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By virtue of its complexity, realistic approaches to describe diffusion in cellular media require the employment of computational
methods. Among others, this type of studies has shown that the apparent diffusion coefficient of a macromolecular solute through
a cytoplasmic-like medium exhibits a power-law dependence with the excluded volume. Power laws are ubiquitous findings in
diverse systems, such as metabolic processes, population dynamics, and communication networks, and have been the object of
many interpretative formal approaches. This study introduces a diagrammatic algorithm, inspired in previous ones employed to
analyze multicyclic chemical systems, to derive expressions for nonhomogeneous diffusion coefficients and to study the effects of
volume exclusion. A most noteworthy result of this work is that midsize diagrams of nonhomogeneous diffusion are already able
to exhibit an approximate power-law dependence of the diffusion coefficient with the excluded volume. The employment of the
diagrammatic method for the analysis of simple situations may thus prove useful to interpret some properties of larger network
systems.

1. Introduction

The cellular compartment is a highly crowded medium of
great structural heterogeneity [1–4]. Due to this complexity,
the realistic approaches to represent diffusion in cellular
media usually employ computational simulations [5–10].
Among other properties, this type of studies has shown that
the apparent diffusion coefficient of a macromolecular solute
through a cytoplasmic-like medium exhibits a power-law
dependence with the excluded volume [8], in agreement
with theoretical predictions from the study of mechanical
models of polymers in solution [11–13] and consistent with
experimental evidence [14–17]. Power laws are ubiquitous
findings in many different types of processes, ranging from
metabolism to communication networks, and have been the
subject of many interpretative formal approaches (e.g., [18–
20]). For a thorough revision and a historical perspective of
this topic, the reader should see the articles in Newman et al.
[21], and more recent surveys can be found in Clauset et al.
[22] and Pinto et al. [23].

The general objective of this study is to contribute to the
formal analysis of diffusion of solutes in cellular media. The
specific purposes are to introduce a diagrammatic algorithm

to derive explicit expressions of nonhomogeneous diffusion
coefficients and to employ this method to study the depen-
dence of the diffusion coefficient with the excluded volume.
Since this work is not intended to contribute with complex
realistic examples of nonhomogeneous diffusion but to intro-
duce a formalism to interpret some basic aspects of this type
of processes, the models analyzed here are relatively simple.
Nevertheless, they already embody some properties charac-
teristic of systems with a high degree of complexity, such as
the aforementioned power-law dependence of the apparent
diffusion coefficient with the excluded volume.

2. Diagrammatic Method for the Derivation
of the Diffusion Coefficient of Solute
Transport in Nonhomogeneous Media

The diagrammatic method was originally developed to ana-
lyze steady-state kinetics in chemical systems of intermediate
complexity [24, 25] and was further employed to interpret
diverse biochemical and biophysical processes, for instance,
water and solute transport through biological membranes
[26, 27]. As shownhere, themethod can be extended to obtain
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diffusion coefficients of steady-state diffusion in nonho-
mogeneous media. For this purpose, the nonhomogeneous
medium is conceived as a network of transitions between
selected positions or nodes, each one characterized by a
specific concentration of the diffusing species. Discrete net-
work approaches to represent nonhomogeneous processes of
transport have been employed, for example, to understand
the basic aspects of percolation [28]. The multicompartment
representation adopted in this study permits expressing the
transition of the solute between nodes via kinetic expressions.
This type of strategies has been utilized, for instance, to
understand the role of diffusion in brain processes [29] and
to describe sarcomeric calcium movement [30].

