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Abstract

There is a known relationship between Alzheimer’s disease (AD) and Down syndrome (DS), with 

the latter typically developing AD-like neuropathology in mid-life. In order to further understand 

this relationship we examined intersectin-1 (ITSN1) and the regulator of calcineurin-1 (RCAN1), 

proteins involved in endosomal and lysosomal trafficking that are over-expressed in DS. We 

examined RCAN1 and ITSN1 levels (both long (-L) and short (-S) isoforms) and the level of 

endogenous metals in White Blood Cells (WBCs) collected from AD patients who were enrolled 

in the Australian Imaging, Biomarker and Lifestyle Study on Ageing (AIBL). We also examined 

RCAN1 and ITSN1-S and -L in post-mortem brain tissue in a separate cohort of patients with AD 

or other types of dementia including Dementia with Lewy Bodies (DLB) and non-Alzheimer’s 

disease dementia. We found that RCAN1 was significantly elevated in AD and DLB brain 

compared with controls, but there was no difference in the level of RCAN1 in WBCs of AD 

patients. There were no differences in the levels of ITSN1-L and −S between AD and the control, 

nor between other types of dementia and the control. We found that there were no differences in 

the levels of metals between AD and the control WBCs. In conclusion, our data demonstrate that 

RCAN1 is differentially regulated between the peripheral and central compartments in AD and 

should be further investigated to understand its potential role in dementia of AD and DLB.
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Introduction

The current worldwide incidence of dementia is believed to be fifty million people, and this 

number is expected to reach 75 million in 2030 if no cure is found (Alzheimer’s disease 

international, 2017) [1]. Alzheimer’s disease, the most common form of dementia, is 

characterised by neuropathological changes (including the development of β-amyloid 

plaques (Aβ), Neurofibrillary Tangles (NFTs) and other anatomical features that spread 

throughout the brain) that result in a variety of clinical symptoms including short-term and 

long-term memory loss, confusion, depression and language problems. Ultimately, patients 

can become severely demented, lose ambulation and are reduced to a behavioural repertoire 

consisting of a few basic reflexes [2,3]. The individual neuropathological features of the AD 

brain are not unique to this disease, and are found across a spectrum of disorders and species 

[4]. One such example is Down Syndrome (DS), where individuals develop Aβ neuritic 

plaques, tau-containing NFTs [5], Basal Forebrain Cholinergic Neurodegeneration (BFCN) 

and enlarged early endosomes. These features may be the result of an over-expression of 

multiple genes or an alteration in key proteins or discrete cellular pathways. It has also been 

suggested, however, that another shared pathology, enlarged early endosomes, may 

contribute to pathological processes in both AD and DS and may be mediated through 

common pathways. Two genes involved in endocytosis, both located on chromosome 21, are 

intersectin-1 (ITSN1) and the regulator of calcineurin-1 (RCAN1, formerly called Down 

syndrome candidate region 1) [6–9]. This is relevant because DS is characterised by a 

triplication of chromosome 21, which is also the location of the Amyloid Precursor Protein 

(APP) gene that ultimately gives rise to the Aβ protein that forms the plaques found in AD 

and DS.

Through endocytosis, neurons achieve the rapid vesicle recycling necessary for maintaining 

neurotransmission but endocytosis is also the process used by neurons and other cell types to 

take up macromolecules from the extracellular environment. Early endosomes receive 

extracellular molecules from the cell surface via fusion with clathrin-coated vesicles. 

Disrupted endocytosis has been postulated to result in abnormal uptake and trafficking 

through signalling endosomes of vital plasma membrane proteins, growth factors and 

receptors [10]. Early endosomes are the sites of internalisation of APP and apolipoprotein E, 

as well as the site of Aβ peptide generation, all of which contribute to the manifestation of 

AD [11]. In addition, defective neuronal growth factor signaling due to disturbances in 

endocytosis could be an early event in the manifestation of AD [12] which can lead to the 

formation of amyloid plaques, hyperphosphorylated tau and NFTs and BFCN [13]. In DS, 

enlarged endosomes are seen as early as 28 weeks of gestation in neurons [10], which 

precedes diffuse Aβ plaque deposition which appears at around 12 years of age, and is 

followed by mature Aβ plaques when the individuals are in their 30s [14]. In 2008 the genes 

associated with cognitive decline in the brains of aging individuals with AD were identified 

by profiling RNA expression of the whole genome in the frontal cortex and comparing them 
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to their matched controls. Of relevance to this study, amongst the RNA transcripts 

significantly up-regulated in AD was the short isoform of intersectin-1 (ITSN1-S) [15]. 

