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Abstract: Glioblastoma multiforme (GBM) is a lethal malignant tumor accounting for 42% of the
tumors of the central nervous system, the median survival being 15 months. At present, no curative
treatment is available for GBM and new drugs and therapeutic protocols are urgently needed.
In this context, combined therapy appears to be a very interesting approach. The isothiocyanate
sulforaphane (SFN) has been previously shown to induce apoptosis and inhibit the growth and
invasion of GBM cells. On the other hand, the microRNA miR-15b is involved in invasiveness and
proliferation in GBM and its inhibition is associated with the induction of apoptosis. On the basis
of these observations, the objective of the present study was to determine whether a combined
treatment using SFN and a peptide nucleic acid interfering with miR-15b-5p (PNA-a15b) might be
proposed for increasing the pro-apoptotic effects of the single agents. To verify this hypothesis, we
have treated GMB U251 cells with SFN alone, PNA-a15b alone or their combination. The cell viability,
apoptosis and combination index were, respectively, analyzed by calcein staining, annexin-V and
caspase-3/7 assays, and RT-qPCR for genes involved in apoptosis. The efficacy of the PNA-a15b
determined the miR-15b-5p content analyzed by RT-qPCR. The results obtained indicate that SFN and
PNA-a15b synergistically act in inducing the apoptosis of U251 cells. Therefore, the PNA-a15b might
be proposed in a “combo-therapy” associated with SFN. Overall, this study suggests the feasibility of
using combined treatments based on PNAs targeting miRNA involved in GBM and nutraceuticals
able to stimulate apoptosis.

Keywords: peptide nucleic acids; sulforaphane; glioblastoma; microRNAs; miR-15b-5p; miRNA
targeting; combined therapy

1. Introduction

Glioblastoma multiforme (GBM) is a lethal malignant tumor accounting for 42% of
the tumors of the central nervous system, the median survival being 15 months [1–3].
At present, no curative treatment is available for GBM and the most used first-line drug,
temozolomide (TMZ), is only able to cause an increase in the life expectancy of the treated
patients, though this is still not satisfactory [4]. Therefore, new drugs are urgently needed
for determining their possible employment in therapeutic protocols for anti-GBM treat-
ments, also tackling important issues of the GBM management, such as the development of
drug resistance [5–10].

In this context, combined therapy appears to be a very interesting approach for
gliomas and other tumors [11–15]. In the case of combined treatments using drugs and/or
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biomolecules with expected different mechanism(s) of action, it is possible to obtain the
same or an increased biological activity with therapeutic potential using sub-optimal
concentrations of the single drugs. Furthermore, side effects might be significantly lower
when combined treatments are employed [11]. Another very interesting possibility is that
combined treatments might allow us to limit the issue of drug resistance, which is an
impacting feature of several cancers [11,12,15]. In this respect, a high proportion of GBMs
become TMZ-resistant with time [7–10].

Considering the issue of personalized anti-cancer treatments and patient-to-patient
variability in response to drug treatment, combinations of drugs characterized by indepen-
dent actions might be effective in clinical populations, even in the case of a lack of synergism
or additive effects [16]. In fact, as discussed by Palmer et al. [16], each patient will, in this
case, benefit solely from the drug to which his/her tumor is highly sensitive, with no
clinical improvement from the use of the other drug used in combined protocols [16]. In
any case, an increased interest does exist in the development of anti-cancer therapeutic
protocols based on combined treatments [12].

We have recently demonstrated that the treatment of glioblastoma cell lines with
peptide nucleic acids (PNAs) targeting anti-apoptotic microRNAs (miRNAs) leads to the
induction of the apoptosis of glioblastoma cell lines, such as U251 and T98G cell lines.
Peptide nucleic acids, first described by Nielsen et al. [17], are DNA analogues in which
the sugar–phosphate backbone has been replaced by N-(2-aminoethyl)-glycine units [18].
Despite this important structural change with respect to DNA and RNA, PNAs are capable
of sequence-specific and efficient hybridization, forming Watson–Crick double helices with
complementary DNA and RNA [17]. For this reason, PNAs have been considered in several
biomedical applications, including those that aim to modify gene expression, including an
alteration of the biological activity of microRNAs. For instance, we have demonstrated, in a
first study, that a peptide nucleic acid targeting miR-221-3p (PNA-a221) induces apoptosis
in human glioblastoma U251 cells [19]. In further studies, PNA-a221 was co-delivered
together with temozolomide (TMZ) [20], PNA-a222 (targeting miR-222-3p) [21] or PNA-
a155 (targeting miR-155-5p) [22]. In all cases, increased effects on apoptosis were found
with combined treatments [22].

