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Gene expression patterns in synchronized islet populations
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ABSTRACT
In vivo levels of insulin are oscillatory with a period of ~5–10 minutes, indicating that the islets of
Langerhans within the pancreas are synchronized. While the synchronizing factors are still under
investigation, one result of this behavior is expected to be coordinated and oscillatory intracellular
factors, such as intracellular Ca2+ levels, throughout the islet population. In other cell types, oscillatory
intracellular signals, like intracellular Ca2+, have been shown to affect specific gene expression. To test
how the gene expression landscape may differ between a synchronized islet population with its
reproducible intracellular oscillations and an unsynchronized islet population with heterogeneous
oscillations, gene set enrichment analysis (GSEA) was used to compare an islet population that had
been synchronized using a glucose wave with a 5-min period, and an unsynchronized islet population.
In the population exposed to the glucose wave, 58/62 islets showed synchronization as evidenced by
coordinated intracellular Ca2+ oscillations with an average oscillation period of 5.1 min, while in the
unsynchronized population 29/62 islets showed slow oscillations with an average period of 5.2 min. The
synchronized islets also had a significantly smaller drift of their oscillation period during the experiment
as compared to the unsynchronized population. GSEA indicated that the synchronized population had
reduced expression of gene sets related to protein translation, protein turnover, energy expenditure,
and insulin synthesis, while those that were related to maintenance of cell morphology were increased.
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Introduction

Pancreatic islets are key modulators of glucose home-
ostasis through the release of insulin and other
hormones.1 Secretion of these hormones is dynamic
occurring in an oscillatory secretion rhythm that
encompasses timescales from minutes to hours.
While circadian2 and ultradian3 insulin oscillations
are responsible for the longer timescale dynamics,
the rapid pulses observed in vivowith periods ranging
from 5- to 10-min4-7 are less characterized. Notably, it
has been shown that diminished insulin oscillations
are one of the first observable features of type 2
diabetes.8

One long standing hypothesis of how the numer-
ous islets in the pancreas synchronize to produce the
in vivo oscillations is through classic insulin-glucose
feedback loops, which would result in oscillatory
glucose and insulin levels, both of which have been
observed.9-12 This hypothesis has been tested using
a microfluidic system where glucose was delivered to
a population of islets with the levels iteratively

adjusted by a mathematical model that mimicked
insulin-dependent glucose uptake.12With the appro-
priate parameters of the model, the islets synchro-
nized resulting in population level oscillations of
insulin secretion and glucose levels. The average
period to which the system converged was ~5 min,
similar to the period of insulin secretion observed
in vivo.

In this manuscript, we explore if a synchronized
islet population has a different gene expression com-
pared to an unsynchronized islet population. The
reason for this exploration is that a synchronized
islet population has been shown to not only produce
a coherent insulin output, but also synchronized
intracellular metabolites, including, some that have
been shown in other cellular systems to affect gene
expression levels, for example, Ca2+ oscillations.13-16

Synchronization would be expected to not only force
some islets to oscillate at a different frequency than
their natural frequency, but it would also produce
a more consistent oscillation period in these
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intracellular signals than a non-synchronized popu-
lation due to the driving rhythm.We expect that this
consistent and unique oscillation frequency in the
synchronized population would result in different
gene expression patterns than islets in the non-
synchronized population which would experience
more irregular dynamics. Changes in gene expres-
sion could shed light on the effects and possible
benefits of islet synchronization at the cellular level.

To investigate the effect of synchronization on
islet gene expression, an islet population was syn-
chronized by delivering a 5-min period, 11 ± 1 mM
glucose wave,17,18 lysed, and gene expression levels
measured using microarray analysis. A control
group of islets were similarly exposed to 11 mM
glucose, but without a wave, lysed, and levels mea-
sured using a microarray. Gene set enrichment
analysis19,20 (GSEA) was performed to evaluate
gene expression patterns and states. The results
indicated that the synchronized population had
reduced expression of gene sets related to protein
translation, protein turnover, energy expenditure,
and insulin synthesis, while those that were related
to maintenance of cell morphology were increased.

