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Abstract

There is a known relationship between Alzheimer’s disease (AD) and Down syndrome (DS), with
the latter typically developing AD-like neuropathology in mid-life. In order to further understand
this relationship we examined intersectin-1 (ITSN1) and the regulator of calcineurin-1 (RCANL1),
proteins involved in endosomal and lysosomal trafficking that are over-expressed in DS. We
examined RCANL1 and ITSN1 levels (both long (-L) and short (-S) isoforms) and the level of
endogenous metals in White Blood Cells (WBCs) collected from AD patients who were enrolled
in the Australian Imaging, Biomarker and Lifestyle Study on Ageing (AIBL). We also examined
RCAN1 and ITSN1-S and -L in post-mortem brain tissue in a separate cohort of patients with AD
or other types of dementia including Dementia with Lewy Bodies (DLB) and non-Alzheimer’s
disease dementia. We found that RCAN1 was significantly elevated in AD and DLB brain
compared with controls, but there was no difference in the level of RCAN1 in WBCs of AD
patients. There were no differences in the levels of ITSN1-L and —S between AD and the control,
nor between other types of dementia and the control. We found that there were no differences in
the levels of metals between AD and the control WBCs. In conclusion, our data demonstrate that
RCANL is differentially regulated between the peripheral and central compartments in AD and
should be further investigated to understand its potential role in dementia of AD and DLB.
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The current worldwide incidence of dementia is believed to be fifty million people, and this
number is expected to reach 75 million in 2030 if no cure is found (Alzheimer’s disease
international, 2017) [1]. Alzheimer’s disease, the most common form of dementia, is
characterised by neuropathological changes (including the development of p-amyloid
plaques (Ap), Neurofibrillary Tangles (NFTs) and other anatomical features that spread
throughout the brain) that result in a variety of clinical symptoms including short-term and
long-term memory loss, confusion, depression and language problems. Ultimately, patients
can become severely demented, lose ambulation and are reduced to a behavioural repertoire
consisting of a few basic reflexes [2,3]. The individual neuropathological features of the AD
brain are not unique to this disease, and are found across a spectrum of disorders and species
[4]. One such example is Down Syndrome (DS), where individuals develop A neuritic
plaques, tau-containing NFTs [5], Basal Forebrain Cholinergic Neurodegeneration (BFCN)
and enlarged early endosomes. These features may be the result of an over-expression of
multiple genes or an alteration in key proteins or discrete cellular pathways. It has also been
suggested, however, that another shared pathology, enlarged early endosomes, may
contribute to pathological processes in both AD and DS and may be mediated through
common pathways. Two genes involved in endocytosis, both located on chromosome 21, are
intersectin-1 (ITSN1) and the regulator of calcineurin-1 (RCAN1, formerly called Down
syndrome candidate region 1) [6-9]. This is relevant because DS is characterised by a
triplication of chromosome 21, which is also the location of the Amyloid Precursor Protein
(APP) gene that ultimately gives rise to the Ap protein that forms the plaques found in AD
and DS.

