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Abstract: Chronic kidney disease (CKD), defined as the presence of irreversible structural or func-
tional kidney damages, increases the risk of poor outcomes due to its association with multiple
complications, including altered mineral metabolism, anemia, metabolic acidosis, and increased
cardiovascular events. The mainstay of treatments for CKD lies in the prevention of the development
and progression of CKD as well as its complications. Due to the heterogeneous origins and the
uncertainty in the pathogenesis of CKD, efficacious therapies for CKD remain challenging. In this
review, we focus on the following four themes: first, a summary of the known factors that contribute
to CKD development and progression, with an emphasis on avoiding acute kidney injury (AKI);
second, an etiology-based treatment strategy for retarding CKD, including the approaches for the
common and under-recognized ones; and third, the recommended approaches for ameliorating CKD
complications, and the final section discusses the novel agents for counteracting CKD progression.

Keywords: acute kidney injury; chronic kidney disease; renal progression; therapy for renal failure

1. Introduction

Chronic kidney disease (CKD) is defined as a progressive and irreversible loss of renal
function evidenced by an estimated glomerular filtration rate (eGFR) of <60 mL/min per
1.73m2, the persistent presence of manifestations that are suggestive of kidney damage
(proteinuria, active urine sediments, histological damages, structural abnormalities or
a history of kidney transplantation), or both, lasting for more than 3 months [1]. CKD
has long been a worldwide public health concern and constitutes a heavy healthcare and
economic burden, as a reduced GFR is widely known to increase the risk of cardiovascular
events, hospitalization, cognitive dysfunction, and overall mortality [2]. The prevalence
of CKD varies according to geographic areas, mostly ranging from 10 to 20%, but rises
gradually, particularly in developed countries [3–5]. This trend can be partially attributed
to the expanding aging population globally [6]. In addition, the increased prevalence of
risk factors such as diabetes mellitus (DM), hypertension, and obesity in patients with CKD
is also notable [7,8].

Having a diagnosis of CKD means that an individual’s renal function has entered
into a “point of no return,” indicating that the deterioration of renal function over time
is inevitable and frequently irreversible. However, there can still be different patterns of
renal function decline in patients with CKD. These patterns can be classified intuitively
into very fast, fast, moderate, or slow, depending on the threshold required for defining
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the renal function decline rate, using mL/min/year or mL/min/month (Figure 1A). These
differences in patterns largely reflect the heterogeneity of CKD origins and the subsequent
pathologies, adjunct comorbidities, interventions that patients receive, and other harsh
environmental exposures [9]. From this perspective, finding how to retard renal progression
in patients with CKD is still fraught with challenges. In this review, we will focus on
established and potential management strategies that aim to slow down the deterioration
of renal function and treat the relevant complications in patients with CKD.
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Figure 1. (A) The different declined rates of renal function in CKD with the target switch from
superfast to slow rate. (B) The consequence of AKI on CKD progression, depending on the severity
and frequency of episodes.

2. Risks of CKD Progression

Estimated GFR trajectories are highly variable in CKD. This phenomenon implies that
a wide array of heterogeneous risk factors may contribute to CKD progression and that
these risk factors may be potential therapeutic targets if we wish to achieve renoprotection.
Socioeconomic factors and lifestyle factors (e.g., diet, sleep deprivation, smoking, and lack
of exercise) are well-known risk factors that are associated with CKD progression. Systemic
and metabolic disorders, including DM, hypertension, gout, and cardiovascular diseases,
can also precipitate the development of CKD and aggravate eGFR decline (Figure 2) [10].
Recently, atrial fibrillation (AF) has also been shown to be a contributor to rapid eGFR
decline, and the CHA2DS2-VASc score, a stroke-risk stratification model for patients with
AF, can predict renal progression [11].
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The intrinsic factors that are related to kidneys per se also play an important role in
influencing renal function decline, such as GFR, proteinuria, glomerulopathy, interstitial
lesions, and renal outlet obstruction (obstructive nephropathy). Each glomerulopathy
distinctly influences the pace of renal function deterioration; for example, focal segmental
glomerulosclerosis (FSGS) is more likely to result in a faster GFR decline, while the rate is
lower for patients with IgA nephropathy (IgAN), membranous nephropathy (MN), and
diabetic kidney disease (DKD) [12]. Polymorphisms in the genes involved in pathways
such as those associated with inflammatory reactions (e.g., tumor necrosis factor (TNF)-
α and interleukin (IL)-4), fibrosis (e.g., TGFB1), phase-II metabolism (e.g., GSTP1 and
GSTO1), CKD worsening (e.g., UMOD) and the renin–angiotensin–aldosterone system
(RAAS) (e.g., AGT and RENBP) have been suggested to affect the progression rate of
patients with CKD [13].

3. Epithelial–Mesenchymal Transition (EMT)

Renal fibrosis, including nephrosclerosis and tubulointerstitial fibrosis, constitutes
the final common pathway of renal injuries, regardless of etiologies. EMT is the major
mechanism promoting renal fibrosis, and myofibroblasts are the main cell type that pro-
duces the extracellular matrix [14]. The origin of myofibroblasts in the kidney remains
uncertain, but several candidates have been suggested, including resident fibroblasts, bone
marrow-derived fibroblasts, or transition from pericytes or endothelial cells [15]. Recent
research has revealed that EMT is fairly uncommon, as fibroblasts derived from EMT
are rarely found in renal interstitium. A novel concept of partial EMT, indicating that
tubular epithelial cells gain mesenchymal characteristics but retain their attachment to the
basement membrane, may explain the pathogenic role of renal tubular epithelia in renal
fibrosis [16].