Although this study reported that ITSN1 is overexpressed in the AD brain [15], there is 

nothing in the literature about the expression of ITSN1 at the protein level or in other types 

of dementia. It is of note, however, that ITSN1 protein levels have been examined in DS 

individuals that had concomitant AD pathology [16]. This study showed that DS individuals 

with AD pathology have a higher level of expression of ITSN1 in their frontal cortex 

compared with healthy controls, but interestingly DS individuals with diagnosis of AD had 

lower levels of both ITSN1-S and -L compared to DS without an AD diagnosis [16]. 

Similarly, previous studies have shown that the level of RCAN1 mRNA was increased in the 

AD brain [17,18] and that the level of RCAN1 protein was increased in the pyramidal 

neurons of the AD temporal lobe [19], but there is almost nothing in the literature about the 

levels of RCAN1 in other types of dementia. Ermak et al. [17] also showed that amyloid β1–

42 stimulates production of RCAN1 mRNA in a cell culture model. Furthermore, Lloret et 

al. [20] showed that in a primary rat neuronal cell culture model in the presence of amyloid 

β, tau phosphorylation increased but silencing RCAN1 in these neurons blocked the 

hyperphosphorylation of tau indicating that RCAN1 has a role in tau phosphorylation.

For these reasons, we hypothesised that protein levels of both ITSN1 and regulator of 

calcineurin-1 RCAN1 would be altered in AD brain tissues, and may also be altered in 

related conditions, including Dementia with Lewy bodies (DLB) and non-Alzheimer’s 

disease dementia (non-AD; including corticobasal degeneration and supranuclear palsy). 

Changes in these proteins may implicate endocytic and lysosomal trafficking deficits across 

a broad suite of neurodegenerative diseases.

As our targets of interest have been found in various tissues throughout the body [21], we 

were also interested in determining whether or not they were changed in the periphery, as 

this might represent a potential biomarker [22,23] or provide some insight into the 

pathogenesis of disease. For these analyses we were fortunate to have access to white blood 

cells, which are a critical component of the peripheral compartment and may be involved 

either directly or indirectly in the pathogenesis of a variety of conditions including AD 

[24,25], from both healthy controls and AD patients from the Australian imaging, Biomarker 

and Lifestyle Study of Ageing (AIBL). Furthermore, both ITSN1 and RCAN1 are involved 

in transporting material inside and outside the cell; RCAN1 regulates vesicle exocytosis [26] 

and ITSN1-L isoform regulates the amount of secretory vesicle exocytosis and synaptic 

vesicle endocytosis [9]. Therefore, it is possible that they would be involved in the 

transportation of metals, which are reported to be involved in the pathogenesis of a variety of 

neurodegenerative diseases (such as AD). ITSN1 is also involved in receptor-mediated 

endocytosis, and it is reported to impact the internalization of the transferrin receptor, which 

is crucially involved in cellular iron regulation [27]. Hence, we hypothesised that if the level 

of ITSN1 and RCAN1 were altered in the periphery, then this may also translate to a change 

in metal levels. Hence, we assessed both protein (ITSN1 and RCAN1) and metal (including 

major elements such as copper, zinc, iron and calcium) content in the white blood cells.
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Materials and Methods

Human brain tissue

Human post-mortem brain tissues used in this project were provided by the Victorian Brain 

Bank Network and the University of California Alzheimer’s Disease Research Center (UCI-

ADRC) and the Institute for Memory Impairments and Neurological Disorders. The 

demographics of these cases are listed in Table 1. Samples included frontal and temporal 

cortices from controls with no neurological disorders (average ± SD; 80.8 ± 14.5 years of 

age), AD (78.3 ± 9.1 years of age), non-AD (including corticobasal degeneration and 

progressive supranuclear palsy cases; 77.7 ± 6.9 years of age), and DLB (82.6 ± 7.3 years of 

age) patients. There was no statistical difference in the average age of each of these cohorts. 

