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Drosophila larvae crawl by peristaltic waves of muscle contractions, which propagate
along the animal body and involve the simultaneous contraction of the left and right
side of each segment. Coordinated propagation of contraction does not require sensory
input, suggesting that movement is generated by a central pattern generator (CPG).
We characterized crawling behavior of newly hatched Drosophila larvae by quantifying
timing and duration of segmental boundary contractions. We developed a CPG network
model that recapitulates these patterns based on segmentally repeated units of excitatory
and inhibitory (EI) neuronal populations coupled with immediate neighboring segments.
A single network with symmetric coupling between neighboring segments succeeded
in generating both forward and backward propagation of activity. The CPG network was
robust to changes in amplitude and variability of connectivity strength. Introducing sensory
feedback via “stretch-sensitive” neurons improved wave propagation properties such as
speed of propagation and segmental contraction duration as observed experimentally.
Sensory feedback also restored propagating activity patterns when an inappropriately
tuned CPG network failed to generate waves. Finally, in a two-sided CPG model we
demonstrated that two types of connectivity could synchronize the activity of two
independent networks: connections from excitatory neurons on one side to excitatory
contralateral neurons (E to E), and connections from inhibitory neurons on one side to
excitatory contralateral neurons (I to E). To our knowledge, such I to E connectivity has
not yet been found in any experimental system; however, it provides the most robust
mechanism to synchronize activity between contralateral CPGs in our model. Our model
provides a general framework for studying the conditions under which a single locally
coupled network generates bilaterally synchronized and longitudinally propagating waves
in either direction.
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INTRODUCTION
Central pattern generator (CPG) circuits are autonomous groups
of neurons, or neural networks, that produce patterned, rhythmic
neural output in the absence of sensory or descending inputs that
carry specific timing information (Marder and Bucher, 2001).
These networks underlie the production of most rhythmic motor
patterns such as breathing, walking, and swimming (Marder and
Calabrese, 1996; Grillner, 1999, 2003). CPG circuits have been
studied in several vertebrate and invertebrate systems (Grillner,
2003, 2006; Marder et al., 2005), leading to a detailed understand-
ing of the cellular and circuit mechanisms that generate rhythmic
motor patterns. We have studied the locomotor generating circuit
in Drosophila larvae. Drosophila larvae exhibit highly stereotyped
locomotor behavior characterized by the synchronous contrac-
tion of muscles on the left and the right side of the body. During
forward crawling, peristaltic waves of muscle contractions travel
from posterior to anterior abdominal segments of the larva, while
the reverse occurs during backward crawling (Fox et al., 2006;

Dixit et al., 2008; Lahiri et al., 2011; Berni et al., 2012; Heckscher
et al., 2012). This rhythmic movement can be generated inde-
pendently of sensory feedback and descending input from the
brain, suggesting the existence of a CPG network that underlies
this behavior in the thoracic and abdominal segments (Suster and
Bate, 2002; Hughes and Thomas, 2007; Berni et al., 2012). This is
in contrast to models of the nematode C. elegans where sensory
feedback from the motor circuit has been shown to be the critical
element for rhythm generation (Wen et al., 2012).

In some vertebrates, such as lamprey and Xenopus, the loco-
motor CPG that generates swimming movements is organized
into two reciprocally inhibitory “half centers” located on each
side of the spinal cord (Arshavsky et al., 1993). These half cen-
ters are connected by commissural interneurons, thus produc-
ing alternating left-right activity in the two half centers (Soffe
et al., 1984; Grillner, 1985; Arshavsky et al., 1993). The left-right
synchronous muscle contractions during crawling in Drosophila
larvae stand in contrast to the left-right alternating contractions
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during swimming in lamprey and tadpole (or dorso-ventral in
leech). Therefore, existing CPG models of these and other exper-
imental systems generating alternating activity patterns (Cang
and Friesen, 2002; Grillner, 2003, 2006; Marder et al., 2005;
Bryden and Cohen, 2008; Mullins et al., 2011) are inadequate for
modeling peristaltic wave propagation as observed in Drosophila
crawling.