After acute kidney injury (AKI) attacks, the c-Jun NH2-terminal kinase (JNK) signal
is activated in tubular epithelial cells to enhance the expression of typical mesenchymal
markers (e.g., e-cadherin, α-smooth muscle actin) and to upregulate profibrogenic fac-
tors (mainly transforming growth factor (TGF)-β and connective tissue growth factor
(CTGF)) [17]. The persistent activation of the TGF-β pathway leading to an increased
expression of SNAI1 and TWIST1 further promotes G2/M arrest. Cell cycle arrest in the
G2/M phase in injured tubular cells, through JNK activation, amplifies the profibrogenic
factors, such as TGF-β and CTGF, constituting a vicious cycle culminating in the fibrosis
progression [18]. Fatty acid oxidation (FAO) is the main energy source of the proximal
tubule (PCT). SMAD3 activated by TGF-β will suppress PPARGC1a expression to cause
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dysregulated FAO with lipid accumulation in the PCT, one of the characteristic features
of EMT [19]. The PCT cells with lipid accumulation will enhance inflammation, innate
immunity, and apoptosis to worsen renal fibrosis. Tubular cells with partial EMT can also
activate fibroblasts and recruit inflammatory cells via the secretome composed of growth
factors, chemokines, and cytokines, subsequently aggravating fibrosis [20]. Blocking EMT
with approaches targeting the cell cycle or the inhibition of SNAI1 or TWIST1 expressions
has been found to repress inflammation and fibrosis, pointing to the fact that EMT may be
a good target mechanism to reverse renal fibrosis [15,18]. Bone morphogenetic protein-7
(BMP-7) can reverse EMT by counteracting the TGF-β/SMAD2/3 pathway and serves as
another potential therapeutic target for improving renal injury [21]. However, the results
in clinical studies of BMP-7 analogs involving patients with CKD are heterogeneous, sug-
gesting a complex interaction between BMP-7 and other EMT-related pathways, as well as
the necessity of determining the optimal serum BMP-7 concentration [22].

Epigenetic modifications, including DNA methylation and histone modification, also
participate heavily in the regulation of partial EMT. The inhibition of DNA methylation
was reported to ameliorate renal fibrosis. For example, low-dose hydralazine causing the
de-methylation of the NASAL1 promotor and 5′-azacytidine, resulting in an inhibition
of DNA methyltransferase 1 (DNMT1) [23–25]. Furthermore, agents targeting histone
modification also confer renal benefits in CKD or AKI-to-CKD transition through the
inhibition of histone methyltransferase (e.g., enhancer of zeste homolog 2) or the inhibition
of histone deacetylases by directly inhibiting deacetylase (e.g., valproic acid) or indirectly
interfering with histone modification readers (e.g., bromodomain and extra-terminal (BET)
protein inhibitors) [26–28]. Epigenetics may be a novel therapeutic target for renal diseases.

4. Avoidance of Acute Kidney Injury (AKI) in Patients with CKD

AKI is associated with significant morbidity and mortality, including an increase in
adverse renal outcomes. Cumulative evidence suggests that AKI is never self-limited,
as it serves as a gateway to subsequent AKI episodes and, potentially, incident CKD,
regardless of whether patients show recovery from AKI episodes or not [29]. Moreover, a
single episode of severe AKI superimposed on patients with pre-existing CKD can cause
further renal deterioration to end-stage kidney disease (ESKD) rapidly at a non-linear
pace (Figure 1B). The risk factors associated with the AKI-related acceleration of renal
progression were identified previously, and include older age, delayed renal function
recovery from AKI, severe AKI episodes, the presence of proteinuria, and comorbidities
such as DM, hypertension, and heart failure [30–132]. Long-term renal sequelae become
very serious if patients have acute tubular necrosis (ATN) or ischemic AKI compared with
those who have other forms of AKI, suggesting that the etiology of the AKI may also be a
very important risk factor [33].

Biomarkers such as kidney injury molecule (KIM)-1 and neutrophil gelatinase-associated
lipocalin (NGAL) are able to detect AKI earlier than conventional indicators [34,35]. More-
over, a combination of biomarkers such as insulin-like growth factor-binding protein 7
(IGFBP7) and tissue inhibitor of metalloproteinases-2 (TIMP-2) was shown to successfully
predict the development of AKI during the 12 h following blood tests and can guide the
selection of interventions to prevent AKI [36,37].

The mechanisms that are responsible for the transition from AKI to CKD remain
under active investigation, and a maladaptive repair response with partial epithelial–
mesenchymal transition (EMT), especially at the proximal tubule (PCT), has an important
role. Cell cycle arrest in the G2/M phase, the dysregulated regeneration of injured PCT
due to mitochondrial dysfunction, and the aberrant activation of developmental pathways
(such as the Wnt, Hedgehog, and Notch pathways) also contribute to AKI-to-CKD tran-
sition. Phenotypic changes of fibroblasts to myofibroblasts or the formation of tertiary
lymphoid tissue, as well as defective switches of recruited T cells and M1 macrophages to
regulatory T cells and M2 macrophages, respectively, will perpetuate inflammation and
fibrosis, leading to capillary rarefaction, hypoxia, and tubule cell damage, constituting a
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vicious cycle [38–40]. Furthermore, the persistent expression of either transforming growth
factor (TGF)-β or kidney injury molecule-1 (KIM-1) has also been held responsible [41,42].
Notably, several pathogenic processes contributing to AKI-to-CKD transition are also
physiological repair processes within kidneys. Additional insults, including high salt and
high protein intake and nephrotoxic agents, during or after AKI episodes, as well as the
underlying diseased kidney (e.g., diabetic nephropathy), may turn physiological renal
responses into disordered regeneration.

