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Abstract

As is already known, statistical models are very important for modeling data in applied fields,

particularly in engineering, medicine, and many other disciplines. In this paper, we propose

a new family to introduce new distributions suitable for modeling reliability engineering data.

We called our proposed family a new generalized-X family of distributions. For the practical

illustration, we introduced a new special sub-model, called the new generalized-Weibull dis-

tribution, to describe the new family’s significance. For the proposed family, we introduced

some mathematical reliability properties. The maximum likelihood estimators for the param-

eters of the new generalized-X distributions are derived. For assessing the performance of

these estimators, a comprehensive Monte Carlo simulation study is carried out. To assess

the efficiency of the proposed model, the new generalized-Weibull model is applied to the

coating machine failure time data. Finally, Bayesian analysis and performance of Gibbs

sampling for the coating machine failure time data are also carried out. Furthermore, the

measures such as Gelman-Rubin, Geweke and Raftery-Lewis are used to track algorithm

convergence.

1 Introduction

Within the area of reliability engineering and other related fields, modeling of data related to

lifetime events is very crucial. A range of probability models, such as Weibull, gamma, expo-

nential, etc., are available for modeling lifetime data. However, in many cases, these classical

models are not suitable for modeling lifetime data, and there is always a clear need for modi-

fied forms of these existing distributions. Therefore, the researchers have introduced new

families that are more advantageous than the old ones. For more reading about statistical dis-

tributions using different approaches; see [1].

In the literature, the Weibull distribution is the most outstanding one that has broadly been

used in reliability engineering and in other various areas of research; see, for instance, [2].

Although the Weibull distribution is often used, the confined structure of its hazard function
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(hf) can only be decreasing, increasing or constant. Generally, many practical problems

require a flexible range of hf, for example, the lifetime events that exhibit a bathtub-shaped hf

such as human mortality and life cycles of electronic machines and components. Researchers

in the past couple of years developed more flexible extensions of the Weibull model to model

reliability data adequately. For the recent survey about such distributions, we refer to [3].

The foremost goal of this research is to introduce a new flexible modification of the Weibull

model by means of inducting one additional parameter. The induction of the additional

parameter leads to the greater flexibility to enhance goodness-of-fit to reliability data. In fact,

we show empirically that the new extension of the Weibull distribution offers the best fit to the

coating machine failure time data than the two-parameter, three-parameter, and four-parame-

ter competitive distributions (see section 5). The practical example really shows that the pro-

posed distribution is a good alternative candidate for modeling reliability data.

Now we introduce the proposed family of distributions called a new generalized-X (NG-X)

family. A random variable X is said to follow a NG-X family, if its cumulative distribution

function (cdf) is given by

G x; y; xð Þ ¼ 1 �
½1 � Fðx; xÞ�

y

eFðx;xÞ

( )

; y > 0; x; x 2 R; ð1Þ

where θ is an extra shape parameter, and F(x;ξ) is the baseline cdf which may depend on the

parameter vector x 2 R. By adding the additional shape parameter, the NG-X distributions

can provide best fit to reliability engineering data. The corresponding density function is

g x; y; xð Þ ¼ f x; xð Þ½1 � Fðx; xÞ�
y� 1 ð1þ yÞ � Fðx; xÞ

eFðx;xÞ

� �

; x 2 R: ð2Þ

The reliability function S(x;θ, ξ) and the hf h(x;θ, ξ) of NG-X distributions are given by

S x; y; xð Þ ¼
½1 � Fðx; xÞ�

y

eFðx;xÞ
; x > 0;

and

h x; y; xð Þ ¼
f ðx; xÞ

1 � Fðx; xÞ
ð1þ yÞ � F x; xð Þ½ �; x > 0;

respectively.

Using the NG-X distributions approach, we introduce a new form of the Weibull model

called, a new generalized Weibull (NG-Weibull) distribution. Furthermore, we consider maxi-

mum likelihood (Non-Bayesian) and Bayesian procedures in order to estimate the unknown

parameters of the NG-Weibull model. In the Bayesian discussion, we consider different types

of symmetric and asymmetric loss functions such as squared error loss, weighted squared

error, precautionary, K-loss, and modified squared error loss function to estimate the

unknown parameters of the NG-Weibull model. Since all the parameters are positive, we use

gamma prior distributions. Bayesian 95% credible and highest posterior density (HPD) inter-

vals (see [4]) are obtained for every parameter of the NG-Weibull model. We used the Gibbs

sampling technique to get posterior samples. From a graphical point of view, we graphed the

posterior density function plots. Next, for evaluating the MCMC procedure in Bayesian analy-

sis, we reported diagnostics measures such as Gelman-Rubin, Geweke, and Raftery-Lewis for

checking the convergence of the algorithm.
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This paper is outlined in the following manner: In Section 2, we define a NG-X family.

Some mathematical properties of NG-X distributions are derived in Section 3. Section 4 is

specified for obtaining the estimates using the maximum likelihood estimation, and the Monte

Carlo simulation study is also provided in the same section. Section 5 is concerned with the

goodness of fit of the proposed distribution. In this section, we showed that NG-Weibull

model provides fit to reliability engineering data. Section 6 offers the Bayesian analysis. The

future research directions are provided in Section 7. Some concluding comments are pre-

sented in Section 8.