Here we first quantified the behavior of freely crawling
Drosophila larvae by calculating the duration of contraction of
abdominal segments and the speed of propagation from one seg-
ment onto the next. Based on these data we developed a new CPG
model to study locomotor wave pattern generation. Our model
is an abstraction of neural circuits that might generate larval
crawling and captures the observed coordination at the segmen-
tal level. In the model, the activity in each abdominal segment
is represented with a unit consisting of excitatory and inhibitory
(EI) neuronal populations. These units are then coupled to allow
for the propagation of activity. We showed that a minimal fully
symmetric network architecture consisting of nearest-neighbor
excitatory and inhibitory connections can generate unidirectional
propagating waves qualitatively matching experimental observa-
tions of propagating segmental contractions. The same network
produced both forward and backward waves evoked by the activa-
tion of the most posterior, or most anterior segment, respectively.
Therefore, Drosophila larvae might not require independent net-
works for forward and backward crawling, but could use a sym-
metric layout to support forward and backward locomotion. We
found that wave generation is more sensitive to changes in excita-
tory than inhibitory intersegmental connectivity. Whether such
different requirements for precise tuning might be reflected in
biology by higher variability in inhibitory than excitatory con-
nectivity will need to be addressed experimentally. Incorporating
sensory feedback based on “stretch-sensitive” neurons (Suster and
Bate, 2002; Fox et al., 2006; Hughes and Thomas, 2007) produced
waves where segmental contraction duration and speed of propa-
gation were close to experimental observations. Sensory feedback
also improved network robustness; it successfully restored prop-
agating waves in networks lacking sensory feedback that did not
generate waves due to inappropriate parameter settings. Finally,
we considered two networks which can independently gener-
ate propagating activity, and determined how to connect them
while ensuring that their activity was synchronous. Thus, our
modeling proposes plausible ways to connect left and right net-
works to obtain synchronous propagation of activity in both
left and right hemisegments, different from the cross-inhibitory
connections required for producing alternating activity in other
animals.

MATERIALS AND METHODS
CRAWLING BEHAVIOR ANALYSIS
Newly hatched first instar Drosophila larvae (wild type strain
Oregon-R) were placed on a 5 cm Petri dish coated with 0.9%
agarose. Thirty second movies were captured at 30 frames per sec-
ond with a JVC TKC1380 camera adapted on a Leica M420 micro-
scope. The contraction of one particular segment was defined as
the time between the first movement of the posterior denticle
band and the last movement of the anterior denticle band that

define its boundaries (see Figure 1). The timing of contraction
was quantified with the open source software VCode 1.2.1 (http://
social.cs.uiuc.edu/projects/vcode.html) (Hagedorn et al., 2008).

We first quantified a total of 35 forward waves in 12 ani-
mals recorded at 25◦C (Figures 1B–E). These waves were not
all consecutive, because a requirement for quantification was
that the entire animal was in view under the microscope dur-
ing each wave. In this paper we focused only on characterizing
and modeling waves propagated by the 8 abdominal segments.
In between these waves, the larvae frequently move their head
and thoracic segments, which we did not consider. However,
we found no significant difference between the time of propa-
gation of the first peristaltic wave following a pause, compared
to other consecutive waves (first wave 1180 ± 29 ms and follow-
ing waves 1235 ± 16 ms; t-test: t = 1.521, df = 217, p = 0.1297).
Since we quantified multiple consecutive waves in several animals,
we also calculated the duty cycle (although we did not compare
it to the model). Using the formula D = (time of wave prop-
agation)/(stride period), where stride period denotes the total
time of wave propagation and the time between waves, we found
that D = 0.83 ± 0.22 (mean ± SD). We also quantified 15 for-
ward and 14 backward waves in 10 animals in arenas where the
temperature was raised to 34◦C imposing the same requirements
(Figures 1F–K). All quantities in the text have been reported as
mean ± SD.

