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Abstract: The sensitivity of Ho–phospholipid complexes to changes in the membrane viscosity of
liposomes was checked. An increase in viscosity was observed for DPPC and DMPC near the phase-
transition temperature. Ho–phospholipid complexes could be used as sensors of local membrane
viscosity in NMR and MRI technologies.
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1. Introduction

The paramagnetic properties of lanthanides are widely used in NMR, including biomolec-
ular NMR and MRI. In biomolecular NMR, lanthanide ions provide an opportunity for determi-
nation of structures of protein–ligand complexes [1]. The existence of a hyperfine interaction
between the unpaired electrons of a paramagnetic compound and the observed nucleus induces
a paramagnetic shift—a paramagnetic relaxation enhancement—and it is an additional source
of substantial broadening due to effects in bulk magnetic susceptibility [2–5]. Among other
things, recent studies have demonstrated that coordination complexes of lanthanides could be
sensitive to the viscosity of the media [6]. Studying paramagnetic-chemical lanthanide-induced
shifts (LISs) and the bandshape of NMR signals for Ln complexes in solutions—as a function of
the temperature—make it possible to obtain valuable information on their molecular dynamic
and paramagnetic properties [7,8]. Lanthanide complexes with organic compounds could be
used as NMR and MRI sensors for both temperature and pH [9–11]. In addition, it has been
shown that complexes of lanthanides with phospholipids could be used as NMR temperature
sensors [12,13]. It has been shown that complexes of thulium and praseodymium with phos-
pholipids induce paramagnetic shifts, which have linear dependence on temperature and have
features near the main phase-transition temperature of phospholipids [12–14].

Despite these features—which make lanthanide complexes promising as a temperature
sensors for MRI applications—in biological systems, most of the data on the structure and
dynamics of lanthanide complexes were obtained in homogeneous solutions [8,15–18].
There are significantly fewer studies of lanthanide complexes in heterogeneous systems, in
particular those in lipid membranes. Thus, lanthanide complexes with phospholipids are
very attractive from the point of view of their potential applications in medicine and biology.

Biomembranes form the boundary between the intra- and extracellular environment.
The major component of biomembranes is the lipid bilayer. It is formed in water from
phospholipids. The contents of the membrane influence the membrane’s properties, such as
elasticity and viscosity which, in turn, influence the activity of membrane-bound proteins.
Lipid bilayers exist in a fluid phase under physiological conditions, but can undergo phase
transitions. Lipids can exist in different phases, including a liquid–crystal phase (Lα), a gel
phase (Lβ), and a ripple phase (Pβ). The main phase transition (Tm) between Lα and Lβ in
a lipid bilayer changes the bilayer membrane structurally, from a less ordered state to a
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more ordered state, with changes in membrane fluidity. Tm is affected by lipid headgroups
structure and interactions as well as the number and position of unsaturated bonds in the
fatty hydrocarbon chains, their length, and attachment to the headgroups. Phase transitions
and lipid dynamics are intensively investigated in [19–25].

Saturated lipids and cholesterol could form so-called lipid rafts—with more rigid
structures than the remaining lipid media—in membranes [26–28]. Therefore, determining
the local viscosity in a cell membrane could be useful for studying the functioning of lipid
rafts. Lipid rafts play important roles in many biological processes. Some membrane
proteins are contained in lipid rafts, and these rafts can be a channel for the penetration
of—for example—virus particles into a cell [29,30]. Additionally, intracellular viscosity
abnormalities can lead to diabetes, neurodegenerative diseases, and cancer [31]. The use
of lanthanide complexes could serve as a good method for determining tissue viscosity
in MRI.

Liposomes, both multi- and unilamellar, are widely used as models of cell membranes.
The simplicity of the model allows an understanding of specific interactions which are
difficult to decouple in a cellular environment. Lanthanide ions have applications in clinical
research including the treatment of burns, anticoagulants, antitumor therapy and imaging
studies as well as acting as a tool for fundamental studies on model membrane systems [32].
For example, lanthanide-based shift-reagents are used to study the effects caused by lipid
asymmetry in membranes [33,34].