Materials and methods

Chemical reagents and supplies

Cosmic calf serum, dimethyl sulfoxide (DMSO),
fluorescein, 4-(2-hydroxyethyl)-1-piperazineetha-
nesulfonic acid (HEPES), MgCl2, NaCl, pluronic
F-127, RPMI 1640, and an antibiotic/antimycotic
solution were obtained from Sigma-Aldrich
(St. Louis, MO). Dextrose was obtained from
Fisher Scientific (Pittsburgh, PA). CaCl2, KCl,
and NaOH were obtained from EMD Chemicals
(Gibbstown, NJ). Fura-2 acetoxymethyl ester
(Fura-2 AM) was obtained from Invitrogen
(Carlsbad, CA). Poly(dimethyl siloxane) (PDMS)
elastomer kit was obtained from Dow Corning
(Midland, MI).

For all islet stimulation experiments, a balanced
salt solution (BSS) was used. BSS was composed of
125 mM NaCl, 2.4 mM CaCl2, 1.2 mM MgCl2,
5.9 mM KCl, 25 mM HEPES, and adjusted to pH
7.4. The BSS was further supplemented with either
3 or 13 mM glucose. Fura 2-AM stock was pre-
pared by reconstitution in 10 µL of pluronic F127

and 10 µL of DMSO. The prepared stock was
stored protected from light at room temperature.

Isolation and handling of islets of Langerhans

All experiments were performed under guidelines
approved by the Florida State University Animal
Care and Use Committee (ACUC) protocol #1519.
Islets were isolated from 20–40 g male CD-1 mice
(Charles River Laboratories, Wilmington, MA) as
previously described.20,21 Briefly, mice were eutha-
nized by CO2 inhalation. The pancreas was then
inflated by injection of 5 mL of collagenase
through the common bile duct. The inflated pan-
creas was excised and incubated in 5 mL of col-
lagenase solution at 37°C for 10 min. Islets were
picked by hand under a stereomicroscope. Islets
were selected that had a spherical shape, a smooth
surface, indicative of an intact islet membrane, and
a diameter of 50–150 µm. The islets were placed in
RPMI 1640 cell culture media supplemented with
10% cosmic calf serum, and incubated at 37°C, 5%
CO2. For each set of experiments, islets were iso-
lated from at least three mice and equally pooled
from each animal (e.g., 40 islets were taken from
three mice to a total of 120). From this pooled
collection, islets were randomly selected for stimu-
lation and Ca2+ imaging. All experiments were
conducted within two days of isolation.

Experimental setup

Microfluidic devices were made from PDMS and
fabricated using conventional soft lithography.21

The design used in this study was described in
previous work.12 Imaging of Ca2+ was performed
as previously described.12 Briefly, the microfluidic
device was positioned on the stage of a Nikon Ti-S
microscope equipped with a 10X, 0.5 NA objective
(Nikon Instruments, Melville, NY). Excitation was
achieved with a Xenon arc lamp equipped with an
integrated shutter and filter wheel (Sutter
Instruments, Novato, CA). Acquisition was per-
formed on a charge coupled device (CCD) camera
(Photometrics, Tucson, AZ). Nikon NIS Elements
software was used to control the camera, shutter,
and filter wheel. During imaging, excitation was
performed sequentially at 340 ± 5.5 and
380 ± 5.5 nm (Chroma, Bellows Falls, VT).
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Emission was filtered through a 415 nm long pass
dichroic mirror and a 510 ± 20 nm emission filter
(Omega, Brattleboro, VT). The response of islets is
given as a ratio of fluorescence emission generated
from excitation at 340 and 380 nm (F340/F380).
Imaging was performed every 30-s with 100-ms
exposure per excitation channel.

Islet stimulation and imaging

Fura 2-AM was loaded into islets in serum free RPMI
1640medium for 42min in an incubator controlled at
37°C and 5% CO2. After loading with dye, 6 or 7 islets
were placed in the microfluidic device and perfused
with BSS containing 3 mM glucose for 1-min to wash
them free of media. The experiment then commenced
by perfusing islets with BSS containing 3 mM glucose
for 2-min. After 2-min, the glucose challenge was
applied in either a constant manner at 11 mM or as
a sinusoidal wave with a median value of 11 mM, an
amplitude of 1 mM, and a 5-min period. The stimula-
tion was maintained for 80-min.