A WILSON-COWAN MODEL OF A SINGLE SEGMENT
The activity in each segment was modeled with a Wilson–Cowan
unit (Wilson and Cowan, 1972) consisting of two neuronal
populations, excitatory (E) and inhibitory (I). These two pop-
ulations represent the joint activity of all central neurons in
the CPG circuit for crawling. The differential equations for the
time-dependent variation of averaged excitatory and inhibitory
neuronal activities were

τEĖ = −E + (kE − E)GE(aE + cI + Pext) (1)

τI İ = −I + (kI − I)GI(eE + fI), (2)

where the functions GE, GI , and GS represent sigmoidal response
functions of the excitatory, inhibitory, and sensory neuronal
populations given by

G(x) = 1

1 + exp [−λ(x − θ)]
− 1

1 + exp(λθ)
, (3)

λ represents the maximum slope of the sigmoid (or if G represents
an activation function, it denotes the speed of activation) and
θ represents the location of the maximum slope (or the thresh-
old for activation). The terms kE and kI denote the maxima of
the response functions for the excitatory and inhibitory popula-
tions, kE = 0.9945 and kI = 0.9994, obtained for λE = 1.3 and
λI = 2 (Wilson and Cowan, 1972). The time constants τE and τI

denote the decay of the excitatory and inhibitory activities after
stimulation, and determine the timescale of activity in the net-
work. All parameters were dimensionless and time in the model
was measured in arbitrary time units (t.u.). The time constants
for the dynamics, τE and τI , were chosen such that one time
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unit in the model corresponded to roughly one second of seg-
mental contraction duration in our experiments. The variability
of the waves in our data suggest that Drosophila larvae crawl at
different speeds which depend on other factors excluded from our
model (Figure 1B). The normalized segment activity duration
and intersegmental phase lag (defined below) were independent
of the exact choice of these time constants, and were therefore
used throughout the paper to allow for comparison between the
waves recorded experimentally and model waves.

The connectivity coefficients a (or e) and c (or f ) represent the
average number of excitatory and inhibitory synapses per cell in
the excitatory (or inhibitory) population, respectively. The time-
varying function Pext(t) denoted the external input applied to
the excitatory population. The system of Equations (1)–(2) has
been previously analyzed (Wilson and Cowan, 1972; Borisyuk
and Krilov, 1992). Depending on the parameters in the system,
there can be multiple equilibria with different stability proper-
ties; but here we used the values from Wilson and Cowan (1972)
(see Table 1), for which the system has a single unstable fixed
point and a stable limit cycle in response to constant stimu-
lation Pext. This means that applying constant input to such
an isolated unit, the activity of the excitatory and inhibitory
populations oscillates (Wilson and Cowan, 1972; Borisyuk and
Krilov, 1992; Borisyuk et al., 1995). However, when multiple seg-
ments are connected as in our network (see below), due to the
presence of inhibition from neighboring segments, oscillations
are suppressed and instead waves can be propagated across the
segments.

A NETWORK MODEL FOR WAVE PROPAGATION WITH
INTERCONNECTED SEGMENTS
We modeled propagating waves only in the eight abdominal seg-
ments, excluding any head and thoracic segment movements
typically performed by the larvae between abdominal segment
waves. Therefore, our model could not capture the data about
duty cycles as this data incorporates such additional movements
of the head and thoracic segments.

To model wave propagation with segmental activity patterns
as those observed during Drosophila crawling, we coupled eight
Wilson–Cowan EI units described above representing the eight
repeated abdominal segments of the Drosophila body (A8–A1)
(Figures 2A,B). The activity of the excitatory and inhibitory
populations in each segment, j, was represented with the aver-
aged firing rates Ej(t) and Ij(t), respectively. Between segments,
nearest-neighbor connections of two types were used: bidirec-
tional excitatory connections (b) between the excitatory pop-
ulations of neighboring segments leading to a propagation of
activity along the chain of segments, and inhibitory connec-
tions (d) from the inhibitory population in one segment to
the neighboring (anterior and posterior) excitatory populations
(Figure 2B) to terminate activity in the previously active seg-
ment and ensure unidirectional wave propagation. This network
was equipped with symmetric bidirectional connectivity such that
forward and backward propagating waves were generated with the
same properties. We list typical values for these parameters of the
model in Table 1, which were determined from the exploration in
Figure 5.

The equations for the averaged firing rates with i = 1, . . . , 8
can be written as:

τEĖi = −Ei + (kE − Ei)GE(bEi − 1 + aEi + bEi + 1 − dIi − 1

− eIi − dIi + 1) (4)

τI İi = −Ii + (kI − Ii)GI(cEi − fIi) (5)

where we note that the terms in the equations for i = 1 (i = 8)
containing i − 1 (i + 1) drop out, because the end segments
(A1 and A8) received excitation and inhibition only from one
neighboring segment.