The rationale for targeting miRNAs is that these short non-coding RNA molecules
act as gene regulators, repressing translation or inducing the cleavage of target RNA
transcripts [23–25]. Emerging evidence suggests that the altered expression of miRNAs
may be involved in the pathogenesis of cancer, including GBM [26,27]. Concerning miRNAs
involved in glioblastoma, miR-15b-5p has been found up-regulated in aggressive gliomas
and its expression correlates with poor prognosis for glioblastoma [26–28]. This observation
confirmed a previous study published by Xiao et al. [29] who found, after univariate and
multivariate Cox regression analysis, two miRNAs (hsa-miR-10b-5p and hsa-miR-15b-5p)
that were predictive of high-risk for poor prognosis in glioblastoma patients [29,30]. The
involvement of miR-15b-5p in other types of cancers has been also reported [31–34].

With respect to combined treatments, sulforaphane (SFN) might be of great interest for
glioblastomas [35–37]. SFN is well established as one of the most important bioactive com-
ponents of broccoli (Brassica oleracea var. Italica) and other cruciferous vegetables [38–41].
SFN is an isothiocyanate generated by the hydrolysis of glucosinolate glucoraphanin by
myrosinase (this enzyme is present in plants and gastrointestinal microflora) [42–45]. Sev-
eral bioactive SFN analogues have been described [46]. In addition, an improvement
of the stability of this compound was obtained after complexation with α-cyclodextrin
(SFX-01) [47].

Interestingly, cruciferous vegetables have been reported to be beneficial for human
health, as in the case of the prevention and therapy of cancer, including GBM [48–50]. The
data available indicated that SFN may find a leading role in the development of therapeutic
strategies for GBM [35–37].

The objective of the present study was to determine whether a combined treatment
of SFN with molecules inhibiting miR-15b-5p might be proposed to increase SFN pro-
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apoptotic effects. In this respect, it should be underlined that a synergistic effect between
SFN and a PNA against miR-15b-5p was found in the colon cancer cell line HT-29 [15]. The
possible application of this strategy to GBM is of great interest, as it is a novel approach
for GBM, and, even for the single treatments, the available data are scarce. In fact, no
data on the effects of PNAs against miR-15b-5p are available on GBM model systems,
and published studies on SFN are present, but none have focused on co-treatment with
miRNA inhibitors.

2. Results
2.1. SFN-Mediated Induction of Apoptosis of Human Glioblastoma U251 Cells

In view of testing a combination of SFN and R8-PNA-a15b, we first analyzed the
effect of an increasing concentration of SFN on U251 cells to establish the contribution
of SFN alone to apoptosis in our cell model. When U251 cells were cultured in the pres-
ence of increasing concentrations of SFN (5–35 µM) for 3 days, cell growth was inhibited
(Figure 1A,B) starting from a 15 µM concentration, and this effect was found to be asso-
ciated with an increase in apoptosis (Figure 1C–F). Apoptosis was confirmed using the
caspase-3/7 (Figure 1C,E) and the annexin-V (Figure 1D,F) assays. In Figure 1C,D, results
from representative experiments are shown, whereas in Figure 1E,F, a summary of the data
gathered from three independent experiments is presented. The vehicle for SFN (DMSO)
exhibited no pro-apoptotic effects. The experiment shown in Figure 1G demonstrates that
the pro-apoptotic effect of SFN is associated with an increase in caspase-3, BAK-1 and
p53 mRNAs (see, in particular, the treatments with 30 µM SFN). Altogether, the results
presented in Figure 1 demonstrate that SFN is a strong inhibitor of the cell growth of
U251 cells (Figure 1A,B) and that this effect is associated with an induction of apoptosis
(Figure 1C–F).
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Figure 1. Effects of increasing concentrations of SFN on human U251 glioblastoma cells. Effects of
SFN on cell growth (A), cell viability, evaluated by calcein AM staining (B), apoptosis (C–F) and
apoptosis-related (Casp-3, BAK-1 and p53) mRNA production (G). Analyses were performed after
3 days of exposure to SFN. (B–D) Representative data. (A,E,F) Summary of three independent
experiments. The data are presented as mean ± S.D. Statistical significance was verified using
one-way ANOVA software (*, significant, p < 0.05; **, highly significant, p < 0.01).