Following the 82-min experiment, the islets were
extracted and lysed using the Qiagen RNeasy plus
micro kit (Qiagen, Hilden, Germany). The lysate was
homogenized and held at room temperature for 10-
min. The lysate was then flash frozen in liquid N2

and held at −80°C. Once all islet experiments were
completed and the lysates frozen, the samples were
thawed and the total RNA from each sample was
purified using spin columns from the RNeasy plus
micro kit. Purified total RNA was reconstituted in
RNAse-free water. Approximate RNA yields were
15 ng/islet and RIN values of 10.0 were observed
for all samples analyzed. Each glucose stimulation
protocol was performed two more times and the
total RNA from 21 islets were pooled and analyzed
on a single microarray. Islets from different mice
were then stimulated using one of the two glucose
protocols, lysed, and pooled in the same manner for
biological replicates on additional microarrays.
Three Affymetrix Mouse Gene 2.0 ST microarrays
were used for each glucose experimental protocol.

Data analysis

Mouse Gene 2.0 ST CEL files were normalized to
produce gene-level expression values using the

implementation of the Robust Multiarray Average
(RMA)22 in the affy package (version 1.36.1)23

included in the Bioconductor software suite (version
2.12)24 and an Entrez Gene-specific probeset map-
ping (17.0.0) from the Molecular and Behavioral
Neuroscience Institute (Brainarray) at the
University ofMichigan.25, Array quality was assessed
by computing Relative Log Expression (RLE) and
Normalized Unscaled Standard Error (NUSE)
using the affyPLM package (version 1.34.0).26

Principal Component Analysis (PCA) was per-
formed using the prcomp R function with expression
values that had been normalized across all samples to
a mean of zero and a standard deviation of one.
Differential expression was assessed using the mod-
erated (empirical Bayesian) t-test implemented in
the limma package (version 3.14.4). Correction for
multiple hypothesis testing was accomplished using
the Benjamini-Hochberg false discovery rate
(FDR).27 Human homologs of mouse genes were
identified using HomoloGene (version 68).28 All
microarray analyses were performed using the
R environment for statistical computing (version
2.15.1).

GSEA (version 2.2.1)19 was used to identify
biological terms, pathways and processes that
were coordinately up- or down-regulated within
each pairwise comparison. The Entrez Gene iden-
tifiers of the human homologs of the genes inter-
rogated by the array were ranked according to the
moderated t-statistic computed between the two
experimental conditions. Mouse genes with multi-
ple human homologs (or vice versa) were removed
prior to ranking. The ranked list represented only
those human genes that matched exactly one
mouse gene. This ranked list was then used to
perform pre-ranked GSEA analyses (default para-
meters with random seed 1234) using the Entrez
Gene versions of the Hallmark, Biocarta, KEGG,
Reactome, Gene Ontology (GO), and transcription
factor and microRNA motif gene sets obtained
from the Molecular Signatures Database
(MSigDB), version 5.0.20

The overlap between the different nodes was
visualized by the generation of an enrichment
map using the results from the GSEA analysis
which were input into the Cytoscope software
suite (version 3.5.1).29 The map was constructed
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with a cutoff of p < 0.05 and an FDR cutoff of
q < 0.25. The similarity cutoff was 0.5 with a com-
bined constant of 0.5. The MCL cluster algorithm
was used to group the nodes into clusters.

For determination of Ca2+ drift, Fura-2 traces
were analyzed in GraphPad Prism 7 software (La
Jolla, CA) that allowed for interpolation of data
points. The first peak after a stimulus was disre-
garded. The beginning of an oscillation period was
determined as the time point prior to the start of
a peak rise (tstart). The period (p) was defined as the
difference in time between two adjacent start times
(p = tstart+1 – tstart). The periods were then plotted as
a function of elapsed experimental time and a linear
regression was fit to the data. The absolute value of
the slope of the linear regression (Δp/time) to this
plot was defined as the drift. For testing statistical
significance, unless otherwise stated, a paired, two-
tailed t-test was employed. All data used to generate
the figures are provided in a supplementary file.