The flux of a permeating species through amembrane has
been classically analyzed assuming the existence of a series
of potential energy barriers. In this one-dimensional case,
the kinetic formalism permits obtaining explicit expressions
for the net flux in terms of the kinetic constants of jumping
between neighbor positions in a rather straightforward fash-
ion [31]. Similarly, the flux of a solute through a two- or three-
dimensional nonhomogeneous medium can be conceived
as mediated by transitions between positions separated by
potential energy barriers. As mentioned, in these situations
the derivation of explicit expressions for the solute fluxes
may benefit from the employment of a simplifying algorithm,
such as the diagram method proposed in this study. Instead
of deriving general expressions, the procedure to obtain a
kinetic expression for the nonhomogeneous diffusion coef-
ficient is illustrated here employing the diagram shown in
Figure 1(a). The basic assumption is that the diffusion of a
solute between positions “𝑎” and “𝑏” only occurs via one or
more specific paths that connect intermediate positions or
nodes. As in chemical kinetics, the transitions connecting
two neighbor positions are governed by rate constants. This
work assumes that, for each transition, the rate constants in
the two directions are equal. This assumption guarantees the
accomplishment of the detailed balance condition in all of
the cases. In steady state, the entrance flux into node 𝑎 equals
the exit flux at node 𝑏. The concentrations of the transported
substance in these nodes (𝐶

𝑎
and𝐶

𝑏
) and in the intermediate

nodes (𝐶
𝑐
and 𝐶

𝑑
) are determined by the externally imposed

steady-state flux (𝐽) and by the rate constants (𝑘
1
, 𝑘
2
, . . .).The

rate constants (𝑘’s) have dimensions LT−1.
For the model of Figure 1(a), characterized by different

connected paths between nodes 𝑎 and 𝑏, an adaptation of
Hill’s diagrammatic algorithm [25]may prove useful to derive
the diffusion coefficient. In this context, the transition fluxes
(𝐽
1
, 𝐽
2
, . . .) can be defined as

𝐽
1
= 𝑘
1
(𝐶
𝑎
− 𝐶
𝑐
) ; 𝐽

2
= 𝑘
2
(𝐶
𝑐
− 𝐶
𝑏
) ;

𝐽
3
= 𝑘
3
(𝐶
𝑎
− 𝐶
𝑑
) ; 𝐽

4
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4
(𝐶
𝑑
− 𝐶
𝑏
) ;

𝐽
5
= 𝑘
5
(𝐶
𝑑
− 𝐶
𝑐
) .

(1a)

In steady state, the following relations between the transition
fluxes and the steady-state flux 𝐽 hold:

𝐽
2
= 𝐽
1
+ 𝐽
5
; 𝐽

4
= 𝐽
3
− 𝐽
5
, 𝐽 = 𝐽

1
+ 𝐽
3
= 𝐽
2
+ 𝐽
4
.

(1b)
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Figure 1: (a) and (b) Diagrams representing solute diffusion
between positions “𝑎” and “𝑏”: a two-path model with two transi-
tions each and an intermediate connection (a) and a model with
two independent paths of different lengths (b). 1, 2, . . . , 5 design
transitions, governed by rate constants 𝑘

1
, 𝑘
2
, . . . , 𝑘

5
, respectively.

For each transition, the two directions are governed by the same
rate constant. (c) and (d) Individual paths and their appendages (c)
and directional diagrams connecting positions “𝑎” and “𝑏” (d) for
the model of (a). The corresponding products of rate constants are
shown.

From (1a) and (1b) and after some algebra, 𝐽 can be expressed
as

𝐽 = 𝛿


(𝐶
𝑎
− 𝐶
𝑏
) , (1c)

where 𝛿 has dimensions LT−1 and is given by
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(1d)
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If 𝜆 is the distance between positions 𝑎 and 𝑏, the overall
diffusion coefficient 𝛿may be defined as

𝛿 = 𝛿


𝜆. (1e)

Equation (1d) can be directly obtained by applying the
diagram method to the model of Figure 1(a), since it can be
recognized that the numerator of 𝛿 is the sum of all the
expressions corresponding to the trajectories between 𝑎 and
𝑏 and their appendages (Figure 1(c)), and the denominator
(Δ) is the sum of all the directional diagrams of the model
leading to nodes 𝑎 and 𝑏 (Figure 1(d)). This is a general
property, ultimately a consequence of the accomplishment
of the theorems of cyclic kinetic diagrams functioning in
steady-state [25]. It can thus be employed to obtain the
diffusion coefficient of any transport process represented by a
discrete diagram. For the case of midsize models, such as the
one of Figure 1(a), the determination of diffusion coefficients
employing the diagrammethod results inmore practical than
explicit algebraic calculations.