2.2. Targeting miR-15b-5p with the R8-PNA-a15b Molecule Down-Regulated miR-15b-5p and
Induced Inhibition of U251 Cell Growth Associated with Pro-Apoptotic Effects

Considering the fact that the microRNA miR-15b-5p has been found to be up-regulated
in aggressive GBM, and that its expression correlates with poor prognosis [30], we have
designed a PNA (R8-PNA-a15b) able to interact with miR-15b-5p and expected to inhibit
its biological functions. In order to maximize cellular uptake, this PNA molecule was
functionalized with an octoarginine peptide (R8) [19,21]. The set of results obtained are
reported in Figure 2 and show that the treatment of U251 cells with R8-PNA-a15b reduces
miR-15b-5p-specific hybridization (Figure 2A), whereas it does not interfere with the
expression of miR-210-3p, which is used as the internal control. The R8-PNA-a15b was
found to inhibit, to some extent, cell growth (the effect was lower than SFN: compare
Figures 1A and 2B), and to induce apoptosis (Figure 2C–F). In Figure 2C,D, the results
from representative experiments using caspase-3/7 (Figure 2C) and annexin-V (Figure 2D)
assays are shown, whereas, in Figure 2E,F, a summary of the data gathered from three
independent experiments is presented. Data indicate that the treatment with R8-PNA-a15b
is able to induce apoptosis in a dose-dependent manner. No major alteration of U251
morphology was detectable, even when the highest concentrations of R8-PNA-a15b were
employed (Figure 2G).

With respect to miR-15b-5p-specific inhibition, inhibitory effects by R8-PNA-a15b
were reproducibly observed on miR-15b-5p (Figure 2A, black boxes) but not on miR-210-3p
(Figure 2A, gray boxes). In addition, the treatment of U251 cells with an unrelated sequence
R8-PNA caused no biological effects (i.e., no inhibition of cell growth, no inhibition of
miR-15b-5p and no induction of apoptosis) (Figure 3). These results support the conclusion
that the effects of R8-PNA-a15b were specific.
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Figure 2. Effects on human U251 glioblastoma cells of increasing concentrations of R8-PNA-a15b-
5p (a15b). (A) Effects of R8-PNA-a15b-5p on RT-qPCR amplification of miR-15b-5p (black boxes) 
and miR-210-3p (gray boxes). (B) Effects of R8-PNA-a15b on U251 cell growth. (C–F) Effects of R8-
PNA-a15b on apoptosis. Analyses were performed after 3 days of exposure to R8-PNA-a15b. (C,D) 
Representative data of the effects on apoptosis: caspase-3/7 assay (C) and annexin-V assay (D). (G) 
Effects of R8-PNA-a15b on U251 morphology. (A,B,E,F) Summary of three independent experi-
ments. The data are presented as mean ± S.D. Statistical significance was verified using one-way 
ANOVA software (*, significant, p < 0.05; **, highly significant, p < 0.01). 

Figure 2. Effects on human U251 glioblastoma cells of increasing concentrations of R8-PNA-a15b-
5p (a15b). (A) Effects of R8-PNA-a15b-5p on RT-qPCR amplification of miR-15b-5p (black boxes)
and miR-210-3p (gray boxes). (B) Effects of R8-PNA-a15b on U251 cell growth. (C–F) Effects of
R8-PNA-a15b on apoptosis. Analyses were performed after 3 days of exposure to R8-PNA-a15b.
(C,D) Representative data of the effects on apoptosis: caspase-3/7 assay (C) and annexin-V assay
(D). (G) Effects of R8-PNA-a15b on U251 morphology. (A,B,E,F) Summary of three independent
experiments. The data are presented as mean ± S.D. Statistical significance was verified using
one-way ANOVA software (*, significant, p < 0.05; **, highly significant, p < 0.01).
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Figure 3. Effects on U251 cells of increasing concentrations of an unrelated sequence R8-PNA (R8-
PNA-unrel-seq). Effects of this PNA on cell proliferation (A), on miR-15b-5p intracellular content 
(B) and on apoptosis induction (C–F). Apoptosis was evaluated using both caspase-3/7 (C–E) and 
annexin-V (D–F) assays. Analyses were performed after 3 days of exposure to the P R8-PNA-unrel-
seq. (A–D) Summary of three independent experiments. (E,F) Representative data. The data are pre-
sented as mean ± S.D. Statistical significance was verified using one-way ANOVA software. 