2 A new generalized Weibull model

Let Fðx; xÞ ¼ 1 � e� gxa ; x � 0; be the cdf of the Weibull distribution, where ξ = (α, γ). Then,

a random variable say X is said to follow the NG-Weibull distribution, if its cdf is given by

G x; y; xð Þ ¼ 1 �
e� ygxa

eð1� e� gxa Þ

� �

; x � 0: ð3Þ

The density function corresponding to Eq (3) is

g x; y; xð Þ ¼ agxa� 1e� ygxa
yþ e� gxa

eð1� e� gxa Þ

� �

; x > 0: ð4Þ

The reliability function and hf of the NG-Weibull distribution are given by

S x; y; xð Þ ¼
e� ygxa

eð1� e� gxa Þ
; x > 0;

and

hðx; y; xÞ ¼ agxa� 1½yþ e� gxa �; x > 0;

respectively.

In the Fig 1, we have sketched the density function plots of the NG-Weibull distribution.

Fig 1 shows that the NG-Weibull density can be reverse J-shape, symmetric, positively skewed,

negatively skewed, and bi-model. The hf plots of the NG-Weibull model are presented in Fig

2. The NG-Weibull hf can be monotonically decreasing, increasing, uni-modal, and modified

uni-modal shaped.

3 Mathematical properties

In this part of the paper, we derived the mathematical properties associated with the NG-X dis-

tributions, which include identifiability, quantile function, random number generation, rth

noncentral moments, and the Renyi entropy with numerical illustrations. A characterization

theorem extending the NG-X class of distributions in terms of the hf is also provided.

3.1 Identifiability

The identifiability is an important statistical property that a model must obey to make sure

that the inference should be precise. In this subsection, we prove the identifiability property of

the NG-X distributions. To prove the identifiability property of the NG-X distributions, we

have to show that θ1 = θ2. Let θ1 and θ2 be the two parameters having the NG-X distributions

with cdfs given by G(x;θ1, ξ) and G(x;θ2, ξ), respectively. From the definition of identifiability,
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Fig 1. The density plots of the NG-Weibull distribution using γ = 1 and different values α and θ.

https://doi.org/10.1371/journal.pone.0248312.g001

Fig 2. The hf plots of the NG-Weibull distribution using γ = 1 and different values α and θ.

https://doi.org/10.1371/journal.pone.0248312.g002
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we have

Gðx; y1; xÞ ¼ Gðx; y2; xÞ;

1 �
½1 � Fðx; xÞ�

y1

eFðx;xÞ

( )

¼ 1 �
½1 � Fðx; xÞ�

y2

eFðx;xÞ

( )

;

eFðx;xÞ � ½1 � Fðx; xÞ�
y1 ¼ eFðx;xÞ � ½1 � Fðx; xÞ�

y2 ;

½1 � Fðx; xÞ�
y1 ¼ ½1 � Fðx; xÞ�

y2 ;

y1 ¼ y2:

3.2 Quantile function

Theorem 1. The quantile function of NG-X distributions is given by

QðpÞ ¼ F� 1 1 � yW
e1=yð1 � pÞ1=y

y

 !( )

;

where F−1 is the quantile of the distribution with cdf F(x), 0< p< 1, andW(z) gives the principal
solution for w in z = wew

Proof.

Let 0< p< 1, we must solve the following equation for Q(p)

p ¼ 1 �
ð1 � FðQðpÞÞÞy

eFðQðpÞÞ
:

Let y = F(Q(p)). Using software like MATHEMATICA, if we solve the equation below for y

p ¼ 1 �
ð1 � yÞy

ey
;

we get

FðQðpÞÞ ¼ 1 � yW
e1=yð1 � pÞ1=y

y

 !

:

Thus

QðpÞ ¼ F� 1 1 � yW
e1=yð1 � pÞ1=y

y

 !( )

:

Notation: If the cdf of the Weibull distribution is given by

Fðx; a; bÞ ¼ 1 � e� gxa ;

we write

Y � NGWða; y; gÞ;

if Y is a NG-Weibull random variable.
Some numerical values of the quantile measure are provided in Table 1.
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3.3 Random number generation

If U� Uniform(0, 1), then random numbers from NG-X distributions can be obtained from

X ¼ F� 1 1 � yW
e1=yð1 � UÞ1=y

y

 !( )

;

where F−1 is the quantile of the distribution with cdf F(x), and W(z) gives the principal solution

for w in z = wew.

3.4 The rth non central moments

Theorem 2. The rth Non Central Moments of NG-X distributions can be expressed as

m0r ¼
X1

i¼0

X1

k¼0

X1

n¼k

X1

q¼0

Oi;k;n;qE½U
q�;

whereOi,k, n, q is defined as in the proof of the theorem, E[�] denotes an expectation, and U�
Uniform(0, 1).

Proof. From subsection 3.3, we know if U� Uniform(0, 1), then the following random

variable

X ¼ F� 1 1 � yW
e1=yð1 � UÞ1=y

y

 !( )

;

where F−1 is the quantile of the distribution with cdf F(x), and W(z) gives the principal solution

for w in z = wew, follows the NG-X family of distributions.

According to [5], we can write

QXðuÞ ¼
X1

i¼0

hiu
i;

where the coefficients are suitably chosen real numbers that depend on the parameters of the

F(x) distribution. For a power series raised to a positive integer r� 1, we have

ðQXðuÞÞ
r
¼

X1

i¼0

hiui

 !r

¼
X1

i¼0

dr;iu
i;

where δr,i are obtained from dr;i ¼ ðih0Þ
� 1Pi

s¼1
½sðr þ 1Þ � i�hsdr;i� s with dr;0 ¼ hr

0
for i = 1, 2,

Table 1. Some quantile values of the NG-Weibull distribution.

x Q(x) of NG-Weibull(2.5,2,0.5)

0.1 0.0869371

0.2 0.126821

0.3 0.160766

0.4 0.192982

0.5 0.2256

0.6 0.260495

0.7 0.300215

0.8 0.349663

0.9 0.423211

https://doi.org/10.1371/journal.pone.0248312.t001
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. . .; see [6]. Thus we have the following

m0r ¼
X1

i¼0

dr;iE 1 � yW
e1=yð1 � UÞ1=y

y

 ! !i" #

;

where E(�) is an expectation. By the binomial series, we can write

1 � yW
e1=yð1 � UÞ1=y

y

 ! !i

¼
X1

k¼0

i

k

 !