If transition 5 does not exist (i.e., 𝑘
5
= 0), the model

of Figure 1(a) becomes a two-parallel-path model, and the
diffusion coefficient ((1d)-(1e)) is given by

𝛿

𝜆

=
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)
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3
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4
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] .

(2)

As can be seen, in this case 𝛿 is the sum of two diffusion
coefficients, corresponding to each one of the independent
(i.e., not interconnected) parallel paths. Equation (2) can
be generalized to a diagram with an arbitrary number of
independent paths connecting nodes 𝑎 and 𝑏, where the
overall diffusion coefficient corresponds to the sum of the
diffusion coefficients of all the individual paths.

3. Effect of the Excluded Volume on
the Diffusion Coefficient

As mentioned above, computer simulations of diffusion of
small macromolecular tracers through complex nonhomo-
geneous media have empirically shown that the effect of the
excluded volume is to determine a power-law dependence
of the diffusion coefficient [8], a result that agrees well with
predictions from theoretical studies of mechanical models
[11–13] and with experimental evidence [14–17]. The present
work now explores whether simple diagrams of nonhomoge-
neous solute diffusion already exhibit this property. For the
case of the model shown in Figure 2(a), gradual suppression
of the intermediate transitions determines increasing degrees
of excluded volume. For this case, since there are four
transitions, this procedure permits obtaining subdiagrams
(SDs) for excluded volume (EV) values varying by units of
one-fourth: 0, 1/4, 2/4, 3/4, and 4/4. For each one of these EV
values, Table 5(a) shows all the corresponding resulting SDs.
As can be easily concluded, the total number of SDs for each
EV value can be obtained from the combinations formula as

Model Reference model

a ab b

(a)

aa

a a

b

b b

b

(b1)

(b2)

(b)

a b

(c)

Figure 2: Diagrams of solute diffusion between “𝑎” and “𝑏”:
two models with four transitions (a), multipath models with six
transitions (b), and a single-path model with six transitions (c). In
each case, the “referencemodels” are employed to derive expressions
for the diffusion coefficients of the “models” (see main text).

𝑛!/[(𝑛−𝑟)!𝑟!], where 𝑛 is the total number of transitions in the
original diagram and 𝑟 the number of excluded transitions.
In this simple case, the diffusion coefficient of each SD can be
obtained either by direct algebraic calculus or by employing
the diagram method illustrated above. Assuming that 𝜆 = 1
and 𝑘

1
= 𝑘
2
= 𝑘
3
= 𝑘
4
= 𝑘 = 1 (in their corresponding

units), Table 5(a) shows the values of 𝛿 obtained for each one
of the resulting SDs. The average diffusion coefficient (𝛿∗)
for each value of EV can therefore be determined. Thus, for
instance, for EV = 2/4, 𝛿∗

2/4
= [(2 × 0.5) + (4 × 0)]/6 = 1/6.

For the case that EV = 0, 𝛿∗
0
corresponds to the diffusion

coefficient of the original model. Table 1 lists the average
diffusion coefficients calculated for all the EVs for the model
(𝛿∗) and reference model (𝛿∗

𝑅
) shown in Figure 2(a). For

the calculations, each one of the resulting subdiagrams can
be treated independently. From inspection, it can readily be
recognized that there are “equivalent” subdiagrams, a feature
that simplifies determinations of the average coefficients.