Results

We expected that islets which were entrained to
a common forcing signal (a glucose wave with
a 5 min period) would have highly synchronized and
regular oscillations of intracellular signals compared
to unforced, and therefore unsynchronized, groups of
islets. These differences in oscillation patterns may
then produce differences in gene expression profiles.
In the experiments described below, the difference in
the synchronized populations, as determined by the
Ca2+ oscillations between synchronized and unsyn-
chronized groups of islets, were quantified, and the
gene expression profiles, as determined by microar-
rays, were evaluated using GSEA.

Characterization of Ca2+ dynamics

We first set out to quantify the difference in Ca2+

oscillation dynamics between synchronized and
unsynchronized populations. While other intracellu-
lar signals could be responsible for differences in the
gene expression profiles between the islet populations,
we examined the intracellular Ca2+ levels for two
reasons: Ca2+ oscillation frequency has been shown
to affect gene expression in other cell types,13-16 and
intracellular Ca2+ has been shown to be coordinated
with other intracellular factors (some examples

include NAD(P)H, and mitochondrial membrane
potential10). As a result, imaging of intracellular Ca2+

serves a probe for multiple intracellular dynamics.
As shown in Figure 1(a), when a population of

islets were exposed to 11 ± 1 mM glucose wave with
a 5-min period, the Ca2+ oscillations from 93.5% of
the islets (58/62) entrained to the glucose wave,
exhibiting a period of 5.1 min (Table 1). This
entrainment persisted throughout the duration of
the experiment resulting in a highly homogenous
population as seen in the heatmap of Figure 1(a).

For the group of islets that were exposed to
a constant glucose concentration, only 46.8% showed
oscillations close to 5-min (average period of 5.2min),
yet they were not synchronized, as can be seen in the
heatmap in Figure 1(b). Representative examples of
the numerous other types of Ca2+ dynamics that were
observed in this group are shown in Figure S1 with all
oscillation types summarized in Table 1. All of these
various oscillationmodes are similar to those that have
been reported elsewhere.30,31 Disregarding the hetero-
geneous Ca2+ dynamics in this group, there was still
a difference in the slow oscillation dynamics between
the two islet populations. This can be seen by the
difference in the standard deviations of the two popu-
lation oscillation periods, with a lower standard devia-
tion in the synchronized islets (0.7 min) as compared
to the non-synchronized population (1.2 min)
(Table 1).

Overall, these data re-confirmed previous
findings7,10,12,17,18,32 that islets exposed to a 5-
min glucose wave are entrained and have high
homogeneity in their Ca2+ response, whereas
islets exposed to a constant glucose dose are
oscillatory, but the individual responses vary
widely. It should be noted that under the oscilla-
tory glucose delivery, the Ca2+ oscillations from
the groups of islets are not only synchronized, but
so is the insulin release. Using a fluorescence
anisotropy immunoassay33, a group of 7 islets
synchronized their insulin release upon exposure
to a 5-min period glucose wave (Figure S2). The
synchronization is observed as coherent pulses of
insulin from the group and is similar to what we
have demonstrated in previous experiments.7,12

Importantly, the islets exposed to a constant glu-
cose level did not only have large heterogeneity in
oscillation dynamics, we also observed that individual
islets within that population did not maintain
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a constant oscillation period throughout the experi-
ment. To showcase this “drift”, the periods of the Ca2+

oscillations from two representative islets given the
two glucose treatments are shown overlapped with
their Fura-2 traces (Figure 2(a,b)). When exposed to
a glucose wave, the islet in Figure 2(a) entrained to the
driving frequency and maintained a constant period.

In contrast, when exposed to a constant glucose level,
the islet in Figure 2(b) also showed slow oscillations,
but the period of its oscillations varied from 8.6 to
4.5 min. The presence of drift was inspected in all
islets showing “slow” oscillations exposed to the wave
(n = 58/62) and constant (n = 29/62) glucose treat-
ments. The average drift was significantly lower for
islets exposed to the glucose wave (0.12 ± 0.01 min-
utes/minute) compared to those exposed to the con-
stant glucose level (0.23 ± 0.02 minutes/minute)
(p = 0.001) (Figure 2(c)).