ð� 1Þ
k
y
kW

e1=yð1 � UÞ1=y

y

 !k

:

By using integer powers of the Lambert W function we can write

W
e1=yð1 � UÞ1=y

y

 !k

¼
X1

n¼k

� kð� nÞn� k� 1

ðn � kÞ!
enyð1 � UÞ

n
y

y
n :

By the binomial series we can write

ð1 � UÞ
n
y ¼

X1

q¼0

n
y

q

 !

ð� 1Þ
qUq:

Put

Oi;k;n;q ¼ dr;i
i

k

 !

ð� 1Þ
k
y
k � kð� nÞ

n� k� 1

ðn � kÞ!
eny
y
n

n
y

q

 !

ð� 1Þ
q
:

It follows that

m0r ¼
X1

i¼0

X1

k¼0

X1

n¼k

X1

q¼0

Oi;k;n;qE½U
q�:

Some numerical description of the ordinary moments are presented in Table 2.

3.5 Renyi entropy

Theorem 3. The Renyi entropy of the NG-X distributions, for δ 6¼ 1, δ> 0, can be expressed as

IRðdÞ ¼
1

1 � d
log

X1

k¼0

Xd

q¼0

X1

r¼0

Ok;q;r

Z 1

� 1

f ðxÞdFðxÞkþqþrdx

 !

;

Table 2. Numerical description for some ordinary moments of the NG-Weibull distribution.

x E[Xr] of NG-Weibull(2.5,2,0.5)

1 0.243489

2 0.0767798

3 0.0289746

4 0.0125534

5 0.00608487

6 0.00324147

7 0.00187295

8 0.00116198

9 0.000767809

https://doi.org/10.1371/journal.pone.0248312.t002
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where X is a random variable with cdf F(x) and pdf f(x), and Ok,q, r is defined as in the proof of
the theorem.

Proof. Recall the pdf of NG-X distributions is given by

gðxÞ ¼ f ðxÞð1 � FðxÞÞy� 1
ðð1þ yÞ � FðxÞÞe� FðxÞ:

We first find an expansion for g(x)δ where δ 6¼ 1 and δ> 0. By the binomial series we can

write

ð1 � FðxÞÞdðy� 1Þ
¼
X1

k¼0

dðy � 1Þ

k

 !

ð� 1Þ
kFðxÞk:

By the binomial theorem we can write

ðð1þ yÞ � FðxÞÞd ¼
Xd

q¼0

d

q

 !

ð1þ yÞ
d� q
ð� 1Þ

qFðxÞq:

By the power series representation for the exponential function, we can write

e� dFðxÞ ¼
X1

r¼0

ð� 1Þ
r
d
rFðxÞr

r!
:

Put

Ok;q;r ¼
dðy � 1Þ

k

 !

ð� 1Þ
k d

q

 !

ð1þ yÞ
d� q
ð� 1Þ

q ð� 1Þ
r
d
r

r!
:

It follows that

gðxÞd ¼
X1

k¼0

Xd

q¼0

X1

r¼0

Ok;q;rf ðxÞ
dFðxÞkþqþr:

Therefore, the Renyi entropy is

IRðdÞ ¼
1

1 � d
log

X1

k¼0

Xd

q¼0

X1

r¼0

Ok;q;r

Z 1

� 1

f ðxÞdFðxÞkþqþrdx

 !

:

3.6 Characterization theorem

It is clear that hf, of a function, F, that can be differentiated twice satisfies the following differ-

ential equation

f 0ðxÞ
f ðxÞ

¼
h0FðxÞ
hFðxÞ

� hFðxÞ:

In this section, we present a Kumaraswamy NG-X type distribution. The result here is

inspired by [7]. First, let us introduce the following.

Definition: We say a random variable X follows a Kumaraswamy-G type distribution if its
cdf is given by

Fðx; xÞ ¼ 1 � ð1 � Gðx; xÞÞ
2
;
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where G is some baseline distribution, x 2 Supp(G), and ξ is a vector of parameters in the base-
line distribution whose support depends on G.

Remark: Note that if we take λ = 1 and φ = 2 in Eq (1) of [8], then we get the cdf in the above
definition.

The pdf of the Kumaraswamy-G type distribution is given by

f ðx; xÞ ¼ 2gðx; xÞð1 � Gðx; xÞÞ;

where g is the pdf of the baseline distribution. Clearly the hf of the Kumaraswamy-G type dis-

tribution is given by

hðx; xÞ ¼
2gðx; xÞ

ð1 � Gðx; xÞÞ
:

Theorem 4. Let X : O7!R be a continuous random variable. The pdf of X is

2gðx; xÞð1 � Gðx; xÞÞ;

for some baseline distribution with pdf g and cdf G, if and only if its hazard rate function h(x)

satisfies the following differential equation

h0ðxÞ �
g 0ðxÞ
gðxÞ

hðxÞ ¼
2gðxÞ2

ð1 � GðxÞÞ2
;

with boundary condition h(0) = 2g(0).

Proof. If X has pdf as stated in the theorem, then the differential equation as stated holds.