Identification of Factors Causing AKI

The fundamental management of AKI in patients with CKD involves preventing the
occurrence of AKI, and the success of this approach largely depends on the identification
of the etiologies contributing to AKI (Table 1). Furthermore, treating the underlying
etiologies of AKI, the optimization of volume and hemodynamic status, the withdrawal
of nephrotoxic agents, the adjustment of medication doses according to renal function,
adopting a conservative (<180 mg/dL), rather than an intensive glycemic control goal,
and maintaining higher mean arterial pressure in patients with underlying hypertension
can be crucial strategies for AKI management [43,44]. Drug regimens should be reviewed
carefully to prevent drug–drug interactions. For example, adding piperacillin/tazobactam
should be avoided, as it potentiates the nephrotoxicity of vancomycin. Several agents and
strategies have been tested for treating AKI, including recombinant alkaline phosphatase
and L-carnitine for sepsis-related AKI, as well as p53-targeted small interfering RNA
(siRNA) and remote ischemic preconditioning for surgery-associated AKI [45,46].

Table 1. Common etiologies of acute kidney injury.

Categories Mechanism Examples Evaluation

Prerenal

Cardiac output↓

Acute myocardial infarction, valve rupture, acute
pericarditis, acute myocarditis
Drugs exacerbate heart failure (COX inhibitors, CCB,
TZD, DPP-4i)
Drugs cause direct heart injury (rheumatologic agents
(e.g., TNF-α inhibitors), anthracyclines, taxanes,
targeted therapy (e.g., bevacizumab, sorafenib),
anti-Parkinson (Pergolide, Pramipexole)

History: fever, vomiting,
diarrhea, chest pain,

orthopnea, palpitation, urine
output↓, liver/CV diseases

Drug: diuretics, NSAID
Physical exam: BP↓/HR↑,

skin turgor/mucosa, edemaTrue hypovolemia Renal loss (diuretics, osmotic diuresis); Extrarenal loss
(diarrhea, hemorrhage, burn, third spacing)

Effective volume↓ Sepsis, neurogenic shock, anaphylaxis

Intrarenal vasoconstriction Hypercalcemia, hepatorenal syndrome, drugs (CNIs,
NSAID, vasoconstrictors.)

Intrinsic

Glomerular injury

Nephrotic (MCD, MPGN, drugs (NSAID, gold,
penicillamine))213607Nephritic (IRGN, lupus
nephritis, AAV, anti-GBM disease, IgAN, drugs
(e.g., hydralazine))

History: Fever, cellulitis, URI,
flank pain, foamy urine, urine
output↓, myalgia, hemoptysis

Drug: antibiotics, NSAID,
statin, contrast

Physical exam: BP, Skin
rash, arthritis

Tubular injury

Severe prerenal causes, toxins (endogenous:
hemolysis, rhabdomyolysis, tumor lysis syndrome) or
exogenous (aminoglycoside, contrast, CNIs, acyclovir,
lithium, vancomycin))

Interstitial injury
Allergy (drug: cephalosporin, penicillin, PPI, NSAID,
herbs); Infection (bacteria, fungus, virus, leptospirosis);
Autoimmune (Lupus, anti-TBM disease, AAV)

Vascular injury
Small caliber (TMA (malignant hypertension,
HUS/TTP, DIC), scleroderma renal crisis)
Large caliber (renal infarction, renal vein thrombosis)
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Table 1. Cont.

Categories Mechanism Examples Evaluation

Postrenal

Urinary tract

Benign prostatic hyperplasia; neurogenic bladder;
Intra-ureter (stones, tumors); Extraureter
(retroperitoneal fibrosis, intra-abdominal
tumors) lesions

History: low urinary tract
symptoms, gross hematuria
Physical exam: suprapubic
tenderness, abdomen mass

Image: e.g., ultrasoundIntrarenal Crystals (acyclovir, indinavir), stones, tumors,
paraproteins (myeloma)

Denote: AAV: ANCA associated vasculitis, COX: cyclooxygenase, CNIs: calcineurin inhibitors, DPP-4i: Dipeptidyl peptidase 4 inhibitors,
DIC: disseminated intravascular coagulation, HUS: hemolytic uremic syndrome, IgAN: IgA nephropathy, MCD: minimal change disease,
MPGN: membranoproliferative glomerulonephritis, NSAID: nonsteroidal anti-inflammatory drug, PPI: proton pump inhibitor, TBM:
tubule basement membrane, TMA:thrombotic micrangiopathy, TNF: tumor necrosis factor, TTP: thrombotic thrombocytopenic purpura,
TZD: Thiazolidinedione.

5. An Etiology-Based Treatment Strategy for CKD

As mentioned above, the different etiologies of CKD themselves have various impacts
on renal progression. As an etiology-based treatment strategy for CKD has not been well
addressed, we touch on this management issue for both the common and less-appreciated
causes of CKD.

5.1. Glomerulopathy

Glomerulopathy is a heterogeneous group of diseases and accounts for a significant
number of CKDs. It occurs more commonly in young people with non-specific presen-
tations. Although novel diagnostic tools are under investigation, renal biopsy is still the
gold standard for achieving a definite diagnosis. A slow deterioration of renal function
occurs in a proportion of patients. The risk factors for a faster GFR reduction include
obesity, smoking, hypertension, significant proteinuria (usually >1 g/day), CKD at the
diagnosis of glomerulopathy, and pathologically chronic renal lesions (glomerulosclerosis,
tubular atrophy, and interstitial fibrosis) [47]. Genetic factors contribute to a rapid GFR
loss, such as APOL1 in those with FSGS [48]. Fabry disease is a frequently ignored X-link
inherited disease caused by a pathogenic mutation involving GLA-encoding lysosome
enzyme α-galactosidase A [49]. The deficient enzyme function results in the intracellular
accumulation of globotriaosylceramide, which impairs cell metabolism. Apart from neuro-
logical and cardiovascular associations, the kidneys may also be affected by presentations
of proteinuria and renal failure. Enzyme replacement therapy is the cornerstone of renal
progression reduction or prevention. A brief summary of the preferred treatment for
different underlying glomerulonephritis is shown in Table 2.