Other alternative architectures might be similarly suited to
generate propagating waves. Here we strived to use a network
of minimal connection complexity to reveal the general network
properties that support crawling behavior as described in this
paper.

INCORPORATING SENSORY FEEDBACK IN THE MODEL
The equations of the model with sensory feedback are an exten-
sion of the Equations (1)–(5), with additional input from the
sensory populations for i = 1, . . . , 8

τEĖi = −Ei + (kE − Ei)GE(bEi − 1 + aEi + bEi + 1 − dIi − 1

− eIi − dIi + 1 + βSi) (6)

τI İi = −Ii + (kI − Ii)GI(cEi − fIi + γSi) (7)

where the dynamics for the sensory populations are

τSṠ1 = −S1 + GS(α[E2 − E1]+) (8)

. . . . . .

τSṠi = −Si + GS(α[Ei + 1 − Ei]+ + α[Ei − 1 − Ei]+) (9)

. . . . . .

τSṠ8 = −S8 + GS(α[E7 − E8]+), (10)

for i = 2, . . . , 7. Here, [x]+ = max(x, 0). For the activation func-
tion of the sensory neuronal populations, we used a sigmoid GS

with the same slope as the excitatory population, bs = be = 1.3,
but a threshold for activation smaller than that for the excita-
tory population θs = 2 < θe such that sensory activity increases
before excitatory activity. The time constant τS was equal to
τE because wave properties were reported normalized to wave
duration.

CHARACTERIZATION OF WAVES IN THE MODEL
A “contraction” in the model was defined as suprathreshold
activity (activity above a threshold θC) of the excitatory pop-
ulation (Figure 3A). Therefore, we compared the duration of
suprathreshold excitatory activity in the model to the duration of
segmental contractions in experimental data, and threshold cross-
ing in the model to onset of contraction in the data (Figure 1B).
The normalized contraction duration was defined as the contrac-
tion duration of each segment (from the onset until the offset
of contraction in that segment) divided by the total duration of
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the wave (time of contraction offset in segment A1 minus time of
contraction onset in segment A8). The intersegmental phase lag
was defined as the time from the start of contraction of one seg-
ment to the start of contraction of the next neighboring anterior
segment, divided by the wave duration.

ROBUSTNESS SIMULATIONS
Forward waves generated by the model (Figure 5) were analyzed
only if the excitatory activity of a given segment increased above
threshold after the excitatory activity of the posterior neighbor-
ing segment, and then decreased below threshold after posterior
excitatory activity—as should occur during forward wave propa-
gation. For waves that did not meet these criteria, and when waves
could not be initiated, the value of 0 was used (Figures 5A–C).
A wave in Figure 6 was considered successful when the external
drive Pext = 1.7 applied for a duration of 1.2 t.u. initiated a single
wave only, and also when all the segments were activated above
threshold in the correct order (posterior before anterior), and
then deactivated in the same order, except for the last segment
A1 which always deactivated before A2 in the simulations without
sensory feedback.

TWO-SIDED MODEL
To initiate a wave in the two-sided model (Figure 9), an external
input was applied to the two excitatory populations in segment
A8, with a small difference in the strength to each side (e.g., Pext =
1.7 to the left side and Pext = 1.72 to the right side) to avoid
instantaneous synchronization due to the deterministic nature
of the model. A simulation was performed for each parameter
choice, and after disregarding transient activity, we computed the
difference in timing between the threshold crossing of Eleft

j and

E
right
j , averaged across all segments j = 1, . . . , 8. Waves where the

difference between excitatory activity on the left and the right side
was longer than 0.1 t.u. were discarded (Figure 10).

RESULTS
CHARACTERIZING CRAWLING PATTERNS IN DROSOPHILA LARVAE
Drosophila larvae can crawl at different speeds, but during undis-
turbed spontaneous crawling the patterns are highly stereotypical
(Figure 1) (Suster, 2000; Fox et al., 2006; Lahiri et al., 2011; Berni
et al., 2012; Heckscher et al., 2012). During forward crawling,
a wave is typically initiated by the simultaneous contraction of
the most posterior segments, A8/9. As the contraction propagates
anteriorly, each of the remaining abdominal segments (A7–A1)
is transiently lifted from the substrate, propelled forward, and
attached again to the substrate through a belt of cuticular den-
ticles which serve as anchorage points (Crisp et al., 2008; Dixit
et al., 2008; Berni et al., 2012) (Figure 1A). Segments anterior
to the abdomen (head and thorax) move differently (Dixit et al.,
2008; Heckscher et al., 2012).