Now if the stated differential equation holds, then

d
dx

�

gðxÞ� 1hðxÞ
�

¼ 2
d
dx

�

ð1 � GðxÞÞ� 1

�

;

which implies

hðxÞ ¼
2gðxÞ

1 � GðxÞ
;

which is the hf of the Kumaraswamy-G type distribution.

Clearly, a characterization of the Kumaraswamy NG-X type distribution is obtained from

the above theorem by letting the baseline pdf and cdf given in section 1.

4 Maximum likelihood estimation and Monte Carlo simulation

This section is devoted to estimating the NG-X parameters using the maximum likelihood esti-

mation approach and providing a comprehensive Monte Carlo (MC) simulation study to

assess the maximum likelihood estimators (MLEs) performance.

4.1 Maximum likelihood estimation

Let x1, x2, . . ., xn be the observations of a random sample of size n taken from the NG-X distri-

bution with the parameter vector Θ = (θ, ξ)T. For Θ, the log-likelihood function (LLF) is given

by

‘ðYÞ ¼
Xn

i¼0

log f ðx; xÞ þ ðy � 1Þ
Xn

i¼0

log ð1 � Fðx; xÞÞ þ
Xn

i¼0

log ½ðyþ 1Þ � Fðx; xÞ� �
Xn

i¼0

Fðx; xÞ: ð5Þ
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The partial derivatives of the LLF are given by

@

@y
‘ðYÞ ¼

Xn

i¼0

log ð1 � Fðx; xÞÞ þ
Xn

i¼0

1

ðyþ 1Þ � Fðx; xÞ
;

and

@

@x
‘ðYÞ ¼

Xn

i¼0

1

f ðx; xÞ
� ðy � 1Þ

Xn

i¼0

@Fðx; xÞ=@x

½1 � Fðx; xÞ�
�

@Fðx; xÞ=@x

½ðyþ 1Þ � Fðx; xÞ�
�
Xn

i¼0

@Fðx; xÞ=@x ;

respectively.

The MLEs of the unknown parameters θ and ξ of the NG-X distributions can be obtained

by maximizing @

@y
‘ðYÞ ¼ 0 and @

@x
‘ðYÞ ¼ 0, respectively.

4.2 Monte Carlo simulation study

In the following sub-section, we assess the behavior of the MLEs of NG-Weibull distribution

by means of the MC simulation study. The process is carried out by maximizing the LLF using

the optim() R-function with the argument method = “L-BFGS-B”. We made 1000

MC-iterations using different sizes of the samples as follows, n = 25, 50,. . .,1000. We computed

the average MLEs, the associated mean square errors (MSE), biases and absolute biases. For

the first set of MC simulation results, the plots MLEs and MSE are provided in Fig 3 and the

plots biases and absolute biases are provided in Fig 4. Whereas, for the second set of MC simu-

lation results, the plots MLEs and MSE are provided in Fig 5 and the plots biases and absolute

biases are provided in Fig 6.

Fig 3. The above graph plots the MLEs and MSEs of the NG-Weibull with values of the parameters given as α = 1.2, θ = 0.5 and γ = 1.5.

https://doi.org/10.1371/journal.pone.0248312.g003
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5 Application on our model from reliability engineering

In this section, we evaluate the usefulness of the NG-Weibull distribution by means of analyz-

ing reliability engineering data taken from [9]. The data represents the failure time of the coat-

ing machine given by: 1.00, 1.00, 5.00, 5.50, 12.50, 16.75, 17.75, 20.75, 22.50, 22.75, 25.00,

25.00, 27.25, 30.25, 43.75, 45.00, 48.00, 48.25, 97.50, 99.75, 136.75, 143.50, 207.75, 215.00,

225.50, 235.00, 283.50, 567.00, 970.50. The NG-Weibull is applied to this data, and the compar-

ison of its goodness of fit is made with the other prominent distributions such as Beta Weibull

(BW) [10], Kumaraswamy Weibull (Ku-W) distribution [11], Extended Alpha Power Trans-

formed Weibull (Ex-APTW) [12] and type-I heavy-tailed Weibull (TI-HTW) distribution

[13].

To figure out about the goodness of fit amongst the competitive distributions, we consider

certain goodness of fit measures such as Cramer-Von-Mises (CM) statistic, Anderson Darling

(AD) statistic, and Kolmogorov-Smirnov (KS)statistics alongside with its p-values.

Corresponding to the coating machine failure time data, the model parameters’ estimated

values with standard errors in the parenthesis are presented in Table 3. The goodness of fit

measures of the competitive models are provided in Table 4. From the results reported in

Table 4, we can see that the proposed model has lower values of the goodness of fit measures

and a high p-value indicating the best fit for the reliability data.

In support of the goodness of fit measures given in Table 4, the estimated cdf and Kaplan-

Meier survival plot of the NG-Weibull distribution are plotted in Fig 7. The probability-proba-

bility (PP) and quantile-quantile (QQ) plots are presented in Fig 8. These figures confirm the

best fitting of the NG-Weibull to the coating machine failure time data.

Furthermore, for the coating machine failure time data, we calculated the KS statistic values

of the NG-Weibull and other considered models. Then, we utilized the parametric bootstrap

Fig 4. The above graph plots the biases and absolute biases of the NG-Weibull with values of the parameters given as α = 1.2, θ = 0.5 and γ = 1.5.

https://doi.org/10.1371/journal.pone.0248312.g004
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Fig 5. In the above graph we plotted the MLEs and MSEs of the NG-Weibull using parameter values α = 0.8, θ = 1.2 and γ = 1.

https://doi.org/10.1371/journal.pone.0248312.g005

Fig 6. In the above graph we plotted the biases and absolute biases of the NG-Weibull using parameter values α = 0.8, θ = 1.2 and γ = 1.

https://doi.org/10.1371/journal.pone.0248312.g006
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approach [14], and bootstrapped the p-value for all models. The KS statistic and the corre-

sponding bootstrapped p-value are reported in Table 5. According to the results provided in

Table 5, we observe that the NG-Weibull is a good candidate model amongst the competing

distributions for modeling engineering reliability data.