In summary, the delivery of an oscillatory glucose
level produced the expected entrainment with
homogeneous oscillations from the islet population.
These coherent oscillations had tight distributions of

Figure 1. Effect of glucose profiles on islet response. The administered glucose dose (black trace) is plotted on top of each panel.
The average F340/F380 signal from all islets in each glucose protocol is plotted at the top of the panels in red. The individual islet
signatures are shown in a heatmap. The groupings for the microarrays are delineated with yellow dotted lines. (a) When exposed to
11 ± 1 mM glucose wave with a 5-min period, the islets synchronized as seen by the homogeneous F340/F380 ratio across the
population. (b) When exposed to a constant 11 mM glucose, the islets oscillated at unique periods with different phases to one
another, resulting in an incoherent population.

Table 1. Distribution of oscillation types.
Type Constant Wave

Slow Oscillator (%) 46.8 93.5
Avg (min) 5.2 5.1
SD (min) 1.2 0.7
Compound Oscillator (%) 24 3
Fast Oscillator (%) 15 0
Stopped Oscillating (%) 11 3
Not Oscillating (%) 3 0
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the oscillation period with little drift. Conversely,
islets exposed to a constant glucose level were not
synchronized and produced a wide range and large
drift of oscillation periods. Considering this data,
and with the precedent of oscillation frequency
affecting gene expression,13-16 we continued the
investigation to determine if differences in gene
expressions between the populations were observed.

Differential expression of genes in synchronized
islet populations

To examine gene expression levels, microarray analy-
sis was used to measure mRNA from islets exposed to
the two glucose stimulation protocols. Initial tests on
the array results were performed by principal compo-
nent analysis (Figure S3A). The first component
accounted for 25%of the variability and demonstrated
well-defined separation. Clustering along the second
component was low, but we attribute this to both islet
populations having similar responses to the same dose
of glucose (oscillations with a period of ~5 min). The
larger proportion of low p-values compared to high

p-values (Figure S3B) confirmed differential expres-
sion of genes between synchronized and non-
synchronized islet populations. 400 genes were differ-
entially expressed with p-values < 0.01 and over 2,000
with p-value < 0.05 (Figure S3C). Considering that the
glucose dose was the same for both sets of islets and
that both sets induced oscillations, the finding of only
a small set of differentially expressed genes between
the two treatments is not surprising.

To analyze these data, GSEA was used to compare
the differentially regulated groups of genes between
the two islet populations. Rather than evaluating the
expression at the single gene level, GSEA examines
gene sets corresponding to particular pathways that
were curated and compiled a priori. This grouping
lowers the rate of false positives and increases the
statistical robustness of the experiment.19 This type
of analysis has been shown to be useful in identifying
gene sets associated with diabetic retinopathy,34,35

mature onset diabetes of the young,35 type I and II
diabetes,19 and cancer subtypes36 amongst others.

Several gene sets were found to be statistically
enriched in synchronized islets and a selection is

Figure 2. Analysis of islet calcium signatures. Representative single islet Ca2+ level (gray lines) from an islet exposed to 11 ± 1 mM
glucose wave with a 5-min period (a) and a constant 11 mM glucose level (b). The black hollow circles (o) above the traces are the
measured period for each oscillation and corresponds to the right y-axis. (c). The average drift, calculated as described in the text,
from islets showing a “slow” oscillation mode is given by the gray bars with the error bars corresponding to ± 1 SD. Individual values
of the drift are plotted as black hollow circles (o).
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summarized in Figure 3. The gene sets were filtered
to normalized enrichment scores (NES) > 1.7 and
FDRq < 0.25, which produced 59 sets that were up-
regulated and 286 that were down-regulated in islets
that were synchronized. The three largest gene set
clusters were “G1Organization”, “Biosynthesis”, and
“Membrane, ER and Respiration” with 44, 38 and 30
clustered gene sets, respectively (please see the
enrichment map in Figure 4). Several clusters from
KEGG pathways were found to be differentially
regulated, including up-regulated ECM-receptor
interactions (NES = 1.870) and cytokine-cytokine
receptor interactions (NES = 1.842), while N-glycan
biosynthesis (NES = −2.335) and protein export
(NES = −2.397) were down-regulated. These

findings agreed with several of the Reactome gene
sets. Specifically, the set for tight-junction interac-
tion (NES = 1.840) was up-regulated, and asparagine
N-linked glycosylation (NES = −2.536) was strongly
down-regulated. Other Reactome sets of interest
were unfolded protein response (NES = −2.146)
and Diabetes pathway (NES = −2.146), both down-
regulated. The GO groupings also demonstrated
similar patterns as the other curated gene set data-
bases. The GO terms revealed a down-regulation of
cellular respiration (NES = −1.797) and protein
amino acid n-linked glycosylation (NES = −1.967),
and an up-regulation of cell membrane terms, e.g.
extracellular matrix (NES = 1.676). Several terms
associated with biosynthesis and catabolism were