The purpose of this study was to use examples of saturated and unsaturated phos-
pholipids (DPPC, DMPC, and POPC) under different phase-transition temperatures to
study the temperature dependencies of observed transverse relaxation times. According
to the literature, a lanthanide-induced contribution to the relaxation rate enhancement
is the sum of dipole–dipole, Fermi–contact, and Curie–spin components [17,35]. Addi-
tionally, the contribution of the Curie–spin component depends on the viscosity of the
media and the temperature: C η(T)

T3 , where C is the constant, T is the temperature, and
η(T) is the dependence of the viscosity on the temperature [6]. According to analyses of
the relaxation rates in some Ho complexes, the main contributions to the paramagnetic
increase in the relaxation rates of the protons of ligands with characteristic distances from
the paramagnetic center (4–6 A) are the Curie–spin and dipole–dipole contributions [36–38].
Moreover, the Curie–spin contribution at a magnetic field strength of 11.7 Tesla can reach
more than 50% (in a temperature range of 273–330 K) in aqueous solutions. In this case, the
dipole contribution to the paramagnetic increase in the relaxation rates is practically inde-
pendent of temperature, while the Curie–spin contribution has a significant dependence
on temperature.

This work aims to show the fundamental possibility of using paramagnetic complexes
of holmium and phospholipids as probes for temperature and viscosity in NMR, based on
the model of POPC, DPPC, and DMPC liposomes (Figure 1).
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2. Results

According to the literature, metal ions can effectively bind to phospholipids, forming
a complex with 1–10 phospholipid molecules, depending on the valence and coordination
number of the metal, as well as on the experimental conditions [39,40]. A carbonyl or
phosphate group can act as a binding site in a phospholipid molecule [39,41]. In previous
work, it was found that Ho–phospholipid complexes have stoichiometry of 1:3 in methanol
solutions and complicated stoichiometry in water [14].

Experiments were carried out for phospholipids with different phase-transition tem-
peratures to observe differences in the responses of the Ho–phospholipid complexes in
the systems with the different temperature dependences of the viscosity. Figure 2 shows
fragments of 1H NMR spectra of POPC and DPPC liposomes at different temperatures.
According to studies of bicelles, lanthanide ions bind with lipid phosphate groups [42].
Separation in the signal of the N+(CH3)3 groups is observed.
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Figure 2. Fragments of 1H NMR spectra of (a) POPC and (b) DPPC liposomes at different temperatures.

Figure 3 shows the dependence of the low-field components’ relaxation rate (R2) in the
signal of the POPC, DMPC and DPPC N+(CH3)3 groups on the temperature. According to
the literature, a lanthanide-induced contribution to the relaxation rate enhancement is the
sum of dipole–dipole, Fermi–contact, and Curie–spin components [17,35]. Additionally, the
Curie–spin contribution depends on the viscosity of the media and the temperature: C η(T)

T3 ,
where C is the constant, T is the temperature, and η(T) is the dependence of the viscosity
on the temperature [6]. To estimate the dependence of the viscosity on the temperature
for different systems, we plotted the dependence of the low-field components’ relaxation
rate (R2) in the signal of the POPC, DMPC, and DPPC N+(CH3)3 groups on 1/T3 (Figure 4).
It can be seen from Figure 3 that POPC does not have the temperature dependence of R2
or—correspondingly—the viscosity. A linear dependence of R2 on 1/T3 means that η(T)
is constant. The main phase-transition temperature of POPC is 270 K, and an observed
effect could be caused by small changes in viscosity, which are beyond the sensitivity of the
holmium complex in a temperature range of 292–344 K.
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Figure 4. The dependence of the relaxation rate (R2) of the low-field components of the signal of
N+(CH3)3 groups on the third power of the inverse temperature (1/T3).

It should be noticed that significant difference is observed in the values of R2 of
unsaturated POPC and saturated DPPC and DMPC while the values for DPPC and DMPC
are close. The temperature dependencies of T2

* for DPPC and DMPC demonstrate similar
behaviors in the temperature range 320–345 K; however, near the main phase-transition
temperature (297 K for DMPC and 314 K for DPPC), the dependencies change dramatically.
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Linear dependencies of R2 on 1/T3 below the phase-transition temperature means
that η(T) is constant. It could be caused by small changes in viscosity, which are beyond
the sensitivity of the holmium complex, same as in the case of POPC. However, near the
phase-transition temperature, dramatic changes in transverse relaxation rate occur. It could
be connected, with dramatic changes in the bilayer viscosity due to phase transition.