6 Bayesian estimation

In this section, we consider different types of symmetric and asymmetric loss functions

such as squared error loss function (SELF), weighted squared error loss function (WSELF),

Table 3. MLEs of the competing distributions for the coating machine failure time data.

Models α γ θ α1 a b
NG-Weibull 0.964 (0.2287) 0.018 (0.0105) 0.243 (0.2707)

TI-HTW 0.525 (0.0746) 0.843 (0.5898) 0.149 (0.1097)

Ex-APTW 0.510 (0.5094) 0.172 (0.6258) 5.425 (7.0766)

Ku-W 0.620 (0.3093) 0.501 (1.0970) 0.702 (3.2715) 0.118 (2.0964)

BW 0.478 (0.2696) 0.502 (0.5522) 2.797 (3.1595) 0.344 (0.6646)

https://doi.org/10.1371/journal.pone.0248312.t003

Table 4. Goodness of fit measures of the competing models for the coating machine failure time data.

Models CM AD KS p-value

NG-Weibull 0.054 0.328 0.106 0.897

TI-HTW 0.060 0.336 0.124 0.756

Ex-APTW 0.093 0.491 0.142 0.598

Ku-W 0.091 0.546 0.146 0.488

BW NaN NaN 0.144 0.603

https://doi.org/10.1371/journal.pone.0248312.t004

Fig 7. The estimated cdf and Kaplan-Meier survival plots of the NG-Weibull distribution for the coating machine failure time data.

https://doi.org/10.1371/journal.pone.0248312.g007
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modified squared error loss function (MSELF), precautionary loss function (PLF) and K-loss

function (KLF). These functions associated with Bayesian estimators and posterior risks are

reported in Table 6.

For more detail, we refer to [15–18]. Next, we provide a Bayesian estimation approach for

estimating the parameters of NG-Weibull distribution via analyzing complete sample data.

6.1 Joint posterior and marginal posterior distributions

Assume that the parameters α, γ and θ of NG-W distribution have independent prior distribu-

tions as

a � Gammaða0; a1Þ; g � Gammaðg0; g1Þ; y � Gammaðy0; y1Þ;

where the all hyper-parameters α0, α1, γ0, γ1, θ0 and θ1 are positive. Consequently, the joint

prior density function is formulated as follows:

pða; g; yÞ ¼
a
a0

1 g
g0
1 y

y0

1

Gða0ÞGðg0ÞGðy0Þ
aa0 � 1gg0 � 1y

y0e� ða1aþg1gþy1yÞ: ð6Þ

Fig 8. The PP and QQ plots of the NG-Weibull distribution for the coating machine failure time data.

https://doi.org/10.1371/journal.pone.0248312.g008

Table 5. The KS and the corresponding bootstrapped p-value of the fitted models for the coating machine failure

time data.

Models KS Bootstrapped p-value

NG-Weibull 0.164 0.936

TI-HTW 0.226 0.796

Ex-APTW 0.290 0.619

Ku-W 0.418 0.560

BW 0.347 0.670

https://doi.org/10.1371/journal.pone.0248312.t005
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For simplicity, let us define the function z as

zða; g; yÞ ¼ aa0 � 1gg0 � 1y
y0e� ða1aþg1gþy1yÞ; a > 0; g > 0; y > 0:

The joint posterior distribution defined from Eq (6) and the likelihood function L(data) is

p�ða; g; yjdataÞ / pða; g; yÞLðdataÞ: ð7Þ

Therefore, the joint posterior density function can be expressed by

p�ða; g; yjxÞ ¼ Kzða; g; yÞLðx;CÞ; ð8Þ

where

Lðx;CÞ ¼
Yn

i¼1

agxa� 1

i e� ygxai
yþ e� gxai

e1� e
� gxai

; ð9Þ

C = (α, γ, θ) and K is given as

K � 1 ¼

Z 1

0

Z 1

0

Z 1

0

zða; g; yÞLðx;CÞ@a@g@y:

Moreover, the marginal posterior density functions of α,γ and θ assuming thatC = (C1,

C2, C3) = (α, γ, θ), can be given by

pðCijxÞ ¼
Z 1

0

Z 1

0

p�ðCjxÞ@Cj@Ck; ð10Þ

where i, j, k = 1, 2, 3,i 6¼ j 6¼ k and Ci is the ith member of a vector C.

6.2 Bayesian point estimation

Under the marginal posterior density function as in Eq (10) and the loss functions which are

given in Table 6. The Bayesian point estimation for the parameter vector C = (C1, C2, C3) =

(α, γ, θ) is obtained via minimizing the expectation of loss function under the marginal poste-

rior density as follows:

argmin
d

Z 1

0

LðCi; dÞpðCjjxÞ@Ci: ð11Þ

Table 6. Bayes estimator and posterior risk under different loss functions.