Figure 3. Overview of GSEA results. Gene sets down-regulated (a) and up-regulated (b) in synchronized islets. Only a set of selected
sets with NES > 1.75 are shown, with the full list available in the Supplementary Information.
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downregulated in entrained islets. Specifically, pro-
tein catabolic processes (NES = −1.841), proteasome
complex (NES = −1.831), metabolism of proteins
(NES = −2.043), translation (NES = −2.050) and
insulin synthesis and processing (NES = −1.979)
gene sets were downregulated. Other down-
regulated metabolism associated sets included TCA
cycle and respiratory electron transport
(NES = −2.108) and respiratory electron transport
(NES = −2.226). Finally, several terms associated
with the endoplasmic reticulum were also found to
be down-regulated: ER to Golgi vesicle mediated
transport (NES = −2.160), endoplasmic reticulum
(NES = – 2.111), ER-golgi intermediate compart-
ment (NES = −2.094), and organelle membrane
(NES = −2.094). A full list of gene sets is available
in the Supplementary Materials.

Discussion

In our study, islet synchronization was achieved using
a glucose wave (11 ± 1 mM) with a 5-min period. We
have used this type of glucose waveform in the past to
mimic an in vivo feedback loop that could be used to
synchronize islets.7,12,17 Similar to these previous
reports, in the experiments described here, we
observed synchronization of islets to the driving fre-
quency when exposed to the glucose wave, and
a heterogeneous and asynchronous population was
observed when exposed to constant 11 mM glucose.
However, we have extended this finding to hypothe-
size that the vastly different oscillation modes and
periodicity between the synchronized and non-
synchronized islets, may produce differential gene
expression between the two groups. While this design
is not an absolute representation of the in vivo

Figure 4. Enrichment map. The enrichment map enables visualization of the general gene expression landscape of the synchronized
population compared to the unsynchronized population. The key is shown in the bottom right of the figure. Each node corresponds
to a gene set from the GSEA data, and the thickness of the lines connecting the nodes is proportional to the number of genes that
overlap in the gene set. Those sets that are up-regulated in the wave treatment are shown in red and those down-regulated are
shown in blue. Clustering among the various gene sets is visualized with circles over the nodes. The clusters are ranked by the
number of common nodes and the rank is shown in parentheses.
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environment, the experiment permitted a specific
insight into the role of synchronization on gene
expression by comparing to the constant glucose treat-
ment. There are other possiblemechanisms for in vivo
synchronization besides glucose oscillations, yet
regardless of how they are synchronized, the result
would still be a synchronized population of islets
with highly homogeneous and periodic oscillations
of intracellular metabolites and signals. For this
exploratory screen, we elected to utilize microarrays
due to their straightforward sample preparation and
data analysis workflow.

Gene sets down-regulated in synchronized islets

GSEA indicated numerous pathways down-
regulated in the synchronized population compared
to the non-synchronized population. Overall,
a general decrease in protein turnover was observed
as indicated by down-regulation of the gene sets for
protein export, proteasome pathway, endoplasmic
reticulum (ER)-related transport, and unfolded pro-
tein response (UPR) (Figure 3(a)). This general
theme was also observed in the enrichment map
(Figure 4) with biosynthesis, ER/respiration, and
localization/transport highly ranked clusters. UPR
is a process that is induced to alleviate proteotoxic
stress due to high levels of protein flux to the ER.37

Excessive activation of the UPR, and an inability to
cope with ER stress, can result in the induction of
apoptotic signaling pathways.38,39 More specific to
islets, UPR pathways induced by high glucose have
been implicated in beta-cell dysfunction and death.39

Furthermore, the ER has well-documented Ca2+

stores, making it a plausible target for the action of
finely-modulated Ca2+ oscillations.