The procedure just described can be employed to obtain
average diffusion coefficients for any diagram, independently
of its size, connectivity, and numerical values of the rate
constants. For example, Table 5(b) contains all the SDs cor-
responding to the diagram of Figure 1(a). In this case, since
the diagram contains five transitions, the EV values change
as 0, 1/5, . . . , 5/5. Similarly to cyclical chemical diagrams, the
degree of complexity increases with the number of interme-
diate nodes and connections in a nonlinear fashion [25]. For
this reason, the diagram method can be applied rather
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Table 1: Average diffusion coefficients of the model (𝛿∗) and
reference model (𝛿∗

𝑅
) shown in Figure 2(a). EV: excluded volume;

ND: not defined.

EV 𝛿
∗ B = 𝛿∗/𝛿∗

0
𝛿
∗

𝑅
B
𝑅
= 𝛿∗
𝑅
/𝛿
∗

𝑅,0
B/B
𝑅

0 1 1 4 1 1
1/4 1/2 1/2 3 3/4 2/3
2/4 1/6 1/6 2 2/4 1/3
3/4 0 0 1 1/4 0
4/4 0 0 0 0 ND

Table 2: Average diffusion coefficients of the model (𝛿∗) and
reference model (𝛿∗

𝑅
) shown in Figure 2(b)(b1). EV and ND are as

in Table 1.

EV 𝛿
∗ B = 𝛿∗/𝛿∗

0
𝛿
∗

𝑅
B
𝑅
= 𝛿∗
𝑅
/𝛿
∗

𝑅,0
B/B
𝑅

0 1.5 1 6 1 1
1/6 1 2/3 5 5/6 4/5
2/6 6/10 2/5 4 4/6 3/5
3/6 3/10 1/5 3 3/6 2/5
4/6 1/10 1/15 2 2/6 1/5
5/6 0 0 1 1/6 0
6/6 0 0 0 0 ND

straightforwardly to midsize diagrams of nonhomogeneous
diffusion but becomes significantly involved for larger dia-
grams. Further examples of average diffusion coefficients
obtained under the assumption that 𝜆 and all the rate con-
stants equal 1 are shown in Tables 2, 3, and 4. Some of the data
of these tables are employed to obtain the plots of Figure 3.
Also, this figure includes approximations to the average
diffusion coefficients (𝛿∗app) obtained using the power law:

𝛿
∗

app

𝛿
∗

0

= (1 − EV)𝛼 . (3)

For these approximations, 𝛼 was calculated employing the
procedures described below. Figure 3 reveals that, in the cases
considered here, the average diffusion coefficients depend
on the excluded volume approximately following a power-
law dependence. In what follows, this work provides an
interpretation of this finding.

4. Approximation by Power Laws to the
EV-Dependence of the Diffusion Coefficient

The simplest models to consider are the ones that have non-
interconnected paths of equal length. From the data of Table 1
it can be recognized that, for the model of Figure 2(a),

B
B
𝑅

= 1 − 𝑏EV, with 𝑏 = 4
3

, (4)

whereB andB
𝑅
are defined in the table.

SinceB
𝑅
= 1 − EV, from (4) we obtain

B = (1 − EV) (1 − 4
3

EV) = 1 − 7
3

EV + 4
3

EV2. (5)

Table 3: Average diffusion coefficients of the model (𝛿∗) and
reference model (𝛿∗

𝑅
) shown in Figure 2(b)(b2). EV and ND are as

in Table 1.

EV 𝛿
∗ B = 𝛿∗/𝛿∗

0
𝛿
∗

𝑅
B
𝑅
= 𝛿∗
𝑅
/𝛿
∗

𝑅,0
B/B
𝑅

0 2/3 1 1.5 1 1
1/6 1/3 1/2 1 2/3 3/4
2/6 2/15 1/5 6/10 2/5 2/4
3/6 1/30 1/20 3/10 1/5 1/4
4/6 0 0 1/10 1/15 0
5/6 0 0 0 0 ND
6/6 0 0 0 0 ND

Table 4: Average diffusion coefficients of the submodel containing
transition 5 (B∗

5+
), submodel lacking transition 5 (B∗

5−
), and com-

plete model (B∗) shown in Figure 1(a). EV is as in Table 1.