5.2. DM-Related CKD

DM is the most common etiology of CKD and ESKD worldwide [50]. DKD usu-
ally occurs in patients with poor glycemic control, but also arises in 30–40% of patients
with intensive glycemic control, suggesting a complex and multifactorial pathogenesis of
DKD [51–53]. Clinical manifestations of DKD include impaired renal function with protein-
uria. Several risk factors have been discovered, including early onset of DM, hypertension,
ethnicity, obesity, the severity of proteinuria, and smoking [54–57]. In addition to adequate
glycemic control, RAAS blockade is the centerpiece of DKD management. Pentoxiphylline
can delay the initiation of dialysis and exert a significant antiproteinuric effect in DM
patients already receiving RAAS blockades [57]. Although most statins exhibit minimal
renoprotective effects [58–60], fenofibrate, a peroxisome proliferator-activated receptor
(PPAR) α-agonist, has been shown to have an antiproteinuric effect in DKD [61]. Thiazo-
lidinediones, a PPARγ agonist, can be beneficial for DKD, with salt and fluid retention side
effects [62,63] that should be considered.
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Table 2. The therapy of glomerulopathy and the common side effects of the pharmacotherapy.

Non-Immune Therapy Immunosuppressant Therapy Denote

↓Dietary salt/protein
SGLT2 inhibitors
RAAS blockades
Blood pressure

Infection prophylaxis (vaccine,
antibioticsantiviral agents)

Vitamin D + calcium

Diuretics
↑Oncotic pressure (albumin infusion)

Lipid lowering
Anticoagulation (prevent or treat

thromboembolism)

Steroids Calcineurin
inhibitors Antimetabolite Alkalizing

agents Anti-CD20 PP

Prednisolone
ACTH

Cyclosporine
Tacrolimus

Mycophenolate
Azathioprine

CYC
Chlorambucil Rituximab

MCD ν ν ν ν ν ν ν

FSGS ν ν ν ν ν
Genetic test:

Congenital/infantile type,
APOL1 (adult)

MN ν ν ν ν ν ν ν
Serum anti-PLA2R:

diagnosis, follow-up
and outcomes

MPGN ν ν ν ν
Treat underlying diseases

(e.g., MM, lymphoma
or HCV)

IgAN ν ν (IgAN+MCD) ν ν (some RTCs)
Adjuvant antimalarial

Ongoing trial: Fostamatinib,
Atacicept, Bortezomib

LN ν ν (class V) ν ν ν ν
Antimalarial agents

AZA for maintenance

AAV ν ν ν ν
ν

severe AKI
PH

Disease activity: chemokine
C-X-C motif chemokine

ligand 13, matrix
metalloproteinase-3, tissue

inhibitor of
metalloproteinases-1

Ani-GBM ν ν ν
ν till

anti-GBM (-)
Overlap syndrome

(ANA, ANCA)

Common
S/E Rare Rare

↑Glucose
Cushing
↑BP

Nephrotoxic GI upset
Leukopenia

Bone marrow
suppression

Infertility

Infusion
reaction,
Infection

Cytopenia

Fever Urticaria

Denote: AAV: ANCA associated vasculitis, BP: blood pressure, CYC: cyclophosphamide, FSGS: focal segmental glomerulonephropathy, GI: gastrointestinal, GBM: glomerular basement membrane, IgAN: IgA
nephropathy, LN: lupus nephritis, MCD: minimal change disease, MM: multiple myeloma, MN: membranous nephropathy, MPGN: membranoproliferative glomerulonephritis, PH: pulmonary hemorrhage,
PP: plasmapheresis, RAAS: renin-agiotensin-aldosterone system, SGLT2: sodium glucose cotransporter 2, S/E: side effect.
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Sodium-glucose cotransporter-2 (SGLT2) inhibitors are the latest anti-hyperglycemic
agent capable of decreasing blood glucose effectively by blocking glucose reabsorption
in the PCT. In addition to cardiovascular benefits, SGLT2 inhibitors also postpone renal
deterioration and reduce the severity of proteinuria in patients with DM (Figure 3) [64–66].
It is proposed that SGLT2 inhibitors protect the kidney by enhancing glycemic control,
improving cardiovascular function, and decreasing body weight, as well as restoring intra
and extrarenal hemodynamics, including lowering blood pressure (BP), promoting natri-
uresis, and re-activating tubuloglomerular feedback [67]. Structurally, SGLT2 inhibitors
also are known to reverse PCT hypertrophy, which is induced by insulin resistance and
hyperglycemia-related increasing sodium and glucose reabsorption through SGLT2 [68].
With the reversal of PCT hypertrophy and decreased Na+-glucose reabsorption, the kidney
will be protected due to reduced energy demand and subsequently less oxidative stress,
inflammation, fibrosis, and growth factor expression. Furthermore, AMPK/SIRT1 signal-
ing, which is suppressed by hyperglycemia, could be re-activated by SGLT2 inhibitors
to promote anti-inflammatory hypoxia-inducible factor (HIF)-2α and to suppress the ex-
pression of pro-inflammatory HIF-1α [69–71]. Hyperglycemia increases the production of
reactive oxygen species (ROS), diacylglycerol (DAG), and advanced glycation end products
(AGEs), all contributing to the impaired autophagic clearance of SNAI1 and activated
p21 and p27. Accumulated SNAI1 and the activation of p21 and p27 result in G2/M cell
cycle arrest, the hallmark of EMT, and maladaptive renal tubular regeneration. The use of
SGLT2 inhibitors can restore normal autophagic clearance and inhibit pathways due to the
products of hyperglycemia, attenuating cell cycle arrest-related kidney damage. Notably,
it is found that the renoprotective effect may be extended to non-diabetic patients with
kidney diseases [72].
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resistance and can mediate glucose toxicity, and subsequently, DM complications, including
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DKD. Recent research has demonstrated that the O-GlcNAcylation of cellular proteins such
as ICln impairs cell volume regulation in diverse cell types, a common phenomenon in
DM [73]. A hypertrophic PCT is a typical feature of DKD as increased filtrated glucose
promotes the reabsorption of glucose and sodium in PCT. O-GlcNAcylation may result
in the cell death of PCT and contribute to the development or progression of DKD by im-
pairing the volume regulation, which could be reversed by reducing the O-GlcNAcylation
of ICln [74]. Moreover, O-GlcNAcylation in PCT was found to correlate with fatty acid
oxidation [75]. These findings suggest that the manipulation of O-GlcNAcylation may be a
potential target for the treatment DKD [76].