Through endocytosis, neurons achieve the rapid vesicle recycling necessary for maintaining
neurotransmission but endocytosis is also the process used by neurons and other cell types to
take up macromolecules from the extracellular environment. Early endosomes receive
extracellular molecules from the cell surface via fusion with clathrin-coated vesicles.
Disrupted endocytosis has been postulated to result in abnormal uptake and trafficking
through signalling endosomes of vital plasma membrane proteins, growth factors and
receptors [10]. Early endosomes are the sites of internalisation of APP and apolipoprotein E,
as well as the site of Ap peptide generation, all of which contribute to the manifestation of
AD [11]. In addition, defective neuronal growth factor signaling due to disturbances in
endocytosis could be an early event in the manifestation of AD [12] which can lead to the
formation of amyloid plaques, hyperphosphorylated tau and NFTs and BFCN [13]. In DS,
enlarged endosomes are seen as early as 28 weeks of gestation in neurons [10], which
precedes diffuse AP plaque deposition which appears at around 12 years of age, and is
followed by mature AP plaques when the individuals are in their 30s [14]. In 2008 the genes
associated with cognitive decline in the brains of aging individuals with AD were identified
by profiling RNA expression of the whole genome in the frontal cortex and comparing them
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to their matched controls. Of relevance to this study, amongst the RNA transcripts
significantly up-regulated in AD was the short isoform of intersectin-1 (ITSN1-S) [15].
Although this study reported that ITSN1 is overexpressed in the AD brain [15], there is
nothing in the literature about the expression of ITSN1 at the protein level or in other types
of dementia. It is of note, however, that ITSN1 protein levels have been examined in DS
individuals that had concomitant AD pathology [16]. This study showed that DS individuals
with AD pathology have a higher level of expression of ITSN1 in their frontal cortex
compared with healthy controls, but interestingly DS individuals with diagnosis of AD had
lower levels of both ITSN1-S and -L compared to DS without an AD diagnosis [16].
Similarly, previous studies have shown that the level of RCAN1 mRNA was increased in the
AD brain [17,18] and that the level of RCANL1 protein was increased in the pyramidal
neurons of the AD temporal lobe [19], but there is almost nothing in the literature about the
levels of RCANL1 in other types of dementia. Ermak et al. [17] also showed that amyloid p1-
42 stimulates production of RCAN1 mRNA in a cell culture model. Furthermore, Lloret et
al. [20] showed that in a primary rat neuronal cell culture model in the presence of amyloid
B, tau phosphorylation increased but silencing RCANL1 in these neurons blocked the
hyperphosphorylation of tau indicating that RCAN1 has a role in tau phosphorylation.

For these reasons, we hypothesised that protein levels of both ITSN1 and regulator of
calcineurin-1 RCAN1 would be altered in AD brain tissues, and may also be altered in
related conditions, including Dementia with Lewy bodies (DLB) and non-Alzheimer’s
disease dementia (non-AD; including corticobasal degeneration and supranuclear palsy).
Changes in these proteins may implicate endocytic and lysosomal trafficking deficits across
a broad suite of neurodegenerative diseases.

As our targets of interest have been found in various tissues throughout the body [21], we
were also interested in determining whether or not they were changed in the periphery, as
this might represent a potential biomarker [22,23] or provide some insight into the
pathogenesis of disease. For these analyses we were fortunate to have access to white blood
cells, which are a critical component of the peripheral compartment and may be involved
either directly or indirectly in the pathogenesis of a variety of conditions including AD
[24,25], from both healthy controls and AD patients from the Australian imaging, Biomarker
and Lifestyle Study of Ageing (AIBL). Furthermore, both ITSN1 and RCANL1 are involved
in transporting material inside and outside the cell; RCANL1 regulates vesicle exocytosis [26]
and ITSN1-L isoform regulates the amount of secretory vesicle exocytosis and synaptic
vesicle endocytosis [9]. Therefore, it is possible that they would be involved in the
transportation of metals, which are reported to be involved in the pathogenesis of a variety of
neurodegenerative diseases (such as AD). ITSN1 is also involved in receptor-mediated
endocytosis, and it is reported to impact the internalization of the transferrin receptor, which
is crucially involved in cellular iron regulation [27]. Hence, we hypothesised that if the level
of ITSN1 and RCAN1 were altered in the periphery, then this may also translate to a change
in metal levels. Hence, we assessed both protein (ITSN1 and RCAN1) and metal (including
major elements such as copper, zinc, iron and calcium) content in the white blood cells.
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Materials and Methods

Human brain tissue

Human post-mortem brain tissues used in this project were provided by the Victorian Brain
Bank Network and the University of California Alzheimer’s Disease Research Center (UCI-
ADRC) and the Institute for Memory Impairments and Neurological Disorders. The
demographics of these cases are listed in Table 1. Samples included frontal and temporal
cortices from controls with no neurological disorders (average + SD; 80.8 + 14.5 years of
age), AD (78.3 £ 9.1 years of age), non-AD (including corticobasal degeneration and
progressive supranuclear palsy cases; 77.7 £ 6.9 years of age), and DLB (82.6 + 7.3 years of
age) patients. There was no statistical difference in the average age of each of these cohorts.
The average Post Mortem Interval (PMI) for the tissues were as follows; controls (22.1

+ 27.7 hours), AD (33.4 + 22 hours), non-AD (28.6 + 16.3 hours) and DLB (41.8 + 22.7
hours). The variation in PMI is similarly large across all the groups, and there was no
statistically significant difference between groups. The tissues were stored at —80°C until
required.