Loss function L(ψ, δ) Bayes estimator ψB Posterior risk ρψ
SELF = (ψ − d)2 E(ψ|x) Var(ψ|x)

WSELF ¼ ðc� dÞ2

c
(E(ψ−1|x))−1 E(ψ|x) − (E(ψ−1|x))−1

MSELF ¼ 1 � d
c

� �2 Eðc� 1 jxÞ
Eðc� 2 jxÞ 1 �

Eðc� 1 jxÞ2

Eðc� 2 jxÞ

PLF ¼ ðc� dÞ2

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eðc2
jxÞ

q

2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eðc2
jxÞ

q

� EðcjxÞÞ

KLF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d
c
�

ffiffi
c

d

qr ! ffiffiffiffiffiffiffiffiffiffiffiffi
EðcjxÞ

Eðc� 1 jxÞ

q

2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EðcjxÞEðc� 1
jxÞ

q

� 1Þ

https://doi.org/10.1371/journal.pone.0248312.t006
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However, in practice, because of the intractable integral in relation Eq (11), it is suggested

to use the well-known Gibbs sampler [19], or Metropolis Hastings algorithms to generate pos-

terior samples [20]. We will argue about this issue more precisely in subsection 6.5.

6.3 Credibility interval

In the Bayesian framework, interval estimation can be done via credibility interval conception.

Consider the parameter vector C = (C1,C2, C3) = (α, γ, θ), which is associated with the

NG-Weibull distribution and pðCijxÞ denote the marginal posterior pdf of the parameter Cj;

(j = 1, 2, 3) as in Eq (10). For a given value of η 2 (0, 1), the (1 − η)100% credibility interval

CIðLCj
;UCj
Þ is defined as

Z 1

LCj

pðCjjxÞ@Cj ¼ 1 �
Z

2
;

Z 1

UCj

pðCjjxÞ@Ci ¼
Z

2
: ð12Þ

By considering the relation Eq (12), it is very difficult to obtain the marginal density from

the joint posterior density. We use the Gibbs sampler to generate posterior samples. Let C1,

. . .,Ck (where C
i
¼ ðC

i
1
;C

i
2
;C

i
3
Þ) be a posterior random sample of size k, which is extracted

from the joint posterior density as in Eq (8). Using these generated posterior samples, the mar-

ginal posteriors densities of Cj given x can be given by

1

K

XK

i¼1

p�ðCj;C
i
� jjxÞ; j ¼ 1; 2; 3; ð13Þ

where theC
i
� j shows the vector of posterior samples when jth component is removed. Using

Eq (13) in Eq (12), one can be able to compute the credibility intervals for Cj, j = 1, 2, 3 as fol-

lows

1

K

XK

i¼1

Z 1

LCj

p� Cj;C
i
� jjx

� �
@Cj ¼ 1 �

Z

2
;

1

K

XK

i¼1

Z 1

UCj

p� Cj;C
i
� jjx

� �
@Cj ¼

Z

2
: ð14Þ

6.4 Highest posterior density interval

The HPD interval is a kind of credibility interval with a specific restriction. The (1 − η)100%

(i = 1, . . ., p) HPD interval for Cj, j = 1, 2, 3 is the simultaneous solution of the following inte-

gral equations

1

K

XK

i¼1

Z UCj

LCj

p� Cj;C
i
� jjx

� �
@Cj ¼ 1 � Z;

XK

i¼1

p� LCj
;C

i
� jjx

� �
¼
XK

i¼1

p� UCj
;C

i
� jjx

� �
:

6.5 Generating posterior samples

It is clear from Eqs (8) and (12) that there is no closed-form for point estimators using differ-

ent loss functions, because of intractable integrals. So we will try to solve those integrals

numerically using MCMC methods. There are a lot of possible methods. One of these methods

is known as the Metropolis-Hastings algorithm. Another method for approximation of unsolv-

able integrals is known asthe Gibbs sampling. Suppose that the general model f ðxjψÞ is associ-

ated with the parameter vector ψ = (ψ1, ψ2, . . ., ψp) and observed data x. Thus, the joint

posterior distribution is pðc1;c2; . . . ;cpjxÞ. We also assume that c0 ¼ ðc
ð0Þ

1
;c
ð0Þ

2
; . . . ;c

ð0Þ

p Þ is
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the initial vector to start the Gibbs sampler. The steps for any iteration, say iteration k, are as

follows:

• Starting with an initial estimate ðc
ð0Þ

1
;c
ð0Þ

2
; . . . ;c

ð0Þ

p Þ

• Draw c
k
1

from pðc1jc
k� 1

2
;c

k� 1

3
; . . . ;c

k� 1

p ; xÞ

• Draw c
k
2

from pðc2jc
k
1
;c

k� 1

3
; . . . ;c

k� 1

p ; xÞ; and so on down to

• Draw c
k
p from pðcpjc

k
1
;c

k
2
; . . . ;c

k
p� 1
; xÞ:

In case of the NG-Weibull distribution, by considering the parameter vector C = (α, γ, θ)

and initial parameter vector C0 = c(α0, γ0, θ0), the posterior samples are extracted by above

Gibbs sampler where the full conditional distributions are given as

p ajgk� 1; y
k� 1
; x

� �
/ aa0þn� 1e� a1a

Yn

i¼1

xa� 1

i e� ygxai
yþ e� gxai

e1� e
� gxai

� �

; ð15Þ

p gjak� 1; y
k� 1
; x

� �
/ gg0þn� 1e� g1g

Yn

i¼1

e� ygxai
yþ e� gxai

e1� e� gx
a
i

� �

; ð16Þ

and

pðyjak� 1; gk� 1; xÞ / yy0 � ne� y1y
Yn

i¼1

e� ygxai fyþ e� gxai g: ð17Þ

Gibbs sampling processes can be carried out via OpenBUGS software, which is an available

version of WinBUGS. Here, since there aren’t any prior information about hyper-parameters

in Eq (6), we implement the idea of [21], and the hyper-parameters values are setted as α0 = α1

= γ0 = γ1 = θ0 = θ1 = 0.0001. We can use the MCMC procedure to extract posterior samples of

Eq (8) by means of the Gibbs sampling process in OpenBUGS software.