More speculatively, the down-regulated gene
sets in synchronized islets may suggest a state
better adapted to the high glucose environment.
Terms related to protein expression and modifi-
cation (proteasome pathway, translation, meta-
bolism of proteins, and translational initiation)
were all down-regulated indicating lower protein
turnover. Protein synthesis is one of the most
energy-demanding functions in cells40 so the
ability to down regulate these processes could
alleviate energy requirements in order to adapt
to the high glucose environment. Catabolic pro-
cesses were also down-regulated in synchronized

islets (Figure 4). Typically, catabolic pathways
have been found to be activated in times of
nutrient stress to fuel and provide building
blocks for other cellular processes.41,42 It may
be that that these islets are better adapted to
the high glucose environment, resulting in less
recycling of metabolic components.

The synchronized population also exhibited
down-regulation of the electron transport chain
(ETC)-, TCA cycle- and respiration-related gene
sets (Figure 3(a)). In addition to these pathways
being involved in energy production, the ETC is
a primary source of electron leakage and the produc-
tion of reactive oxidative species (ROS). Islets are
known to have low levels of antioxidant enzymes
and are susceptible to damage from elevated levels
of ROS.43 As a result, down-regulation of the ETC-
related pathways may be beneficial by mitigating
ROS production. Several other down-regulated
gene sets in the synchronized population may also
minimize the production of detrimental byproducts.
For example, high protein turnover and UPR-
associated pathways were down-regulated (Figure 3
(a)), and both have been affiliated with fibril and
plaque formation in islets, resulting in failure and
death. Similarly, the formation of glycosaminogly-
cans has been connected with diabetic pathogenesis
and was found to be down-regulated.44

Notably, the diabetes pathway gene set was also
found to be down-regulated in the synchronized
islet population (NES of −2.14 and an FDRq value
of 0.0015) (Figures 3(a) and 4). The majority of the
genes in the set are associated with binding (47.3%)
and catalytic activity (38.2%). Primarily, the down-
regulation of this pathway is attributed to the alle-
viation of Ca2+-dependent cytotoxicity. As noted
before, this may have been a result of the synchro-
nized population showing more oscillatory beha-
vior compared to the heterogeneous responses in
the unsynchronized population.

Gene sets up-regulated in synchronized islets

Among the gene sets that were up-regulated in syn-
chronized islets were pathways related to the control
of cell morphology (Figures 3(b) and 4). For exam-
ple, gene sets for cell adhesion molecules, extracellu-
lar matrix-receptor, and tight-junction interactions
were all up-regulated in the synchronized islet
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population. The upregulation of these gene sets may
be the result of lower Ca2+-dependent excitotoxicity
in this population, which has been shown to be
detrimental to islet morphology and structure.45-47

In other cell types, Ca2+ oscillations were found
to affect the expression of transcription factors and
amplify signaling pathways. In our findings, sev-
eral signaling pathways were also found to be up-
regulated in the synchronized group, notably,
cAMP mediated signaling (Figures 3(b) and 4).
This pathway has specifically been shown to be
involved in amplification of glucose-induced insu-
lin secretion,48 potentially leading to an increased
response under these conditions.

Conclusion and future directions

In this report, in vivo islet synchronization was
mimicked by delivering a low amplitude glucose
wave. It was found that a synchronized islet popula-
tion had a lower drift in oscillation periods due to the
forcing of the glucose wave. Additionally, the forcing
lowered the number of islets with chronically-elevated
Ca2+. In turn, these differences in the dynamics may
have driven differences in gene expression among
these groups, although the exact causative factor is
unknown. There are many caveats to this method of
in vitro synchronization as well as the analysis of gene
expression using microarrays. For example, we have
not considered many other potential inputs that
would occur in vivo, it is unknown how islet isolation
affects islet behavior or gene expression, and we only
examined those genes on the microarray itself.
Nevertheless, the system presented here and the
resulting dynamics made it easy for this initial com-
parison of the effects of synchronization on gene
expression. Speculatively, the enriched gene sets in
the synchronized islets may suggest an efficient adap-
tation to elevated glucose with lowered amounts of
protein turnover, protein translation, and energy pro-
duction gene sets, which may confer physiological
advantages to these islets over a long-term. Much
more investigation into this field would be required
to confirm this hypothesis.
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