  

Figure 3. Effects on U251 cells of increasing concentrations of an unrelated sequence R8-PNA (R8-
PNA-unrel-seq). Effects of this PNA on cell proliferation (A), on miR-15b-5p intracellular content
(B) and on apoptosis induction (C–F). Apoptosis was evaluated using both caspase-3/7 (C–E) and
annexin-V (D–F) assays. Analyses were performed after 3 days of exposure to the R8-PNA-unrel-seq.
(A–D) Summary of three independent experiments. (E,F) Representative data. The data are presented
as mean ± S.D. Statistical significance was verified using one-way ANOVA software.

2.3. Co-Treatment of U251 Cells with R8-PNA-a15b and Sulforaphane: Effects on Cell Growth
and Apoptosis

When the U251 cell line was cultured in the presence of singularly administered
R8-PNA-a15b or SFN and the data obtained were compared with the U251 cell treated
with a combination of R8-PNA-a15b and SFN, cell growth was only slightly inhibited
(Figure 4). This was obtained using two combinations of SFN and R8-PNA-a15b: SFN
20 µM, R8-PNA-a15b 6 µM and SFN 10 µM, R8-PNA-a15b 8 µM.
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reported. (E,F) Evaluation of cell viability: live cells are green stained using calcein-AM assay. U251 

Figure 4. Effects of a combined treatment with R8-PNA-a15b and SFN. (A,B) Effects on in vitro
proliferation of U251 cells. (C,D) Effects on cellular morphology: images at 10× magnification are
reported. (E,F) Evaluation of cell viability: live cells are green stained using calcein-AM assay. U251
glioblastoma cells were untreated, or treated for 3 days with the SFN vehicle DMSO, or with indicated
concentrations of SFN and/or R8-PNA-a15b. (C–F) Representative evaluations. (A,B) Summary of
three independent experiments. The data are presented as mean ± S.D. Statistical significance was
verified using one-way ANOVA software (*, significant, p < 0.05; **, highly significant, p < 0.01).

In both cases, and in agreement with the results shown in Figures 1 and 2, SFN was
found to be more active in inhibiting cell growth. The combined treatment was found to
only slightly increase the anti-proliferative effects of the treatment (a summary of three in-
dependent experiments is shown in Figure 4A,B, whereas representative microphotographs
are shown in Figure 4C–F). The combination based on SFN 20 µM and R8-PNA-a15b 6 µM
was proposed for the following experiments, considering that it leads to a more effective
inhibition of U251 cell growth.



Molecules 2022, 27, 1299 8 of 18

In order to further verify whether SFN and R8-PNA-a15b synergistically induced the
apoptosis of U251 cells, we employed intermediate concentrations of SFN (20 µM, see
Figure 1) and R8-PNA-a15b (6 µM). The results obtained using the caspase-3/7 (Figure 5A,C)
and annexin-V (Figure 5B,D) assays demonstrate that the induction of apoptosis in the
combined treatment was significantly higher with respect to the single administration of
SFN and R8-PNA-a15b.
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Figure 5. Effects of a combined treatment with the R8-PNA-a15b and SFN on apoptosis. Apoptosis
was analyzed by caspase-3/7 (A,C) and annexin-V assays (B,D). U251 glioblastoma cells were
untreated, or treated for 3 days with the SFN vehicle DMSO, with 20 µM of SFN, with 6 µM R8-
PNA-a15b or both with 20 µM SFN and 6 µM R8-PNA-a15b. (E) Effects of single and combined
treatments on cell cycle distribution. (A,B,E) Representative experiments. (C,D) Summary of three
independent experiments. The data are presented as mean ± S.D. Statistical significance was verified
using one-way ANOVA software (*, significant, p < 0.05; **, highly significant, p < 0.01). The dotted
lines of panels (C,D) indicate the values of the sum of the single treatments.
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Treatments were carried out for 3 days. Figure 5A,B show representative results
obtained with caspase-3/7 (panel A) and annexin-V (panel B) assays, whereas Figure 5C,D
reports a summary of the data obtained in three independent experiments. In this analysis,
the background values found in the untreated control U251 cells have been subtracted. In
particular, we found that the percentage of apoptotic cells in the combined treatment is
higher than or closer to the sum of the single treatments, identified by the dotted line in
panels C and D of Figure 5, respectively. It should be underlined that the most evident
synergistic effects were found analyzing the % of total apoptotic cells when the caspase-
3/7 assay was performed (Figure 5C) or when late apoptotic/dead cells were analyzed
with both caspase-3/7 and annexin-V assays (see the representative results shown in
Figure 5A,B). A possible explanation is that SFN efficiently activates caspase-3 [51].