EV B∗
5+

B∗
5−

B∗

0 1 0 1
1/5 3/5 1 17/25
2/5 5/18 1/2 11/30
3/5 0 1/6 1/10
4/5 0 0 0
5/5 0 0 0

Excluding higher-order terms in (5), we can approximate its
logarithm by

log(1 − 7
3

EV) ∼ −7
3

EV. (6)

Taking logarithms of (4) and approximating them, we obtain

log [(1 − EV)𝛼] = 𝛼 log (1 − EV) ∼ −𝛼EV. (7)

From (6) and (7), 𝛼 ∼ 7/3. Figure 3(a) shows the plots
obtained for the model of Figure 2(a), employing the direct
data for B of Table 1; (3) with 𝛼 = 7/3 = 2.33 and 𝛼 = 1;
and (5). As can be seen, (3) with 𝛼 = 7/3 provides a good
approximation to the data.

Analogous reasoning permits obtaining, for the model of
Figure 2(b)(b1), the following exact solution for the depen-
dence of the average diffusion coefficient with EV:

B = 1 − 𝑎EV + 𝑏EV2, (8)

where, in this case, 𝑎 = 11/5 and 𝑏 = 6/5.
Figure 3(b) shows the plots obtained for the model of

Figure 2(b)(b1), employing the direct data forB contained in
Table 2; (3) with 𝛼 = 𝑎 = 11/5 = 2.2 and 𝛼 = 1; and (8). As
can be seen, in this case the power law (3) provides a better
approximation to the data than the model of Figure 2(a).

Equation (8) can be generalized to any model with an
arbitrary number of independent two-transition paths. The
generalization permits concluding that if 𝑛 is the total number
of transitions (i.e., 𝑛 is in this case an odd number and 𝑛/2
is the total number of paths), 𝑎 = (2𝑛 − 1)/(𝑛 − 1) and
𝑏 = 𝑛/(𝑛 − 1). From these results, if 𝑛 → ∞, 𝑎 → 2, the
number of transitions per path.
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Table 5: (a) All the subdiagrams obtained from the model of Figure 2(a) by gradual elimination of the four transitions. EV: excluded volume
resulting from the elimination of 0, 1, . . . , 4 transitions (0, 1/4, . . . , 4/4). The figure includes the value of the diffusion coefficient of each
subdiagram for the case that 𝜆 and all the rate constants equal 1. (b) All the subdiagrams obtained for the model of Figure 1(a) by gradual
elimination of the five transitions. EV is as in Table 5(a), but for five transitions.

(a)

EV Subdiagrams and diffusion coefficients

0
𝛿 = 1

1/4
𝛿 = 0.5 𝛿 = 0.5 𝛿 = 0.5 𝛿 = 0.5

2/4
𝛿 = 0.5 𝛿 = 0.5 𝛿 = 0 𝛿 = 0 𝛿 = 0 𝛿 = 0

3/4
𝛿 = 0 𝛿 = 0 𝛿 = 0 𝛿 = 0

4/4
𝛿 = 0

(b)

EV Subdiagrams

0

1/5

2/5

3/5

4/5

5/5

For the case of the model shown in Figure 2(b)(b2),
characterized by independent three-transition paths, the ref-
erence model is the one with the same total number of transi-
tions (six) but with independent two-transition paths. Notice
that this “reference model” is the “model” of Figure 2(b)(b1),
analyzed above. This property and the linear dependence of
B/B
𝑅
with EV (Table 3) permit deriving the following:

B = 1 − 𝑎EV + 𝑏EV2 − 𝑐EV3, (9)

where, in this case, 𝑎 = 37/10, 𝑏 = 45/10, and 𝑐 = 18/10.
Equation (9) is characteristic of all the models only

possessing independent three-transition paths. In this case,
𝑎 = (3𝑛

2

−6𝑛+2)/[(𝑛−1)(𝑛−2)]; 𝑏 = [3𝑛(𝑛−1)]/[(𝑛−1)(𝑛−2)];
and 𝑐 = 𝑛2/[(𝑛 − 1)(𝑛 − 2)]. Thus, if 𝑛 → ∞, 𝑎 → 3, the

number of transitions per path. Figure 3(c) shows the direct
results obtained for the average diffusion coefficients as
functions of EV, assuming that all the rate constants equal
1, for four different six-transition models, connecting nodes
𝑎 and 𝑏 via the following independent paths: (1) six one-
transition paths (reference model of Figure 2(b)(b1)); (2)
three two-transition paths (model of Figure 2(b)(b1)); (3) two
three-transition paths (model of Figure 2(b)(b2)); and (4) one
six-transition path (model of Figure 2(c)). Figures 3(b) and
3(c) suggest that, for the case of models having a total of
six transitions, the coefficient 𝛼 of the approximated power
law acquires values that fall within two limit ones, 1 and 6,
according to the specific model structure.

From the above, generalization permits obtaining the
following equation for networksmade up of 𝑛 total transitions
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0,0

0,2

0,4

0,6

0,8

1,0

Data from Table 1
and (5)

0,0 0,2 0,4 0,6 0,8 1,0
EV

Φ

PL with 𝛼 = 1

PL with 𝛼 = 2.33

(a)

Data from Table 2
and (8)

0,0 0,2 0,4 0,6 0,8 1,0
EV

0,0

0,2

0,4

0,6

0,8

1,0

Φ

PL with 𝛼 = 1

PL with 𝛼 = 2.2

(b)

0,0 0,2 0,4 0,6 0,8 1,0
0,0

0,2

0,4

0,6

0,8

1,0

IV

III
II

I

EV

Φ

(c)

0,0 0,2 0,4 0,6 0,8 1,0

Data from Table 4

EV

0,0

0,2

0,4

0,6

0,8

1,0

Φ

PL with 𝛼 = 1.8

PL with 𝛼 = 2.5

(d)

Figure 3: (a) and (b) Plots of the normalized diffusion coefficient (B) versus the excluded volume (EV) for the models of Figures 2(a) (a)
and 2(b)(b1) (b). Figure 3(a) employs the direct data for B contained in Table 1; (3) with 𝛼 = 7/3 and 𝛼 = 1; and (5). Figure 3(b) employs
the direct data for B contained in Table 2; (3) with 𝛼 = 11/5 and 𝛼 = 1; and (8). (c) Similar to (a) and (b), but for the reference model (I)
and model (II) of Figure 2(b)(b1); the model of Figure 2(b)(b2) (III) and the model of Figure 2(c) (IV). (d) Similar to (c), but for the model
of Figure 1(a), employing direct data from Table 4, and (3) with 𝛼 = 1.8 and 2.5. [B = 𝛿∗/𝛿∗

0
, where 𝛿∗ is the average diffusion coefficient and

𝛿
∗

0
is 𝛿∗ for EV = 0; PL: power law, (3); 𝜆 and all the rate constants equal 1].

and independent paths with the same number (𝑚) of transi-
tions per path:

B = (1 − 𝑎
0
EV) (1 − 𝑎

1
EV) (1 − 𝑎

2
EV) ⋅ ⋅ ⋅ (1 − 𝑎

𝑚−1
EV) ,

with 𝑎
𝑖
=

𝑛

(𝑛 − 𝑖)

, 𝑖 = 0, 1, 2, . . . , 𝑚 − 1.