Human blood samples

White blood cell samples from fasting AD (n=50, 77.5+11.5 years of age) and age-matched
healthy controls (n=20, 79 + 10 years of age) were obtained from AIBL.

Western blotting of human samples

Western blotting was used to quantify the relative levels of RCANL, ITSN1 long and ITSN1
short isoforms in both human brain and white blood cell samples. Specific cohort sizes are
shown in the figures. Post-mortem tissue was weighed and homogenized in 4x the volume in
Phosphate Buffered Saline (PBS) containing 0.1% SDS and 0.1% Triton-100, supplemented
with proteinase inhibitor tablets (Roche) and phosphatase inhibitors (Roche, Mannheim,
Germany). White blood cell samples were homogenised in dH,O containing 0.1% SDS and
0.1% Triton-100, supplemented with proteinase inhibitor tablets (Roche) and phosphatase
inhibitors (Roche, Mannheim,Germany). Each sample was sonicated for 10 cycles of 10
seconds on and 10 seconds off. Further, the samples were spun for 10 mins and the soluble
phase collected for experiment. Protein concentrations of all the samples were initially
quantified using a bicinchoninic (BCA) protein assay kit (Pierce, Thermo scientific,
Rockford, USA) so that equal protein concentrations (40 pg) of each homogenised sample
could be loaded per lane and subsequently resolved on 3-8% Criterion XT Tris-Acetate pre-
cast gels (Bio-Rad, Hercules, CA, USA) using XT Tricine running buffer (Bio-Rad,
Hercules, CA, USA). This was followed by electroblotting onto polyvinylidene fluoride
(PVDF) membranes (Immobilon-P) using transfer buffer containing 5% methanol.

Membranes were incubated in milk (5%wi/v) followed by applying the primary rabbit anti-
ITSNI (1:750) (Abcam, Cambridge, UK) in blocking buffer (5% wi/v fat-free milk in TBS
containing 0.1% Tween-20, pH 8.0) and anti RCAN-1 (1:1000; MorphoSys AG, Planegg,
Germany) in signal boost solution 1 buffer (Calbiochem, Darmstadt, Germany) and
incubated overnight at 4°C.
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Immunoreactive proteins were detected using HRP-conjugated rabbit anti-mouse (1:2000;
Dako, Glostrup, Denmark) in blocking buffer (5% wi/v fat-free milk in TBS containing 0.1%
Tween-20, pH 8.0) or HRP-conjugated goat anti human (1:2000, Jackson ImmunoResearch
Laboratories, West Baltimore, USA) in signal boost solution buffer 2, respectively. ITSN1
membranes were incubated with Amersham ECL western blotting detection reagent and
RCANZ1 was visualized using Luminata Forte western HRP substrate (Millipore, Burlington,
USA). Images of the western blots were taken using an ImageReader LAS-3000 (FujiFilm,
Tokyo, Japan) and the abundance of proteins quantified (density of bands at the given
molecular weight) using ImageQuant software (GE Healthcare, Fairfield, USA). The data
are then presented as relative band intensity.

Metal analysis by inductively coupled plasma mass spectrometry

Due to our long standing interest in the role of metals in the pathogenesis of AD, we
assessed metal levels in the white blood cells from both AD and healthy control patients.
Whilst this in of itself is interesting, to determine whether there was any potential
involvement of ITSN1 and RCAN1 in metal homeostasis in the periphery (which may
reflect central metal changes), then we correlated the protein and metal levels. We utilized
Inductively Coupled Plasma Mass Spectrometry (ICPMS) as described previously [28].
Triplicates of each sample were measured.

