intensities along the nanowires of O (IO) and Si (ISi) were averaged and com-
pared in the Fig. 4(c). The PL spectra taken from the flat and tapered nanowires are integrated over all wavelength 
regions, and their integration values are compared in Fig. 4(c) as well.

As described above, hole generations on catalytic Au surfaces during MACE are strongly influenced by H2O2 
concentration in the etching solution and the excess holes injected into the Si substrate are diffused into the sub-
strate and on the nanowires, causing secondary etchings of the structures. In particular, holes diffused into the 
nanowires are accumulated at their tip end, such that the tip ends become more porous with lots of Si nano-sized 
grains which can be easily oxidized during and after MACE due to their higher surface energies. Therefore, IO/ISi 
values are observed to be relatively higher on the nanowires etched in etching solutions of lower ρ values, where 
holes are excessively generated during MACE. Si atoms and grains of higher surface energies can be effectively 
removed from the nanowires by ACE, showing about ~20% decreases of IO/ISi values for the tapered nanowires 
compared to those of the flat nanowires.

Porous Si nanowires covered with Si nano-sized grains have various energy states available due to the forma-
tion of Si/SiOx interfaces and the quantum confinement effect of Si nanocrystals9,18,20. Theses defect energy states 
significantly increase the electron-hole recombination rates and PL emissions of the Si nanowires. Similarly to the 
EDS analysis, integrations of PL intensities show significant decrease when the nanowires are fabricated in the 
etching solutions of ρ = 0.95, where the hole injection into the Si substrate and the surface oxidation of the nano-
wires are minimized. PL intensities of tapered nanowires fabricated with ACE are decreased to 50% as compared 
to those of the MACE-fabricated flat nanowires. The tapered nanowires of ρ = 0.95 show lowest PL intensities, 
which are comparable to that of the bulk c-Si substrate (black dash line), indicating that unstable Si atoms and 
nano-sized grains formed on the Si nanowires are almost removed during the ACE process.

Figure 5 shows transmission electron microscope (TEM) images of flat (a1−a3) and (b1−b3) and tapered 
(c1−c3) and (d1−d3) Si nanowires of ρ = 0.95 and 0.90, respectively. The Si nanowires are carefully transferred 
from their substrates onto the TEM grid. TEM images of Fig. 5 (a2) and (b2) show that MACE-fabricated flat Si 
nanowires have very porous surfaces on their tip ends which are fully covered with lots of Si nano-sized grains, 
in contrast to middle sides of the nanowires, clearly showing the influence of oxidations occurred during MACE 
by holes excessively accumulated on tip ends of the nanowires35–38. These Si nano-sized grains formed on the 
nanowire surface can be completely removed during ACE, where Si atoms with higher surface energies could 
be selectively etched as shown in the TEM images of the tapered nanowires in Fig. 5 (c2−c3) and (d2−d3). The 
crystalline-structures of the flat and tapered Si nanowires are compared with high-resolution TEM (HRTEM) 
images taken on the tip ends of each nanowires, as shown in Fig. 5 (a3), (b3), (c3) and (d3). Inset figures show 
diffraction patterns achieved by using the fast Fourier transform (FFT) of the HRTEM images, indicating that 
surface of the tapered Si nanowires have higher crystalline qualities than those of the flat Si nanowires.

Raman analysis of fabricated Si nanowires of Figure S2 were performed to support our TEM observations 
that MACE-fabricated Si nanowires have porous tip surfaces covered with lots of nano-sized Si grains and these 
grains can be effectively removed from the nanowires by the ACE process. As shown by Figure S2(a), contribu-
tions of amorphous Si and SiO2, which have characteristic broad Raman peaks below 500 cm−1, are negligible in 
Raman spectra of fabricated Si nanowires compared to contributions of c-Si and Si nanocrystals33,34. We assumed 
that phonon modes of nano-sized Si grains can be described with phonon modes of Si nanocrystals, which have 
phonon modes at lower energy regions compared to the bulk c-Si (centered at 520.7 cm−1) due to their phonon 
locations20,38,39. The size and composition of Si nanocrystals of fabricated Si nanowires of ρ = 0.90 and 0.95 were 
analyzed with fitting analysis, considering shifts to lower energies and broadenings of Raman peaks as shown in 
Figure S2(b,c)20,30. (see description for Figure S2 in Supporting Information) The comparison in Figure S2 (c) 
indicates significant decrease in the composition of Si nanocrystals in the nanowires fabricated by the MACE 
processes with the increase in ρ values and by the ACE processes.