6. Hypertension-Related CKD

BP lowering is one of the most important managing strategies for hypertensive pa-
tients with CKD [77]. The previous consensus suggested that a systolic BP (SBP) goal
of <140 mmHg in patients with CKD and <130 mmHg in patients with CKD and pro-
teinuria [78] would be reasonable. In proteinuric CKD patients, intensive BP control is
associated with a lower occurrence of serum creatinine doubling or ESKD. Of note, Kidney
Disease Improving Global Outcomes (KDIGO) updated the treatment target of SBP control
to <120 mmHg in patients with hypertensive CKD [79].

Besides lifestyle modifications, including salt restriction, smoking cessation, weight
loss, and adequate exercise, pharmacotherapy can be beneficial with the use of renoprotec-
tive agents, including RAAS blockades and carvedilol [80–82]. Mineralocorticoid receptor
antagonists (MRAs), such as spironolactone, are able to reduce proteinuria and BP, but
are limited in the treatment of CKD due to their association with GFR decline and hyper-
kalemia [83–85]. Novel nonsteroidal MRAs, such as esaxerenone and finerenone have been
developed with better anti-fibrotic and anti-inflammatory effects (Figure 4) [86,87]. Com-
pared with steroidal MRAs, both finerenone and esaxerenone exhibit similar proteinuria-
lowering effects in patients with CKD, and a lower incidence of hyperkalemia [88–90].
Moreover, a combination of one RAAS blockade with nonsteroidal MRAs showed a similar
AKI occurrence with finerenone but steadily decreased GFR in esaxerenone trials [91,92].
Whether the combination of nonsteroidal MRAs with other RAAS blockades will confer
further renoprotection merits further investigation.

6.1. Heart Failure (HF)-Related CKD

In addition to traditional medications to control HF, sacubitril, an angiotensin receptor–
neprilysin inhibitor (ARNI), is currently recommended for patients with HF due to its
significant benefits in reducing cardiovascular mortality and hospitalization [93]. In view
of the frequent occurrence of impaired renal function in patients with heart failure, the po-
tential renal advantages of sacubitril/valsartan are being investigated. Sacubitril/valsartan
was recently found to help reserve renal function and to reduce the severity of proteinuria
in HF patients with a reduced ejection fraction [94].

6.2. Nephrolithiasis and Urothithiasis

Nephrolithiasis significantly increases the risk of incident CKD and accounts for about
2–3% of cases with ESKD [95]. Stone formers have a lower estimated GFR compared
with those without renal stones [96]. This phenomenon likely results from the fact that
nephrolithiasis shares many risk factors with CKD, including nephrotoxic analgesic use
for pain control during obstructive uropathy, a decreased water intake leading to volume
depletion, an increased dietary protein intake, recurrent sepsis, urinary tract structural
abnormalities, and exposure to contrast media for imaging purposes [97,98]. Notably, both
operations and shock wave lithotomy induce renal parenchymal injury, inflammation, and
fibrosis. Furthermore, different stone types correlate with different CKD risk. For example,
cystine stones carry the highest risk of CKD progression, followed by uric acid and struvite
stones [99]. Given the higher rate of recurrence, nephrolithiasis and urothithiasis in CKD
should be well managed.
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Pathways leading to CKD may be stone-specific. Brushite stones frequently generate
plugs at the ducts of Bellini and cause duct obstruction. The deposition of uric acid
crystals may lead to inflammation and fibrosis. Chronic pyelonephritis, high urine pH due
to urease action, and staghorn stones in the struvite stone formers may cause papillary
necrosis and renal parenchymal injury [100]. Uncommon hereditary diseases can also
present with nephrolithiasis, such as primary hyperoxaluria, cystinuria, Dent’s disease,
and adenine phosphoribosyltransferase (APRT) deficiency [101,102]. The prevention of
stone formation may be a key step to improve outcomes (Figure 5). Patients with uric acid
stones have also been found to have better renal outcomes when they receive xanthine
oxidase inhibitors, especially febuxostat and maintain alkaline urine [103]. Stone-specific
agents can be utilized. Lumasiran, an RNAi therapy for type 1 primary hyperoxaluria, was
recently approved for clinical use [104].
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6.3. Autosomal Dominant Polycystic Kidney Disease (ADPKD)

ADPKD is the most common genetic cause of ESKD [105,106] and the majority of
cases carry mutations in either PKD1 or PKD2. Recently, GANAB encoding glucosidase
II subunit α was identified as another pathogenic gene [107]. Clinical manifestations of
ADPKD include renal (flank pain, hematuria, calculi, urinary tract infection, polyuria,
nocturia, and hypertension) and extrarenal (cerebral aneurysm, cysts in the liver or other
organs, and valvular heart disease) presentations [108]. Multiple signaling pathways have
been suggested to cause metabolic disturbance during the course of ADPKD, especially the
cAMP pathway, which serves as the central player in cystogenesis [109] Transplantation
is the best therapeutic strategy since treatments such as angiotensin-converting enzyme
inhibitor (ACEi) or angiotensin receptor blocker (ARB) provide a limited effect on GFR
decline [110]. However, encouraging results suggest that the use of the V2 receptor antag-
onist tolvaptan in patients aged <55 years with an estimated GFR >25 mL/min/1.73 m2

can delay the worsening of kidney function and decrease the volume in a dose-dependent
manner with adequate safety and tolerance [111,112].