The average Post Mortem Interval (PMI) for the tissues were as follows; controls (22.1 

± 27.7 hours), AD (33.4 ± 22 hours), non-AD (28.6 ± 16.3 hours) and DLB (41.8 ± 22.7 

hours). The variation in PMI is similarly large across all the groups, and there was no 

statistically significant difference between groups. The tissues were stored at −80°C until 

required.

Human blood samples

White blood cell samples from fasting AD (n=50, 77.5±11.5 years of age) and age-matched 

healthy controls (n=20, 79 ± 10 years of age) were obtained from AIBL.

Western blotting of human samples

Western blotting was used to quantify the relative levels of RCAN1, ITSN1 long and ITSN1 

short isoforms in both human brain and white blood cell samples. Specific cohort sizes are 

shown in the figures. Post-mortem tissue was weighed and homogenized in 4× the volume in 

Phosphate Buffered Saline (PBS) containing 0.1% SDS and 0.1% Triton-100, supplemented 

with proteinase inhibitor tablets (Roche) and phosphatase inhibitors (Roche, Mannheim, 

Germany). White blood cell samples were homogenised in dH2O containing 0.1% SDS and 

0.1% Triton-100, supplemented with proteinase inhibitor tablets (Roche) and phosphatase 

inhibitors (Roche, Mannheim,Germany). Each sample was sonicated for 10 cycles of 10 

seconds on and 10 seconds off. Further, the samples were spun for 10 mins and the soluble 

phase collected for experiment. Protein concentrations of all the samples were initially 

quantified using a bicinchoninic (BCA) protein assay kit (Pierce, Thermo scientific, 

Rockford, USA) so that equal protein concentrations (40 μg) of each homogenised sample 

could be loaded per lane and subsequently resolved on 3–8% Criterion XT Tris-Acetate pre-

cast gels (Bio-Rad, Hercules, CA, USA) using XT Tricine running buffer (Bio-Rad, 

Hercules, CA, USA). This was followed by electroblotting onto polyvinylidene fluoride 

(PVDF) membranes (Immobilon-P) using transfer buffer containing 5% methanol.

Membranes were incubated in milk (5%w/v) followed by applying the primary rabbit anti-

ITSNl (1:750) (Abcam, Cambridge, UK) in blocking buffer (5% w/v fat-free milk in TBS 

containing 0.1% Tween-20, pH 8.0) and anti RCAN-1 (1:1000; MorphoSys AG, Planegg, 

Germany) in signal boost solution 1 buffer (Calbiochem, Darmstadt, Germany) and 

incubated overnight at 4°C.
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Immunoreactive proteins were detected using HRP-conjugated rabbit anti-mouse (1:2000; 

Dako, Glostrup, Denmark) in blocking buffer (5% w/v fat-free milk in TBS containing 0.1% 

Tween-20, pH 8.0) or HRP-conjugated goat anti human (1:2000, Jackson ImmunoResearch 

Laboratories, West Baltimore, USA) in signal boost solution buffer 2, respectively. ITSN1 

membranes were incubated with Amersham ECL western blotting detection reagent and 

RCAN1 was visualized using Luminata Forte western HRP substrate (Millipore, Burlington, 

USA). Images of the western blots were taken using an ImageReader LAS-3000 (FujiFilm, 

Tokyo, Japan) and the abundance of proteins quantified (density of bands at the given 

molecular weight) using ImageQuant software (GE Healthcare, Fairfield, USA). The data 

are then presented as relative band intensity.

Metal analysis by inductively coupled plasma mass spectrometry

Due to our long standing interest in the role of metals in the pathogenesis of AD, we 

assessed metal levels in the white blood cells from both AD and healthy control patients. 

Whilst this in of itself is interesting, to determine whether there was any potential 

involvement of ITSN1 and RCAN1 in metal homeostasis in the periphery (which may 

reflect central metal changes), then we correlated the protein and metal levels. We utilized 

Inductively Coupled Plasma Mass Spectrometry (ICPMS) as described previously [28]. 

Triplicates of each sample were measured.