Conclusions
In summary, we fabricated vertically aligned flat and tapered Si nanowires through chemical wet etchings of 
the MACE and ACE processes and investigated the influences of oxidants in the MACE etching solutions on 
surface structures, morphologies and interfacial energy states of fabricated Si nanowires. We showed that the Si 
nanowire surfaces are significantly affected by the concentration of H2O2 in the etching solution, which causes 
excessive injections of holes into the Si nanowires in its higher concentration, increasing the surface porosities 
of the nanowires with lots of Si nano-sized grains formed on the nanowire surfaces. These porous Si nanowires 
can be easily oxidized during and after the MACE process and their interfacial energy states are strongly affected 
by surface structure and oxidation of the nanowires, showing significant changes in the PL spectra with MACE 
etching conditions. The surface of these porous Si nanowires can be completely cleaned by ACE, which selec-
tively removes unstable Si atoms from the nanowire surface. Flat Si nanowires could be engineered for tapered 
Si nanowires where Si grains are completely removed from the nanowire surface by the ACE process, showing 
enhanced light trapping as well as significant suppression of PL intensities. Our study can indicate that the surface 
oxidation which Si nanowires have during the MACE process can be critical in the surface crystallinities and 
interfacial energy states of the tapered Si nanowires of the post-MACE etching process. We believe that our study 
of enhancing surface properties including structural morphologies, crystallinities and interfacial energy states of 
Si nanowires with the MACE and ACE processes would contribute to the application and fabrication of Si nano-
wires for efficient Si-based energy harvesting and catalysis.
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Method
Fabrication of vertically aligned Si nanostructure array.  In this study, p-type (boron)-doped Si sub-
strates (100) with the resistivity of 1–10 Ω·cm and thickness of 550 µm were used to fabricate vertically etched 
Si nanowires through MACE. Si substrates were cut into 1.5 × 1.5 cm2 samples and treated with a pure piranha 
(H2SO4:H2O2 = 3:1 v/v) solution and O2 plasma to remove impurities remaining on the substrates. Close-packed 
monolayers of polystyrene (PS) beads of 500 nm diameter (Thermo-Scientific, Inc.) were transferred on pre-
cleaned Si substrates by the nanosphere lithography method and the size of PS beads was reduced to 350 nm by 
the inductively coupled plasma reactive ion etch (ICP-RIE)40. Au of 30 nm thickness was deposited on these sub-
strates by using the E-beam evaporator at the deposition rate of 3 Å/s and the substrates were stored in a vacuum 
desiccator prior to the MACE process.

MACE of the prepared substrates were performed in an etching solution of HF (J. T. Baker, Inc.), H2O2 (J. T. 
Baker, Inc.) and deionized water for the fabrication of vertically etched Si nanowires. The concentration of HF 
was fixed at 3.5 M, the concentration of H2O2 was changed to control the composition of oxidants and ρ values 
(ρ = [HF]/([HF] + [H2O2]) were ranged between 0.85 and 0.95 for the etching solutions. All reactions described 
in this study were performed in the ice bath of 8 °C to minimize the formation of Si nanocrystals and the surface 
oxidization of the nanowires during the MACE process. The lengths of the Si nanowires were controlled using the 
reaction time. Remained PS beads and Au were removed from the substrate by rinsing in chlorobenzene and the 
diluted aqua regia (HCl:HNO3 = 3:1 v/v) solution, respectively. The ACE process to taper MACE-fabricated Si 
nanowires was then performed by repeating processes of reducing AgNO3 to Ag nanoparticles on tip ends of the 
nanowires in the mixed solution of HF and AgNO3 and removing reduced Ag nanoparticles from the nanowire 
surfaces in the diluted HNO3 solution. For each cycle of the ACE process, the concentration of HF in the HF and 
AgNO3 solution was fixed to 2.0 M while that of AgNO3 was increased by 0.1 mM from 0.4 to 1.0 mM for each 
cycle8,22.

Characterization.  The structures and surface morphologies of vertically etched Si nanowires were charac-
terized during MACE and ACE processes by using the scanning electron microscope (SEM, Hitachi S-4800) and 
the transmission electron microscope (TEM, Tecnai G2 F30). The Raman and PL spectra of the Si nanowires were 
measured by using the microscope system (a high resolution Raman/PL spectrophotometer, Horiba LabRAM 
HR-800) with a 100 × objective (NA = 0.9). The Ar ion laser of λ = 514 nm and ~25 µW was used for PL and 
Raman studies of the nanowires. The PL spectra of the nanowires were measured in the wavelength region of 
550–900 nm and Raman spectra of the nanowires were measured in the wavenumber region of 480–560 cm−1. 
Reflectance of the nanowires were measured in the wavelength region of 450–900 nm.

Finite-difference time-domain simulation.  The simulations were performed using the commercial 
finite-difference time-domain (FDTD) software package of Lumerical Solution 8.1541. The shapes and structures 
of flat and tapered Si nanowires used in the simulation were estimated from SEM images. All nanowires in the 
simulations were assumed to have a diameter of 350 nm and a pitch of 500 nm. The lengths of the flat nanowires 
(the tapered ones) were set as 3.0 (1.7), 3.6 (2.2) and 3.6 (2.7) µm, similarly to the lengths of the nanowires esti-
mated from their SEM images. The reflectance spectra and time-averaged Poynting vector distribution of the 
nanowires, <S>, were simulated in the range of 400–900 nm. All simulations were performed with perfectly 
matched boundary conditions on the z-axis and with symmetric and anti-symmetric boundary conditions in 
the x- and y-directions. Simulated reflectance spectra of MACE-fabricated Si nanowires were treated with the 
low-pass filter to reduce large fluctuations in spectra which result from overestimated interferences between peri-
odically spaced Si nanowires and coherent simulation light source42,43. The refractive index values of n and k of Si 
taken from the literature were considered in the simulation44.
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