6.4. Autosomal Dominant Tubulointerstitial Kidney Disease (ADTKD)

Autosomal dominant tubulointerstitial kidney disease (ADTKD) is characterized by
tubular damage and interstitial fibrosis with intact glomeruli and positive family his-
tory [113]. It inevitably causes CKD progression to ESKD but is usually un-recognized
even though it accounts for about 5% of monogenic disorders resulting in ESKD [114]. The
introduction of genetic tests improves the sensitivity of the diagnosis. The causative mu-
tations mainly involve five genes, including UMOD, MUC1, REN, HNF1B, and SEC61A1.
Although there is no specific therapy available for ADTKD currently, a low-salt diet is not
suggested and diuretics should be used with caution to prevent the aggravation of salt and
volume depletion as well as hyperuricemia and gout [115]
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6.5. Patients with Graft Kidney

Compared with dialysis, patients receiving kidney transplantation have better out-
comes and quality of life. After induction therapy with T cell depleting agents, maintenance
immunosuppressants targeting three signals for T cell activation and proliferation should
be continued to avoid rejection [116]. Glucocorticoids are commonly used for the induction
and maintenance of immunosuppression by inhibiting nuclear factor κB (NF-κB) and its
downstream cytokine expression. Early withdrawal can be considered in patients without
direct immune-mediated renal diseases and with low immunologic risk [117]. Antimetabo-
lites are also commonly used, including azathioprine, mycophenolate/mizoribine, and its
active metabolite [118].

Calcineurin inhibitors (CNIs) are the major medications blocking signal 1 via binding
to the FK506 binding protein (FKBP). Although CNIs improve graft outcomes significantly,
12 h trough or 2 h peak (for neoral only) serum levels should be measured to prevent
excessive nephrotoxicity [119]. The complex drug interactions of CNIs with those capable
of inducing or inhibiting cytochrome P450 need more attention. mTOR inhibitors (mTORi)
also bind to FKBP but inhibit mTOR from blocking signal 3 [120]. Proteinuria should be
measured during the use of mTORi to monitor side effects such as de novo proteinuria [121].
Belatacept binding to CD80/CD86 on antigen-presenting cells can interrupt the interaction
with CD28 on T cells to block signal 2 [122].

Triple therapy is usually maintained in patients with higher immunologic risk, such
as those with underlying glomerulonephritis, receiving re-transplantation, and those with
high panel-reactive antibody titers [123]. With a lower estimated GFR after transplantation,
a mTORi-based regimen is considered more often than a CNI-based regimen [124]. mTORi
can replace CNIs or antimetabolites with similar allograft survival, better post-transplant
renal function reserve, but a decreased occurrence of non-melanoma skin cancers [125].
Except for de novo proteinuria, mTORi may contribute to hyperlipidemia, bone marrow
suppression, and infection. Other than pharmacotherapy, the frequent monitoring of
kidney graft function is crucial. While serum creatinine increases, it is important to identify
reversible factors such as sepsis, volume depletion, and drug toxicity. BK virus infection
also needs to be excluded. Ultrasound is helpful in evaluating structural problems and
vascular inflows. Kidney allograft biopsy may be indicated if recurrent/de novo kidney
diseases or rejection are suspected, or incident proteinuria occurs.

7. Management of CKD Complications

The clinical manifestations of CKD are different according to the etiologies, stag-
ing, and comorbidities. Kidneys not only handle solute excretion and water balance but
also maintain endocrine homeostasis. As CKD progresses, uremic toxins will accumu-
late. The appropriate management of CKD complications may also attenuate the renal
progression rate.

7.1. Metabolic Acidosis

With the progressive loss of renal function, the declined renal capacity of acid excre-
tion and ammonia synthesis, along with increased non-volatile acid production, leads to
metabolic acidosis. The prevalence of metabolic acidosis was shown to increase linearly
with GFR decline [126]. Metabolic acidosis can contribute to renal progression, and using
alkali therapy was shown to slow renal progression [127]. The mechanism of metabolic
acidosis-induced kidney progression is multi-faceted (Figure 6). Enhanced ammonia pro-
duction in surviving nephrons secondary to metabolic acidosis in surviving nephrons
may result in complement activation with tubulointerstitial damages [128,129]. Increased
endothelin production related to metabolic acidosis is found to reduce GFR and tubuloint-
erstitial injury [130]. Beyond renal adverse effects, metabolic acidosis negatively influences
cardiovascular outcomes by aggravating inflammatory responses, increasing aldosterone
secretion, enhancing endothelin synthesis, and impairing endothelial function, as well as
reducing Na+/K+-ATPase activity and subsequently impaired heart contractility [131,132].
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Metabolic acidosis is also associated with impaired bone mineralization, insulin resistance,
and higher all-cause mortality [133,134].
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enhanced ammonia production in surviving nephrons with complement activation and increased
endothelin production, leading to reduced GFR and augmented tubulointerstitial injury.