Next, we provide Bayesian estimation results. It is evident from equation Eq (10), there are

no closed-form expressions for Bayesian estimators, which are extracted based on the loss

functions in Table 6. Therefore, an MCMC procedure via the Gibbs sampler process is

designed using the expressions provided in Eqs (15), (16) and (17), with 10,000 replicates to

obtain the Bayesian estimators. In Table 7, we provide the corresponding point and posterior

risk estimations. Furtherer, 95% credible, and HPD intervals are provided in Table 8. In order

to provide a visual inspection, the posterior plots such as trace plots are provided in Fig 9, auto-

correlation plots are presented in Fig 10, and the histogram plots are sketched in Fig 11. These

plots verify that the convergence of Gibbs sampling process has occurred.

Table 7. Summary of Bayesian estimation (point estimation and risk) for the coating machine failure time data.

Data Coating machine failure time data

Bayes â ðrâ Þ ĝ ðrĝ Þ ŷ ðrŷ Þ
Loss functions Estimate Risk Estimate Risk Estimate Risk

SELF 1.0641 0.0211 0.0153 5.1e-04 0.1631 0.0062

WSELF 1.0449 0.0191 0.0121 0.0032 0.1245 0.0386

MSELF 1.0449 0.0177 0.0090 0.2555 0.0860 0.3088

PLF 1.0264 0.0198 0.0169 0.0032 0.1812 0.0361

KLF 1.0739 0.0182 0.0136 0.2538 0.1425 0.2895

https://doi.org/10.1371/journal.pone.0248312.t007
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Next, for evaluation the MCMC procedure in Bayesian analysis, we report some diagnostics

measures such as Gelman-Rubin (GR), Geweke (G) and Raftery-Lewis (RL) for checking the

convergence of the Gibbs algorithm are provided in Table 9. For more details about these

indexes; see [22]. The GR diagnostic for parameters α, γ, and θ is equal to 1. Hence, based on

the GR diagnostic measure, the chains are acceptable. Fig 12 shows that the estimates come

from state spaces of the corresponding parameters. From Table 9, Geweke’s test statistics for

parameters α, γ and θ, are −0.0795, 0.0807 and 0.59370, respectively. Hence, the G diagnostic

measure also confirms the acceptance of chains as shown in Figs 13 and 14. Moreover, the

reported diagnostic statistics for parameters α, γ and θ based on the RL method do not show a

significant degree of dependence between estimates.

Fig 9. Posterior summary plots of Gibbs sampling performance for the coating machine failure time data (Trace plots).

https://doi.org/10.1371/journal.pone.0248312.g009

Table 8. HPD and Credible intervals for the coating machine failure time data.

Parameters Credible interval HPD interval

α (0.9624, 1.1560) (0.8114, 1.3690)

γ (0.0102, 0.0193) (0.0036, 0.0289)

θ (0.1071, 0.2076) (0.0322, 0.3254)

https://doi.org/10.1371/journal.pone.0248312.t008
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7 Discussion and future framework

The statistical decision theory helps to address the state of uncertaintyand provides potentially

a sound framework for dealing with problems of bio-medical, reliability, actuarial, economic

and financial decision-making. Among the applied fields, the reliability engineering has

received a serious consideration. In the field of reliability theory, modeling of lifetime data is

very crucial. The data related to the lifetime of electronic product or any entity, etc., are usually

positive and skewed to the right. In lifetime analysis and reliability theory, the failure rate func-

tion (also known as hazard rate function) is a prominent reliability characteristic. Among the

possible failure rate functions, the unimodal, modified unimodal or bathtub-shaped failure

rate curves are well-known in reliability literature. The classical models are not so flexible to

model such complex forms of data.

Due to the importance and application of the statistical models in reliability, medical and

financial sciences, a reasonable work has been done in the literature aiming to improve the

characteristics of the classical models. Although the new improvement has achieved the

respective goal, unfortunately, the numbers of parameters have been increased, and the estima-

tion of parameters, statistical inference and derivation of mathematical problems become

complicated.

To provide a better description and best fitting to the reliability data, therefore, in the pres-

ent study, a new family of distributions has been studied. The key goal of introducing the class

of distributions is to improve the characteristics of the classical distributions.

Fig 10. Posterior summary plots of Gibbs sampling performance for the coating machine failure time data (Autocorrelation plots).

https://doi.org/10.1371/journal.pone.0248312.g010
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From the above theory and discussion, it is quite clear that the researchers are always in

search of new flexible distributions. Therefore, to introduce new flexible distributions and

bring further flexibility in the model proposed in this paper, we suggest to introduce modified

forms of the proposed model. As a future research direction, we suggest to introduce new

models useful for modeling data in reliability engineering and financial sciences.

As we stated above that the statistical models with bathtub-shaped failure rate function are

very useful in reliability engineering. Here, we suggest a new modification of the proposed dis-

tribution to model lifetime data with a bathtub-shaped failure function.

Let F(x;ξ) = 1 − e−γx
α − ηx, be the cdf of the three-parameter modified Weibull (MW) distri-

bution, where ξ = (α, γ, η). Then, a random variable say X is said to follow the new generalized

Fig 11. Posterior summary plots of Gibbs sampling performance for the coating machine failure time data (Histogram plots).

https://doi.org/10.1371/journal.pone.0248312.g011

Table 9. Diagnoses by Gelman-Rubin, Geweke and Raftery-Lewis methods for the parameters α, γ and θ based on

the coating machine failure time data.