3. Materials and Methods

3.1. 1H-NMR
1H NMR spectra were recorded on a Bruker AVHD-500 (500 MHz) NMR spectrometer

(Billerica, MA, USA) with temperature control. Deuterated solvent D2O (99.9% D, Aldrich,
St. Louis, MO, USA) was used as-received. Relaxation rate (R2) was estimated using the
signal line with in 1D NMR experiments. Analysis of the line shapes was carried out
using Fityk software [43]. Due to the fast exchange between bound and free lipids, the
half-width of the signal was associated with the spin–spin relaxation time, T2, through the
following ratio:

R2 = 1/T2 = πW

Temperature control was achieved using a Bruker variable-temperature unit. All
experiments were repeated three times.

3.2. Preparation of Liposome Samples

Liposomes were formed from 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC,
Avanti Polar Lipids (Alabaster, AL, USA), purity > 99%), 1,2-dipalmitoyl-sn-glycero-3-
phosphocholine (DPPC, Avanti Polar Lipids, purity > 99%), and 1,2-dimyristoyl-sn-glycero-
3-phosphocholine (DMPC, Avanti Polar Lipids, purity > 99%) (Figure 1).

Powder components were pre-dissolved in chloroform. After solvent evaporation,
the dry lipid film was hydrated with D2O. The final concentration of lipid was 13 mM.
The suspension was then sonicated (about 37 kHz, 1 h) to obtain unilamellar liposomes.
NMR spectra were recorded for samples of 0.5 mL of vesicle suspension supplemented
with 6 mM HoCl3 in 5 mm NMR tubes. Solvent peak was used as a reference.

4. Conclusions

Thus, in the present study, we studied the temperature dependencies of the effective
transverse relaxation rate enhanced by lanthanide holmium in liposomes constituted from
DMPC, DPPC, and POPC. The goal of the research was to show the limits within which
holmium can be used as a probe. In the long term, nonlinear changes in the relaxation rates
within the inflection region can be useful for practical use to determine the viscosity of
infected tissues and to localize the focus of inflammation. The dependence of the relaxation
rate on temperature opens up prospects for its use in measuring and plotting temperature
in zones of inflammation, tumors, etc. For the correct use of lanthanides as temperature
sensors, it is necessary to understand the nature of lanthanide-induced relaxation rate
enhancement, and the features and limits of its applicability; this work provides answers to
some of these questions.

The obtained data indicate that, in the POPC liposomes, with the main phase-transition
temperature of 270 K, the viscosity of the bilayer does not depend on temperatures in the
range of 292–344 K. For DPPC and DMPC, the liposomes bilayer viscosity does not depend
on temperatures below the main phase-transition temperature (314 and 297 K, accordingly).
It is likely that changes in the viscosity below the main phase-transition temperature of
phospholipids are beyond the sensitivity of the holmium complex. However, near the main
phase-transition temperature, there were dramatic changes in the viscosity of the bilayer for
both DPPC and DMPC. In addition, significant differences were observed in the R2 values
of unsaturated POPC and saturated DPPC and DMPC, while the values for DPPC and
DMPC were close. This could mean that bilayer viscosity for saturated and unsaturated
lipids is different.
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Cell membrane viscosity plays an important role in many biophysical and biochemical
processes, such as the diffusion of small biological molecules and membrane proteins,
controlling the rate of chemical reactions, etc. Additionally, changes in the viscoelastic
properties of cells could be the a marker of disease; for example, there are differences
between the viscosities of tumor cells and normal cells [44]. Additionally, studying the local
lipid bilayer viscosity is an important task for understanding cellular signaling pathways
involving lipid rafts in particular [45]. Holmium–phospholipid complexes are sensitive to
temperature due to the contribution of the Curie–spin component to the T2 relaxation rates.
These complexes can be considered as relatively high sensitivity viscosity probes for in situ
monitoring in phospholipid structures, such as liposomes or cell membranes.
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