In any case, the remarkable high induction of apoptosis in the combined treatment
was fully confirmed by the analysis of the cell cycle, showing a presence of sub-G1 cells
only in the combined treatment performed in the presence of both SFN and R8-PNA-a15b.
In the experiment shown in Figure 5E, the sub-G1 fraction was 13.7% in the combined
treatment, a value higher than 4.9% and 4.5%, exhibited by cell cultures treated with single
administrations of SFN and R8-PNA-a15b, respectively. This result supports the hypothesis
of synergistic effects, as the values of the % of the sub-G1 fraction is higher than the sum of
the values of single treatments.

In order to obtain preliminary information possibly contributing to an explanation
of the synergism between SFN and R8-PNA-a15b in inducing the apoptosis of U251 cells,
experiments analyzing the levels of miR-15b-5p, and caspase-3, BAK-1 and p53 mRNAs
demonstrated that the R8-PNA-a15b (and not SFN) is responsible for the miR-15b-5p
down-regulation in treated U251 cells (Figure 6A) and that SFN (and not the R8-PNA-a15b)
is responsible for the modulation of caspase-3 and BAK-1 mRNAs (Figure 6B). In these
experimental conditions, p53 was not modulated.
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expression of miR-15b-5p (A) and of caspase-3 (black bars), BAK-1 (white bars) and p53 (grey bars)
mRNAs (B). The treatment was carried out for 3 days. The data are presented as mean ± S.D.
Statistical significance was verified using one-way ANOVA software (*, significant, p < 0.05; **, highly
significant, p < 0.01).

2.4. The Effects on Apoptosis of the Co-Treatment of U251 Cells with R8-PNA-a15b and
Sulforaphane Are Synergistic

U251 cells were cultured for three days with 20 µM SFN in the absence or in the
presence of R8-PNA-a15b, and the obtained results were compared to treatments performed
using singularly administered SFN and R8-PNA-a15b. Apoptosis was detected using the
caspase-3/7 assay. In Figure 7A, the predicted (i.e., the sum of the experimental values
obtained after single administrations; upper part of the panel) and obtained (i.e., the
experimental values obtained after combined treatments; lower part of the panel) are
compared. Representative examples of the results are shown in Figure 7C. The results
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of the effects of combined treatments indicate that, in most of the drug combinations
based on the use of the highest sub-optimal doses of SFN and R8-PNA-a15b, an induction
of apoptosis was obtained with a very high efficiency. The obtained levels of apoptosis
in combined treatments were higher than those predicted considering the sum of the
apoptosis values obtained using singularly administered SFN and R8-PNA-a15b (compare
in Figure 7A the tables concerning the predicted and observed values). Strong evidence of
synergism (C.I. < 1) was obtained when the pharmacological additivity was determined by
performing an isobologram analysis and calculating the combination index (C.I.) using the
compuSyn software [52] according to the approach described by Chou and Talalay [53,54]
(see Figure 7B). The most promising evidence of synergism was obtained with SFN 20 µM
and R8-PNA-a15b 6 µM (C.I. = 0.789) and SFN 30 µM and R8-PNA-a15b 4 µM (C.I. = 0.790).
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Figure 7. Synergic effects on apoptosis after combined treatments of U251 glioblastoma cells with SFN
and R8-PNA-a15b. (A) Effects of increasing concentrations of SFN and R8-PNA-a15b on percentage of
apoptotic cells. In the upper table of panel A, the expected proportion of apoptotic cells was predicted
by calculating the sum of the values obtained using singularly administrated drugs. In the lower table
of panel A, the obtained values during the co-treatment procedures are indicated. (B) Isobologram
showing the combination index (C.I.) according to Chou and Talalay [53,54] method obtained by
SFN and R8-PNA-a15b co-treatment. For C.I. calculation, compuSyn software was employed [51].
(C) Representative data of caspase-3/7 assay plots. All of the reported treatments were carried out
for 3 days.
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3. Discussion