Parameter GR G(Z0.025 = ±1.96) RL

α 1 -0.0795 4.80

γ 1 0.0807 4.79

θ 1 0.5937 4.33

https://doi.org/10.1371/journal.pone.0248312.t009
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modified Weibull (NGM-Weibull) distribution, if its cdf is given by

G x; y; xð Þ ¼ 1 �
e� ygxa� yZx

eð1� e� gxa
� Zx
Þ

� �

; x � 0:

The corresponding pdf and hf are given by

g x; y; xð Þ ¼ agxa� 1 þ Zð Þe� ygxa� yZx
yþ e� gxa � Zx

eð1� e� gxa
� Zx
Þ

� �

; x > 0;

and

hðx; y; xÞ ¼ ðagxa� 1 þ ZÞ½yþ e� gxa � Zx�; x > 0;

respectively.

Different plots for the failure rate function of the NGM-Weibull distribution are provided

in Fig 15.

From the plots provided in Fig 15, we can see that the hf of the NGM-Weibull distribution

is (i) unimodal for α = 1.2, γ = 1.2, θ = 0.01, η = 0.08 (red line), (ii) modified unimodal for α =

4.8, γ = 0.3, θ = 0.1, η = 0.1 (green line), and (iii) bathtub-shaped for α = 3.5, γ = 1, θ = 0.1, η =

4.6 (black line). Since, the NGM-Weibull captures all the important forms of the hf, therefore,

the NGM-Weibull distribution can be a good candidate distribution to model complex form

of the reliability engineering data. In the future, therefore, we are intended to model lifetime

Fig 12. Gelman diagnostic plot for the each parameter of the NG-Weibull distribution using the coating machine failure time data.

https://doi.org/10.1371/journal.pone.0248312.g012
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and reliability data having unimodal, modified unimodal and bathtub-shaped failure rate

behavior.

Furthermore, in the practice of actuarial and financial sciences, the heavy-tailed distribu-

tions are useful for modeling heavy-tailed financial data sets. Heavy-tailed distributions are

those, whose right tail probabilities are heavier than the exponential distribution, and satisfies

lim
x!1

epx½1 � FðxÞ� ¼ 1; p > 0:

Here, we suggest a new heavy-tailed distribution to provide the best description of the

heavy-tailed financial data set. The new heavy-tailed distribution can obtained by using the

Burr-XII (B-XII) distribution as a special case of the NG-X family.

Let F(x;ξ) = 1 − (1 + xc)−k, be the cdf of the two-parameter B-XII distribution, where ξ = (c,
k). Then, a random variable say X is said to follow the new generalized B-XII (NGB-XII) distri-

bution, if its cdf is given by

G x; y; xð Þ ¼ 1 �
ð1þ xcÞ� ky

e1� ð1þxcÞ� k

( )

; x � 0:

The corresponding pdf is given by

G x; y; xð Þ ¼ ckxc� 1ð1þ xcÞ� ky
yþ ð1þ xcÞ� k

e1� ð1þxcÞ� k

( )

x > 0:

Fig 13. Geweke diagnostic plot (chain1) for the each parameter of the NG-Weibull distribution using the coating machine failure time data.

https://doi.org/10.1371/journal.pone.0248312.g013
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Fig 14. Geweke diagnostic plot (chain2) for the each parameter of the NG-Weibull distribution using the coating machine failure time data.

https://doi.org/10.1371/journal.pone.0248312.g014

Fig 15. The hf plots of the NGM-Weibull distribution for different values of the parameters.

https://doi.org/10.1371/journal.pone.0248312.g015
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Different plots for the pdf of the NGB-XII distribution are provided in Fig 16. These plots

are sketched for (i) c = 1.2, k = 1.5, θ = 1.2 (red line), (ii) c = 1.4, k = 0.8, θ = 1.4 (green line),

and (iii) c = 1.6, k = 0.3 and θ = 1.6 (black line).

From the plots provided in Fig 16, we can see that increasing the value of c and θ, the

NGB-XII distribution tends to a heavy-tailed distribution. Henceforth, the NGB-XII distribu-

tion can be a good candidate distribution to model heavy-tailed financial and other related

data sets. In the future, therefore, we are intended to use the proposed method to introduce

new heavy-tailed distributions.

8 Concluding remarks

Due to the great importance of statistical distributions in modeling data in reliability engineer-

ing, we introduced and studied a new family of distributions, called a NG-X family. The MLEs

of the model parameters along with some mathematical properties, are derived. Based on the

proposed approach, a new modified form of the Weibull model called an NG-Weibull distri-

bution is introduced and studied in detail. The NG-Weibull model is very versatile and is able

to cater to the different patterns of failure rates. Due to the flexible behavior of the hf, the pro-

posed model is capable to describe adequately the failure behavior of several lifetime datasets,

particularly reliability engineering data. The usefulness of the NG-Weibull distribution is

proved by analyzing the coating machine failure time data. We performed Bayesian estimation

and estimated the model parameters using five different loss functions. The diagnostics mea-

sures such as the Gelman-Rubin, Geweke, and Raftery-Lewis are discussed to evaluate the

MCMC procedure in the Bayesian analysis. As a future work, new models based on the pro-

posed approach will be introduced to model complex form of reliability engineering and

heavy-tailed financial data sets.

Fig 16. The pdf plots of the NGB-XII distribution for different values of the parameters.

https://doi.org/10.1371/journal.pone.0248312.g016
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