Statistical analysis

Results

Data for human tissue are presented as box and whiskers for comparison of AD and

controls, and were compared using a two-tailed student’s t-test. Unless otherwise stated, data
are presented as means £ SEM for other types of dementia and controls, and were compared
by one way ANOVA with Dunnet’s post-hoc test. Data for WBCs metals were analysed
using a two-tailed student’s t-test. A Pearson’s two-tailed correlation test was used to test the
correlation between proteins and metals. All statistical analyses were performed using
GraphPad Prism 6 software (GraphPad Software, La Jolla, CA, USA). On all the figures, the
significance is denoted by the following: *p<0.05, **p<0.01 and ***p<0.001.

Intersectin-1 protein levels are unchanged in brain tissue in various neurological diseases

There were no differences between the levels of ITSN1 proteins in frontal and temporal
cortices of AD patients compared with the controls (unpaired two-tailed t-test; n=6-10 for
control frontal cortex and n=6-12 for AD frontal cortex; n =8-10 control temporal cortex,
n=11-22 for AD temporal cortex (Figure 1la—1d). Similarly, there were no differences
between other types of dementia and the controls (one way ANOVA with Dunnet’s post-hoc
test; Figure 2a and Figure 2b).

RCANL1 levels are elevated in the temporal cortex in AD and DLB

Assessment of RCANL1 levels in frontal and temporal cortices from our cohort of
neurological diseases (Figure 1e, Figure 1f and Figure 2c) revealed a significant elevation
only in the temporal cortex of both AD and DLB tissue, as compared to controls (Figure 1f
and Figure 2c). There were no other differences noted.
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Intersectin-1 and RCAN1 protein levels in white blood cells in AD

The protein levels of both the short and long isoforms ofITSN1 (Figure 3a and Figure 3b), as
well as RCANL1 (Figure 3c) were no different between the AD and healthy controls.

Metal analysis in white blood cells, and correlation with RCAN1 and ITSN1

There were no differences in the levels of any metals measured (iron, zinc, copper, calcium,
magnesium, manganese, aluminium, lead or selenium) between the AD and the control
white blood cells (Table 2). We also examined whether there was a correlation between the
level of the proteins of interest (RCAN1 or ITSN1) and the level of each metal across our
two cohorts using a Pearson’s two-tailed correlation. There was no correlation between the
levels of any of the proteins and metals (Table 2).

Discussion

This study has demonstrated that there are elevated levels of RCAN1 protein in both AD and
DLB temporal cortices, as compared to matched controls. These findings are consistent with
a previous study conducted in AD patients, where it was shown that RCAN1 mRNA was
elevated (~ two fold) in the cerebral cortex (areas A10 and A22) and hippocampus, but not
the cerebellum, of AD patients [17]. This study also demonstrated an association with NFTSs,
such that RCAN1 mRNA was significantly higher in patients with extensive NFTs (~ three
fold). In a cell culture system, it was also shown that amyloid p1-42 increases RCAN1
mRNA [17]. This current study, therefore, extends on the previous work that only examined
changes in RCAN1 mRNA, to demonstrate that this is likely to also translate to protein level
changes in AD. That RCAN1 was also altered in DLB may speak to converging pathways in
DLB and AD. Studies such as Lippa et al. [29] have also shown the presence of Lewy bodies
in many Down syndrome brains with AD. Further studies are required to investigate the
relevance of RCANL1 in AD, and to also interrogate the potential role/interaction of RCAN1
in the context of neurological diseases such as DLB. We did not observe any differences in
RCANT1 levels in WBCs of AD and healthy controls, which may suggest that changes in the
level of RCANL in the post-mortem brain might be locally/differently regulated compared
with peripheral RCANL1 levels. As with the post-mortem brain studies, further work is
required to understand how changes in RCANL1 levels in the AD brain may contribute to the
disease evolution and progression. Although our results did not show a significant change in
the levels of ITSN1 in the AD brain or the other types of dementia, statistical power analysis
revealed that if the number of samples was increased to 35 or more per group, the result
might reach statistical significance (this would also potentially help overcome issues around
varying PMI times and the limited “snapshot” that comes from analysing individuals from
an isolated age range). That our current data are in conflict with an existing report
suggesting that ITSN1 levels are elevated in AD, this previous study assessed RNA levels
only, whereas we assessed protein levels in the current body of work. As such, it is possible
that there is disconnect between the RNA and protein regulation/levels for ITSN1, or
perhaps there was a cohort-specific difference between studies that would account for this
difference. One consideration is the PMI, which could impact protein measurements. A few
minutes after death, autolysis occurs resulting in the release of water and enzymes which
degrade proteins, carbohydrates and lipids [30]. Environmental factors such as temperature
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and humidity would also affect the rate of decomposition. For this reason, it is hard to
predict how the PMI by itself has affected the protein content of the samples [16]. Similarly,
it is not possible to predict in what way our data for levels of ITSN1 protein in dementia
brains would have been affected. Nevertheless, the samples with the longer PMI times would
likely have had more protein decomposition than the samples with the shorter PMI, which
could have affected the level of ITSN1 measured in the samples (whilst there were no
significant differences in the PMI between cohorts in the current study, there was a trend for
the healthy control group to have shorter PMI times than all other groups). Obtaining better
controlled autopsy samples would help mitigate some of these issues. Another issue to
consider is whether the presence of significant systemic disease in our sample population
might have influenced the outcomes of the current studies, as there were individuals that had
sepsis and renal failure amongst other comorbidities [31]. Given the reported role of ITSN1
in a breadth of cellular pathways, then this remains an important caveat of our work.