Alkali therapy can be initiated early to achieve a serum HCO3
− level between 22

and 26 mEq/L [135], since a HCO3
− concentration >26 mEq/L is associated with higher

mortality and cardiac events [136]. NaHCO3
− and Na citrate are two commonly used alkali

supplements; the former is cheaper but may result in bloating, while the latter is costly and
enhances gastrointestinal absorption of aluminum. The concern about sodium/volume
retention and hypertension being exacerbated by alkali therapy may be relieved with di-
uretics. Fruits and vegetables have also been shown to significantly increase serum HCO3

−

levels and to help preserve GFR in patients with stage 3 to 4 CKD without producing
hyperkalemia, despite their lower effectiveness compared to medications [137].

7.2. Low Protein Diet with Ketoanalogues

A high protein intake causes hyperfiltration and increased intraglomerular pressure,
resulting in the onset or progression of CKD. Therefore, dietary protein restriction has
long been thought as the mainstay of nutritional therapies for CKD. In general, dietary
protein of 0.55–0.6 g/kg/day is suggested for stage 3 to 5 CKD patients without DM, and
0.6–0.8 g/kg/day for those with DM. Compared with animal proteins, plant proteins have
less influence on glomerular hemodynamics and a lower net acid production. Phosphate in
plant origin proteins has relatively low bioavailability and results in a smaller phosphate
accumulation [138]. Clinically, plant proteins are associated with a reduced rate of GFR
decline and better outcomes and may be preferred as the major protein source in patients
with CKD [139,140].

As a very low protein diet (0.3–0.4 g/kg/day protein) was reported to reduce the
risks of incident dialysis compared with a low or normal protein diet, the means of pre-
venting protein-energy wasting during a restriction of dietary protein becomes a critical
issue [141]. Ketoanalogues are the precursors of essential amino acids, and their use with
concomitant dietary protein restriction has been found to significantly delay the progres-
sion of CKD and to reduce the risks of dialysis initiation in patients with (estimated GFR
>18 mL/min/1.73 m2) or without advanced CKD [142].
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Regular physical exercise is recommended for patients regardless of CKD stage and
may benefit kidney outcomes. However, there is still doubt about the relationship between
the restriction of dietary protein and uremic sarcopenia in CKD patients. Indeed, regular
physical activity during a low protein diet or a very low protein diet with ketoanalogues
will not cause net protein catabolism but will help with an improvement in muscle strength,
inflammation, and nutrition status if the energy supply is adequate [143,144]. Therefore,
an increased intake of protein-free nutrition provides adequate energy needs without the
trade-off of a high phosphate intake. Notably, the use of ketoanalogues can effectively
prevent the occurrence of protein-energy wasting and may be considered as an important
part of CKD nutritional therapy.

7.3. Anemia

Anemia is a frequent complication of CKD and is associated with a poor prognosis.
The correction of anemia in CKD may enhance the quality of life for patients and reduce
their renal function deterioration. Presently, mechanisms that are responsible for the devel-
opment of renal anemia are only partially known [145]. Insufficient erythropoietin (EPO)
production has been suggested as the major cause of renal anemia. Although the introduc-
tion of erythropoiesis-stimulating agents (ESAs) reduces transfusion-related complications
and improves the symptoms of anemia [146], no significant improvement in anemia-related
mortality and morbidity is observed, which is probably related to their adverse effects, such
as worsening hypertension, malignancy progression, higher cardiovascular complications,
and thrombosis [147]. These findings suggest that EPO deficiency is not the sole cause of
renal anemia.

Hepcidin, a 25-amino acid peptide encoded by HAMP, serves as a key molecule in iron
homeostasis by reducing gastrointestinal iron absorption and compromising iron distribu-
tion [148]. Inflammatory cytokines, such as interleukin-6, enhance hepcidin production,
while EPO increases erythroferrone expression to suppress hepcidin production [149,150].
Hepcidin also plays a central role in iron regulation in patients with CKD; either chronic
inflammation or EPO deficiency related to CKD enhances hepcidin production, result-
ing in impaired intestinal iron absorption and the mobilization of iron from its storage
site [151,152].

Recently, hypoxia-inducible factor (HIF) stabilizers, such as roxadustat and vadadus-
tat, have been developed for the treatment of renal anemia [153]. HIF, unlike ESAs, can
bind to specific sequences called hypoxia response elements (HREs) to increase the pro-
duction of endogenous EPO and to improve iron utility under hypoxia. With normoxia,
the hydroxylation of HIF by prolyl hydroxylase domain (PHD) enzymes will cause the
degradation of HIF for the purpose of regulating HIF activities [154]. HIF stabilizers have
been shown to be non-inferiority to ESAs, especially in non-dialysis CKD, with regards
to anemia-treatment efficacy [155,156]. However, their pleiotropic effects and long-term
complications still require further investigation.

7.4. Hyperkalemia

Hyperkalemia is a potentially life-threatening condition and correlates with a rapid
decline in renal function in patients with CKD. To educate patients with CKD about the
restriction of dietary potassium (K+) is the cornerstone of management. Although cationic
exchange resins, including sodium or calcium polystyrene sulfonate have been widely used
in patients with CKD, the associated sodium load, gastrointestinal irritation, inadequate
selectivity for certain cations, and their limited therapeutic efficacy reduce the utility of
these resins. Recently, novel agents, including sodium zirconium cyclosilicate (ZS-9) and
patiromer have been shown to have a higher selectivity for potassium with milder GI
adverse effects. ZS-9 may play an important role in the management of acute hyperkalemia,
due to its rapid onset of action (within 1 h), while patiromer shows a persistent K+-lowering
effect lasting for 48 h [157–159]. Importantly, the high efficacy of both ZS-9 and patiromer
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to lower K+ may improve the prognosis of patients with CKD by reducing the probability
of discontinuing RAAS blockades resulting in better heart and renal outcomes.