Statistical analysis

Data for human tissue are presented as box and whiskers for comparison of AD and 

controls, and were compared using a two-tailed student’s t-test. Unless otherwise stated, data 

are presented as means ± SEM for other types of dementia and controls, and were compared 

by one way ANOVA with Dunnet’s post-hoc test. Data for WBCs metals were analysed 

using a two-tailed student’s t-test. A Pearson’s two-tailed correlation test was used to test the 

correlation between proteins and metals. All statistical analyses were performed using 

GraphPad Prism 6 software (GraphPad Software, La Jolla, CA, USA). On all the figures, the 

significance is denoted by the following: *p<0.05, **p<0.01 and ***p<0.001.

Results

Intersectin-1 protein levels are unchanged in brain tissue in various neurological diseases

There were no differences between the levels of ITSN1 proteins in frontal and temporal 

cortices of AD patients compared with the controls (unpaired two-tailed t-test; n=6–10 for 

control frontal cortex and n=6–12 for AD frontal cortex; n =8–10 control temporal cortex, 

n=11–22 for AD temporal cortex (Figure 1a–1d). Similarly, there were no differences 

between other types of dementia and the controls (one way ANOVA with Dunnet’s post-hoc 

test; Figure 2a and Figure 2b).

RCAN1 levels are elevated in the temporal cortex in AD and DLB

Assessment of RCAN1 levels in frontal and temporal cortices from our cohort of 

neurological diseases (Figure 1e, Figure 1f and Figure 2c) revealed a significant elevation 

only in the temporal cortex of both AD and DLB tissue, as compared to controls (Figure 1f 

and Figure 2c). There were no other differences noted.
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Intersectin-1 and RCAN1 protein levels in white blood cells in AD

The protein levels of both the short and long isoforms ofITSN1 (Figure 3a and Figure 3b), as 

well as RCAN1 (Figure 3c) were no different between the AD and healthy controls.

Metal analysis in white blood cells, and correlation with RCAN1 and ITSN1

There were no differences in the levels of any metals measured (iron, zinc, copper, calcium, 

magnesium, manganese, aluminium, lead or selenium) between the AD and the control 

white blood cells (Table 2). We also examined whether there was a correlation between the 

level of the proteins of interest (RCAN1 or ITSN1) and the level of each metal across our 

two cohorts using a Pearson’s two-tailed correlation. There was no correlation between the 

levels of any of the proteins and metals (Table 2).

Discussion

This study has demonstrated that there are elevated levels of RCAN1 protein in both AD and 

DLB temporal cortices, as compared to matched controls. These findings are consistent with 

a previous study conducted in AD patients, where it was shown that RCAN1 mRNA was 

elevated (~ two fold) in the cerebral cortex (areas A10 and A22) and hippocampus, but not 

the cerebellum, of AD patients [17]. This study also demonstrated an association with NFTs, 

such that RCAN1 mRNA was significantly higher in patients with extensive NFTs (~ three 

fold). In a cell culture system, it was also shown that amyloid β1–42 increases RCAN1 

mRNA [17]. This current study, therefore, extends on the previous work that only examined 

changes in RCAN1 mRNA, to demonstrate that this is likely to also translate to protein level 

changes in AD. That RCAN1 was also altered in DLB may speak to converging pathways in 

DLB and AD. Studies such as Lippa et al. [29] have also shown the presence of Lewy bodies 

in many Down syndrome brains with AD. Further studies are required to investigate the 

relevance of RCAN1 in AD, and to also interrogate the potential role/interaction of RCAN1 

in the context of neurological diseases such as DLB. We did not observe any differences in 

RCAN1 levels in WBCs of AD and healthy controls, which may suggest that changes in the 

level of RCAN1 in the post-mortem brain might be locally/differently regulated compared 

with peripheral RCAN1 levels. As with the post-mortem brain studies, further work is 

required to understand how changes in RCAN1 levels in the AD brain may contribute to the 

disease evolution and progression. Although our results did not show a significant change in 

the levels of ITSN1 in the AD brain or the other types of dementia, statistical power analysis 

revealed that if the number of samples was increased to 35 or more per group, the result 

might reach statistical significance (this would also potentially help overcome issues around 

varying PMI times and the limited “snapshot” that comes from analysing individuals from 

an isolated age range). That our current data are in conflict with an existing report 