(10a)

From (10a), 𝑎 is given by

𝑎 = 𝑎
0
+ 𝑎
1
+ ⋅ ⋅ ⋅ + 𝑎

𝑚−1
. (10b)

Thus, for these networks, the coefficient (𝛼 ∼ 𝑎) of the power
law governing the dependence of the diffusion coefficient
with the excluded volume depends in a rather simple,
straightforward manner on the structural properties of the
diagram.

Figure 1(b) shows the simplest model of nonhomoge-
neous diffusion possessing noninterconnected pathswith dif-
ferent numbers of transitions. For this case, an exact equation
for B can be derived taking as reference model the one
with three independent single-transition paths (not shown).

Following similar procedures as above, we can obtain the
exact solution for the model of Figure 1(b):

B = 1 −
3

2

EV + 1
2

EV2. (11)

In this case, (3) with 𝛼 = 3/2 yields a good approximation
to (11) (not shown). This value falls between the one of any
model possessing only single-transition independent paths
(𝛼 = 1) and the one of models consisting only of independent
two-transition paths (𝛼 ≥ 2, cf. Figures 3(a) and 3(b)).

From the results obtained this far it can be concluded that,
in order to exhibit power-law dependence of the diffusion
coefficient with EV (i.e., with 𝛼 > 1), the nonhomogeneous
diffusion diagram must accomplish two necessary condi-
tions: (i) it must possess more than one path and (ii) it must
at least possess one path with more than one transition.

As an example of models with internal connections, this
work considers the simple model shown in Figure 1(a). As
above, the dependence of the average diffusion coefficient
with the excluded volume can be determined from the anal-
ysis of the subdiagrams (Table 5(b)). Figure 3(d) shows the
corresponding plot (data forB∗ fromTable 4) as well as those
obtained employing (3) with 𝛼 equal to 1.8 and 2.5. As can be
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concluded from the inspection of Figure 1(a) and Table 5(b),
the subdiagrams of this model can be classified into two
categories, according to whether they contain transition 5 or
not.The twomodel categories can be analyzed independently
to obtain the average diffusion coefficients (Table 4). Notice
that the model obtained from the one of Figure 1(a) by
excluding transition 5 is equivalent to the one of Figure 2(a),
analyzed above (cf. Table 1). Employing similar procedures
as above, the following expression can be derived to account
for the dependence of the average diffusion coefficient of the
model and submodels containing transition 5 (B∗

5+
) with the

excluded volume:

B∗
5+
= 1 −

79

36

EV + 30
36

EV2. (12)

From inspection of Figure 3(d) it can be concluded that, for
the case of the model shown in Figure 1(a), the dependence
of the average diffusion coefficient with EV transits from a
power-law approximation with 𝛼 = 1.8 for low EV values to
onewith𝛼 = 2, 5 for highEVvalues. A possible interpretation
of this finding is that, at low EV values, the submodels with
transition 5 dominate the EV-dependence (notice that 𝛼 =
1.8 ∼ 79/36) whereas the dependence is dominated by the
submodels lacking transition 5 at higher EV values (𝛼 = 2.5 ∼
7/3, cf. (5)–(7)).Thus, models with inner connections exhibit
complex dependence of the average diffusion coefficient with
EV, described by power laws with variable coefficients.

5. Conclusions

This study has extended the diagram method of chemical
kinetics to nonhomogeneous diffusion. For any network of
paths connecting two nodes, the method permits obtaining
the diffusion coefficient of steady-state solute transport. The-
oretical studies of mechanical models of polymers in solution
and computer simulations of nonhomogeneous diffusion
have predicted power-law dependence of the apparent diffu-
sion coefficient with the excluded volume.The diagrammatic
analysis has been employed here to reveal that models rela-
tively simple by comparisonwith realistic ones already exhibit
this property. Thus, the diagrammatic analysis of diffusion
models of intermediate complexity may provide a basis to
interpret properties at a more complex level. This formalism
may become helpful to confront evidence in contexts other
than solute diffusion, such as the flow of information through
communication networks or the propagation of epidemics in
a population.
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