Apoptosis has been proposed as a key target in the development of anti-tumor strate-
gies [55–60], and the combination of several molecules involved in different pathways
of apoptosis induction seems to be a promising strategy [61–64]. In this context, peptide
nucleic acids (PNAs) are biomolecules of great interest [17,18] and were recently proposed
in biomedical applications as anti-sense molecules targeting mRNAs, strand-invasion prop-
erties, decoy activity and potential gene editors [18,65]. PNAs have also been proposed as
potent inhibitors of microRNA functions [19]. Since some microRNAs exert anti-apoptotic
effects [66], PNAs interfering with anti-apoptotic miRNAs might be proposed for the de-
velopment of anti-cancer treatments, such as PNAs targeting miR-221-3p, miR-155-5p and
miR-15b-5p, which are strong inducers of the apoptosis of tumor cells [15,19–22].

On the other hand, apoptosis can be induced by a large variety of agents, and has
been proposed as a key target in the development of anti-tumor strategies [55–60]. More
recently, apoptosis was proposed to be induced by sulforaphane (SFN), one of the major
biologically active products in broccoli (Brassica oleracea var. Italica) and other cruciferous
vegetables [67–73]. In fact, sulforaphane was described as a strong inducer of apoptosis
in several tumor systems, including hepatocellular carcinoma [67], prostate cancer [68],
bladder cancer [69], colon cancer [70] and, relevant to the present study, GBM [71–73]. In
this context, the data available indicated that SFN should be considered in the development
of therapeutic strategies for GBM [35–37]. SFN was also employed in combined anti-cancer
treatments [74,75].

The objective of the present study was to determine whether a combined treatment
of SFN with molecules inhibiting miR-15b-5p might be proposed for increasing the SFN
pro-apoptotic effects.

The results obtained clearly indicate that SFN and R8-PNA-15b synergistically act
in inducing the apoptosis of the glioblastoma U251 cell line. In fact, the proportion of
apoptotic cells in combined treatments is higher than the sum of the values obtained using
singularly administered reagents (either SFN or the R8-PNA-a15b).

Our study is of interest when a comparison is made with several studies demonstrat-
ing the therapeutic potential of drug combination in glioblastoma. For example, De La
Rosa et al. demonstrated a synergistic activity of temozolomide, 3-deazaneplanocin A
and panobinostat on glioblastoma cell lines [76]. In another study, Sak et al. reported
increased cytotoxic effects of combined treatments based on the use of alisertib, carboplatin
and irinotecan [77]. Interestingly, the combined treatment should also be considered to
overcome drug resistance, which is a major problem in the management of GBM [21,22].
Our protocol suggests that a combination of a natural product (sulforaphane) and a mi-
croRNA inhibitor (PNA-a15b) is another example of combined treatments for GBM. The
data presented here demonstrate that this combined treatment leads to a very high pro-
portion of apoptotic U251 cells (over 85%). Therefore, R8-PNA-a15b might be proposed in
“combo-therapy” and associated with the use of other pro-apoptotic agents.

Our study has some limits. First of all, only one cell line was employed and no attempt
has been conducted to determine the effects of the SFN/R8-PNA-15b combination on
an in vivo experimental model system. Future experiments should be focused on other
in vitro glioblastoma cell lines, in primary cells from GBM patients as well as on in vivo
experimental model systems. Furthermore, the mechanism of action and target networks
of both miR-15b-5p inhibitor PNAs and SFN should be studied in detail in order to identify
novel molecular targets for therapeutic protocols.

In this respect, we also have to point out that the interplay between SFN and the
R8-PNA-a15b was not clarified in our study. However, preliminary experiments that aimed
to obtain information that possibly contributes to explaining the synergism between SFN
and R8-PNA-a15b in inducing the apoptosis of U251 cells were performed. When the levels
of miR-15b-5p, and caspase-3, BAK-1 and p53 mRNAs were analyzed, the results obtained
indicate a differential activity of R8-PNA-a15b and SFN on the biomolecular markers, sup-
porting the concept that the synergism on pro-apoptotic activity is likely to be associated to a
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differential effect of the single treatments on the overall gene expression. This study should,
in the future, be expanded to other validated targets of miR-15b-5p and SFN. For instance,
miR-15b-5p affects LATS2 [78], PTPN4/STAT3 [79], HPSE2 [80], axin2 [81] and RECK [32]
in human cancers. On the other hand, SFN down-regulates CDK4/CDK6, inhibits tubulin
polymerization [82], inhibits STAT3/HIF-1alpha/VEGF signaling [83], induces ERK1/2
and caspase-3 [51] and targets NRF2 [84] and other transcriptions factors [85].