8. Specific Issues of CKD
8.1. Novel Therapeutic Approaches

The limited effects of the current therapy for CKD drives the need for the development
of novel therapeutic agents. Regardless of the etiologies, several processes, including
fibrosis, inflammation, and oxidative stress, as well as impaired cell regeneration, are
ongoing in the kidney. Some novel agents targeting these pathways were investigated in
preclinical studies and clinical trials. For example, atrasentan targeting the endothelin-1
receptor ETA, successfully delays the progression of DKD in clinical trials [160]. Given the
critical role of transforming growth factor (TGF)-β in not only fibrosis but also inflammation,
oxidation, and apoptosis, pirfenidone (with the ability to reduce TGF-β production) was
shown to retard the progression of estimated GFR in FSGS clinical trials [161]. MicroRNAs
can regulate numerous biological processes by repressing translationally or mediating the
degradation of mRNA. MiR-21 can be induced by TGF-β in kidneys and is associated
with fibrosis and podocyte injury. Lademirsen, as a blocker of miR-21, was found to
prevent the progression of Alport syndrome in preclinical studies [162]. Bromodomain
and extraterminal (BET) proteins are epigenetic regulators involved in cell proliferation,
differentiation, and inflammation. A BET protein inhibitor, apabetalone, showed favorable
renal outcomes in patients with coronary artery disease and DKD [163,164]. Furthermore,
clinical trials using inhibitors of Nrf2 and p53 are ongoing [165].

Considering the complexity of CKD pathogenesis involving different cell types and
changes of multiple signal pathways, multi-target drugs (MTD) emerge as a useful tool; for
example, soluble epoxide hydrolase (SHE)-based PTUPB (with cyclo-oxygenase 2 (COX2)
inhibitor), PB394 (with PPARγ agonist), and DM509 (with farnesoid X receptor agonist) to
alleviate fibrosis, inflammatory response, and oxidative stress from CKD related to DM,
hypertension, hyperlipidemia, or other etiologies [166–168].

8.2. Mesenchymal Stem Cells and Their Conditioned Media

Mesenchymal stem cells (MSCs) characterized by the ability to self-renew and differ-
entiate to different cells can be isolated from different tissues such as adipose tissue and
bone marrow [169]. Due to the low immunogenicity of MSCs, their transplantation is a
safe therapy and has been used in the treatment of numerous diseases, including kidney
diseases. Transplanted MSCs can migrate into injured tissue, so-called MSC homing, and
exert their immune modulation, anti-apoptosis, anti-inflammation, and anti-oxidation abil-
ities to enhance tissue repair in the manner of direct cell–cell interaction or paracrine [170].
Moreover, extracellular vesicles (EVs) secreted by MSCs and the conditioned medium (CM)
of MSCs are both shown to help heal injured tissues [171]. In diverse models of AKI and
CKD, the systemic or local injection of MSC, MSC-EV, or MSC-CM has been demonstrated
to enhance tubular repair, ameliorate inflammation, alleviate fibrosis, and preserve kidney
function. In clinical trials of AKI and CKD (Table 3), MSC therapy evinced safety and
tolerability, but the small case number and short duration of follow-up meant that the
efficacy of MSC therapy on kidney protection was inconclusive [172]. For DKD, MSC
administration tended to stabilize or improve the GFR in patients with type 2 DM, but
hyperglycemia may diminish the renoprotective effect by causing damage to MSCs, which
could be resolved by a co-culture of macrophage with MSCs or a modification of MSCs
by angiotensin-converting enzyme 2 [173]. Similarly, uremic toxins such as p-cresol can
impair the function of MSCs, and the concomitant use of pioglitazone helps to restore the
MSC function [174].
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Table 3. Potential novel agents targeting CKD progression.

Categories Agents Mechanism

Anti-fibrotic
Pirfenidone TGF-β inhibitor

Fresolimumab Anti-TGF-β monoclonal antibody
FG3019 Anti-CTGF monoclonal antibody

Anti-oxidative stress
Bardoxolone methyl Activating Nrf-2 and inhibiting NF-κB pathway

Probucol Phenolic antioxidant

Anti-inflammatory

Adalimumab Anti-TNF-α monoclonal antibody
Infliximab Anti-TNF-α monoclonal antibody
Etanercept soluble recombinant receptor targeting TNF-α
Rilonacept Anti-IL-1 monoclonal antibody

Signal transduction pathway
Ruboxistaurin PKCβ inhibitor

Selonsertib ASK1 inhibitor
Fasudil Rho kinase inhibitor

Vasoactive agents

Avosentan ET type A receptor antagonist
Atrasentan ET type A receptor antagonist
Sitaxsentan ET type A receptor antagonist

Bosentan Dual ET type A and B antagonist
Sparsentan Selective dual antagonist of AT1 receptor and the ET type A receptor.

Phosphodiesterase inhibitor PF-00489791 Phosphodiesterase V inhibitor

Cell-cell/cell-matrix interaction GCS-100 Galectin-3 inhibitor

AT1: angiotensin II type I, CTGF: connective tissue growth factor, ET: Endothelin, IL-1: interleukin-1, TGF-β: transforming growth factor-β,
TNF-α: tumor necrosis factor-α.

9. Conclusions

The management of patients with CKD is complex and challenging because of the
heterogeneous nature of CKD and an inadequate awareness of its adverse impact. Besides
lifestyle modifications and the correction of CKD risk factors, the prompt identification of
AKI and early medical interventions for complications including anemia, metabolic acido-
sis, low protein diet with ketoanalogues, hyperkalemia, and CKD-mineral bone disorder
(CKD-MBD) are crucial for retarding renal progression and lowering the morbidity and
mortality of patients with CKD. With the advancements that have been made in under-
standing the molecular mechanisms of CKD, novel therapeutic agents being continuously
identified, and the translation of these findings from bench to bedside will likely improve
the efficacy of treatments for CKD.
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