suggesting that ITSN1 levels are elevated in AD, this previous study assessed RNA levels 

only, whereas we assessed protein levels in the current body of work. As such, it is possible 

that there is disconnect between the RNA and protein regulation/levels for ITSN1, or 

perhaps there was a cohort-specific difference between studies that would account for this 

difference. One consideration is the PMI, which could impact protein measurements. A few 

minutes after death, autolysis occurs resulting in the release of water and enzymes which 

degrade proteins, carbohydrates and lipids [30]. Environmental factors such as temperature 
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and humidity would also affect the rate of decomposition. For this reason, it is hard to 

predict how the PMI by itself has affected the protein content of the samples [16]. Similarly, 

it is not possible to predict in what way our data for levels of ITSN1 protein in dementia 

brains would have been affected. Nevertheless, the samples with the longer PMI times would 

likely have had more protein decomposition than the samples with the shorter PMI, which 

could have affected the level of ITSN1 measured in the samples (whilst there were no 

significant differences in the PMI between cohorts in the current study, there was a trend for 

the healthy control group to have shorter PMI times than all other groups). Obtaining better 

controlled autopsy samples would help mitigate some of these issues. Another issue to 

consider is whether the presence of significant systemic disease in our sample population 

might have influenced the outcomes of the current studies, as there were individuals that had 

sepsis and renal failure amongst other comorbidities [31]. Given the reported role of ITSN1 

in a breadth of cellular pathways, then this remains an important caveat of our work.

Conclusion

There is a potential point of intersection between the neuropathology/disease pathogenesis 

present in DS and other neurological diseases such as AD and DLB that centers around the 

regulation of RCAN1 and potentially the associated endocytic pathways. Further 

investigation is required to understand the relevance of this protein and pathways to disease.
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Figure 1: Levels of ITSN1 and RCAN1 proteins in frontal and temporal cortices of AD patients.
Western blotting was performed on homogenates of human post-mortem brains (n=6– 11 

frontal cortex (FCX), n=11–22 temporal cortex (TCX)) and age-matched controls (C; n=6– 

10 FCX, n=8–10 TCX). Plots (a, b, c, d) show levels (densitometry) of ITSN1-S and L in 

post- mortem brains of AD patients compared with age-matched controls e) There is no 

difference between the AD and control in levels of RCAN1 frontal cortex. f) The level of 

RCAN1 protein is significantly higher in the AD temporal cortex compared with the control. 

Representative blots are shown. The box and whisker graphs show median, minimum and 
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maximum values. An unpaired two-tailed t-test was used for statistical analysis (p=0.022). 

*p<0.05.
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Figure 2: ITSN1 and RCAN1 protein levels in different types of dementia.
There were no differences in the level of ITSN1 in different types of dementia compared 

with the controls (a,b)[(for frontal cortex (FCX): n=10 for control (C), n=8 for non-AD, n=3 

for DLB; and for temporal cortex (TCX): n=10 for control, n=11 for non-AD, n=6 for DLB]. 

However, the level of RCAN1 is elevated in DLB temporal cortex compared with control (c) 

(for frontal cortex: n=9 control and n=8 for non-AD (due to tissue limitations and technical 

difficulties, we only had an n=1 for the frontal cortex from DLB patients, and so left this out 

of the analysis); for temporal cortex: n=10 control, n= 6 for non-AD, n= 3 for DLB; p= 

0.011 for DLB). The representative blots of ITSN1 and RCAN1 protein levels in different 

types of dementia are shown (the “split” lanes are from non-adjacent samples on the blot). 

The box and whisker graphs show median, minimum and maximum values. One way 

ANOVA with Dunnett’s post-hoc test. The RCAN1 measurements for DLB FCX cases (in 

Panel 2c) were not included due to insufficient numbers. *p<0.05.
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Figure 3: Levels of ITSN1-L, ITSN1-S and RCAN1 in AD white blood cells.
Western blotting was performed on homogenates of white blood cells of AD (n=36–50) and 

HC(n=11– 20). a, b and c) There were no differences between the groups for the level of 

ITSN1-L, ITSN1- S and RCAN1. Representative blots are shown. The box and whisker 

graphs show median, minimum and maximum values.
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