The findings reported in this study are novel, as no report is available, to our knowl-
edge, on a combination between SFN and miRNA-targeting molecules in GBM. In order to
identify the molecular targets of this combined treatment in glioblastomas, further studies
will be necessary, employing different in vitro established cell lines as well as primary cells
from GBM patients. Finally, in vivo experiments will clarify whether this approach can be
useful for the combo-therapy of GBM patients. While data on PNA-a15b are not available,
the SFN concentrations used in our study are in line with those reported in studies in
which in vitro and in vivo evaluations have been performed. For example, in the study
by Bijangi-Vishehsaraei et al. [37] oral gavage delivery at 100 mg/kg of SFN significantly
decreases the growth of ectopic GBM10 xenografts. In their study, the in vitro biological
activity of SFN (i.e., reduction in survival and induction of apoptosis) was obtained using
10–50 µM concentrations.

Our study might encourage clinical trials focusing on the evaluation of the safety,
tolerability and preliminary efficacy of peptide nucleic acid administered to patients, as
in the case of NCT05212532 and NCT00127517, based on a PNA (EOM613/AVR 118)
exhibiting immunomodulatory, antiviral and anticancer properties [86]. In this respect,
several clinical studies based on SFN administration to cancer patients have been proposed,
such as NCT03232138 (lung cancer), NCT01228084 (prostate cancer), NCT00982319 (breast
cancer) and NCT01568996 (melanoma).

4. Materials and Methods
4.1. Reagents

All the chemicals and reagents were of analytical grade. For stock solutions of SFN
(D,L-Sulforaphane, 574215-25MG, Merck Millipore, Burlington, MA, USA), 150 mM SFN
in DMSO (D8418, Sigma-Aldrich, St. Louis, MI, USA) was prepared and stored at −20 ◦C
(protected from light). The stock solutions of SFN were diluted 1:10 in DMSO just before use.

4.2. Synthesis of PNAs

The synthesis and chemical characterization of the R8-PNA-a15b (H-R8-TGT AAA
CCA TGA TGT GCT-Gly-NH2) has been described elsewhere [15]. The R8-PNA-a15b was
synthesized with an automatic synthesizer Syro I following a Fmoc protocol on a glycine
pre-loaded resin (Fmoc-Gly-Rink amide ChemMatrix resin). After synthesis, PNA was
precipitated in diethyl ether and purified in reverse phase HPLC as described [15]. The
identity of the PNA was checked with UPLC-ESI system. The synthesis of PNA with an
unrelated sequence (R8-PNA-unrel-seq, H-R8-TATCCAGTCAAGATCTAA-Gly-NH2) was
similarly performed.

4.3. Cell Culture Conditions

U251 [87] cells were cultured in humidified atmosphere of 5% CO2/air in RPMI 1640
medium with L-Glutammine (EuroClone, Pero, Milano, Italy) supplemented with 10% fetal
bovine serum (FBS, Biowest, Nuaillé, France), 100 units/mL penicillin and 100 µg/mL
streptomycin (Pen-Strep, Sigma-Aldrich, St. Louis, MI, USA). U251 growth was monitored
by determining the cell number/mL using a Z2 Coulter Counter (Coulter Electronics,
Hialeah, FL, USA).

4.4. Cell Viability Determination

Cellular viability was analyzed by staining with calcein-AM (C1430; Thermo Fischer
Scientific, Waltham, MA, USA) at final concentration of 500 nM. Cells were incubated for
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30 min at 37 ◦C, washed twice with DPBS and visualized under a fluorescence microscope
(Nikon Eclipse, Nikon Corporation, Minato, Tokyo, Japan). Viable cells were stained
in green.

4.5. RNA Extraction

Cells were trypsinized (0.05% trypsin and 0.02% EDTA; Sigma-Aldrich, St. Louis, MI,
USA), collected by centrifugation at 1200 rpm for 8 min at 4 ◦C, washed twice with DPBS
1X (Gibco, Thermo Fischer Scientific, Waltham, MA, USA) and lysed with Tri-Reagent
(Sigma Aldrich, St. Louis, MI, USA), according to manufacturer’s instructions. The isolated
RNA was washed once with cold 75% ethanol, dried and dissolved in nuclease free water.
Obtained RNA was stored at −80 ◦C until use [15].