Conclusion

There is a potential point of intersection between the neuropathology/disease pathogenesis
present in DS and other neurological diseases such as AD and DLB that centers around the
regulation of RCAN1 and potentially the associated endocytic pathways. Further
investigation is required to understand the relevance of this protein and pathways to disease.
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Figure 1: Levels of ITSN1 and RCANL1 proteins in frontal and temporal cortices of AD patients.
Western blotting was performed on homogenates of human post-mortem brains (n=6— 11

frontal cortex (FCX), n=11-22 temporal cortex (TCX)) and age-matched controls (C; n=6—
10 FCX, n=8-10 TCX). Plots (a, b, ¢, d) show levels (densitometry) of ITSN1-Sand L in
post- mortem brains of AD patients compared with age-matched controls ) There is no
difference between the AD and control in levels of RCANL1 frontal cortex. f) The level of
RCAN1 protein is significantly higher in the AD temporal cortex compared with the control.
Representative blots are shown. The box and whisker graphs show median, minimum and
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maximum values. An unpaired two-tailed t-test was used for statistical analysis (p=0.022).
*
p<0.05.
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Figure 2: ITSN1 and RCANL1 protein levels in different types of dementia.
There were no differences in the level of ITSN1 in different types of dementia compared

with the controls (a,b)[(for frontal cortex (FCX): n=10 for control (C), n=8 for non-AD, n=3
for DLB; and for temporal cortex (TCX): n=10 for control, n=11 for non-AD, n=6 for DLB].
However, the level of RCANL1 is elevated in DLB temporal cortex compared with control (c)
(for frontal cortex: n=9 control and n=8 for non-AD (due to tissue limitations and technical
difficulties, we only had an n=1 for the frontal cortex from DLB patients, and so left this out
of the analysis); for temporal cortex: n=10 control, n= 6 for non-AD, n= 3 for DLB; p=
0.011 for DLB). The representative blots of ITSN1 and RCANL1 protein levels in different
types of dementia are shown (the “split” lanes are from non-adjacent samples on the blot).
The box and whisker graphs show median, minimum and maximum values. One way
ANOVA with Dunnett’s post-hoc test. The RCAN1 measurements for DLB FCX cases (in
Panel 2c) were not included due to insufficient numbers. *p<0.05.
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Figure 3: Levels of ITSN1-L, ITSN1-S and RCANL1 in AD white blood cells.
Western blotting was performed on homogenates of white blood cells of AD (n=36-50) and

HC(n=11- 20). a, b and c) There were no differences between the groups for the level of
ITSN1-L, ITSN1- S and RCAN1. Representative blots are shown. The box and whisker
graphs show median, minimum and maximum values.
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