4.6. Quantitative Analyses of miRNAs

MicroRNA quantification was performed by real-time RT-qPCR and miRNA-specific
primers and probes (Table 1) obtained from Applied Biosystems. Reverse transcriptase (RT)
reactions were performed using TaqMan MicroRNA Reverse Transcription Kit (Applied
Biosystems, Thermo Fischer Scientific, Waltham, MA, USA) according to the manufac-
turer’s protocol. All RT reactions, no-template controls and RT-minus controls were run
in duplicate using TaqMan Universal PCR Master Mix, no AmpErase UNG 2X (Applied
Biosystems, Thermo Fischer Scientific, Waltham, MA, USA) and the CFX96 Touch Real-
Time PCR Detection System (BioRad, Hercules, CA, USA), as described elsewhere [15]. The
Bio-Rad CFX Manager Software (Bio-Rad, Hercules, CA, USA) was used to collect and
analyze data. The relative expression was calculated using the comparative cycle threshold
method, and snRNA U6 and hsa-let-7c-5p were used as reference sequences, as previously
reported [15,19,20].

Table 1. List of assays employed for miRNA detection.

Target Name Assay ID

hsa-miR-15b-5p 000390

hsa-miR-210-3p 000524

hsa-snRNA U6 001973

hsa-let7c-5p 000379

4.7. Analysis of Apoptosis-Related Genes by RT-qPCR

The expression of genes involved in apoptotic pathway was verified by RT-qPCR,
as described elsewhere [19–22]. RNA was reverse-transcribed using random hexam-
ers and TaqMan Reverse Transcription PCR Kit (Thermo Fischer Scientific, Waltham,
MA, USA). The quantitative real-time PCR (qPCR) assays were performed using gene-
specific fluorescently labeled probes. The assays used that were specific for caspase-3
(assay ID: Hs.PT56a.24277143), p53 (assay ID: Hs.PT.58.123122) and BAK1 (assay ID:
Hs.PT.56a.40435467) [88–90] were purchased from IDT (Integrated DNA Technologies,
Coralville, IA, USA). The relative mRNA content was calculated using the comparative
cycle threshold method, and fold change was calculated as 2−∆∆CT. The internal reference
sequence was the human RPL13A (Thermo Fischer Scientific, Waltham, MA, USA, assay
ID: Hs04194366_g1). All RT-qPCR reactions were performed in duplicate, as reported
elsewhere [15,17].

4.8. Analysis of Apoptosis

Apoptosis assays were performed as described elsewhere using the Muse Cell Ana-
lyzer instrument (Millipore Corporation, Billerica, MA, USA). The Muse Annexin V & Dead
Cell Kit and the Muse Caspase-3/7 Kit were employed [15,17]. These assays differentiate
viable non-apoptotic cells from early apoptotic, late apoptotic and dead cells.
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4.9. Analysis of the Combined Treatment with SFN and R8-PNA-a15b

The analysis of the combined treatments was carried out using the method developed
by Chou and Talalay [53,54]. The combination index (C.I.) was calculated using the Com-
puSyn tool for drug synergy analysis (freely available). The Compusyn software defines
the effects as synergic when the interactions between the drugs exhibit a C.I. value less than
1; C.I. values lower than 0.5 indicate strong synergic effects of the combined treatments. By
contrast, C.I. values close to 1 indicate additive effects and values higher than 1 indicate
antagonistic effects [52].

4.10. Statistics

All the data were normally distributed and presented as mean ± S.D. Statistical
differences between groups were compared using one-way ANOVA (analyses of variance
between groups) software. Statistical differences were considered significant when p < 0.05
(*), and highly significant when p < 0.01 (**).

5. Conclusions

The data presented in the present study strongly support the concept that the combined
treatment of tumor cells with PNA targeting microRNAs (in this study, a PNA targeting
miR-15b-5p) and anti-tumor agents (in this study, sulforaphane) is a promising approach to
develop experimental protocols that are finalized to increase the efficacy of the treatments
and to limit, at least in theory, the side effects of the employed drugs. However, before
proposing this approach for clinical trials, some issues should be analyzed: (a) preclinical
studies using GBM animal models to test the efficacy of the combined therapy, including
the use of suitable delivery strategies; (b) the concentrations of SFN and R8-PNA-a15b in
combined treatments, to be further analyzed to verify whether a sub-µM range could still
be effective; (c) omics analyses, to identify concentrations causing minimal alterations of
transcriptomics and proteomics in treated GBM cells.
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