We have therefore focused on the propagation of contrac-
tion waves in the abdominal segments, complementing exper-
imental observations with a modeling study. Figure 1 shows
the propagation of segmental contractions during a peristaltic
wave of a freely crawling newly hatched Drosophila larva. The
larva is shown from the bottom with horizontal lines denoting
the segmental boundaries. We recorded the times when each

segment started and stopped contracting for 35 waves in 12 dif-
ferent animals (Figure 1B) (see Materials and Methods for how
we selected these waves). Consistent with previously reported
data by Heckscher et al. (2012), the average wave duration was
1.39 ± 0.25 s for forward crawling. The waves within the same
animal and between different animals were variable (Figure 1B).
Therefore, we reported the average duration of contraction for
the different segments normalized by the total wave duration
(Figure 1C). Each segment contracted 0.415 ± 0.076 of the time
during which the wave propagated along the body.

We also quantified the intersegmental phase lag between con-
tractions (time between the start of contraction of two neighbor-
ing segments, see Materials and Methods). The intersegmental
phase lag, shown in Figure 1D for neighboring segment pairs, was
0.087 ± 0.050 of the total wave duration for all pairs. This inter-
segmental phase lag could be interpreted as inversely proportional
to the normalized propagation speed of a wave. The contraction
propagation is fastest through the most posterior pair of segments
(A8 and A7): the phase lag was significantly faster through A8 and
A7 than through the next fastest segments (A2 and A1) (p = 0.03;
Mann–Whitney two-tailed test). This is consistent with a model
where a certain threshold level needs to be overcome for a wave to
start.

Newly hatched first instar larvae generally crawl forward
(99.8%), but can briefly move backward in response to sensory
stimuli to the head (Kernan et al., 1996), increased temperature
(Berni et al., 2012) or certain constrained conditions (Heckscher
et al., 2012). During backward movement, the wave of contrac-
tions is reversed and passes from anterior to posterior. Previous
studies have quantified backward waves for larvae in linear chan-
nels, and found that larvae crawl backward at a lower speed
than forward (Heckscher et al., 2012). To examine the activ-
ity pattern of backward crawling in unrestrained conditions, we
recorded 14 backward waves at 34◦C when Drosophila larvae
crawl backward (Figure 1I). We also quantified 15 forward waves
at 34◦C (Figure 1F), allowing us to compare the two types of
waves under the same condition. Examining the normalized con-
traction duration and intersegmental phase lag for these waves
(Figures 1G,H,J,K) revealed that although at 34◦C waves were
more variable, the wave properties, both normalized contrac-
tion duration and intersegmental phase lag, were similar to the
forward waves recorded at 25◦C.

CHARACTERIZING WAVE PROPAGATION IN THE MODEL
Next, we proposed and analyzed a minimal network architecture
that might underlie the generation of peristaltic wave propagation
as observed during crawling in Drosophila larvae. We first concen-
trated on a model that captured the segmental activity of a whole
segment and subsequently studied left/right synchronization. The
following criteria were used to design the CPG model:

1. The network output should be rhythmic [as required for a
CPG (Marder and Bucher, 2001)] such that external drive
initiating the waves should not deliver any timing information.
The timing properties of wave propagation should be governed
purely by the dynamics of segmental activity in the network.
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FIGURE 1 | Quantification of peristaltic waves of contraction during

forward and backward crawling in a first instar Drosophila larva.

(A) One wave of peristaltic crawling in first instar larva is illustrated
through snapshots taken every 200 ms. The individual panels show the
forward propagation of segmental contractions. The segments are labeled
from posterior to anterior as A8/9 through A1 (see also Figure 2A). The
arrows illustrate the simultaneous contraction of several neighboring
segments during a wave, which propagates from posterior (segment A8/9)
to anterior end (segment A1) of the larva. The lines in each panel mark the
position of the dentical belts approximating segmental boundaries.
(B) Time of contraction of each segment for the 35 forward waves (shown
in different shades of gray) recorded at 25◦C. The 35 waves recorded in 12
animals (not all consecutive) show a great variability among different
animals and different waves in the same animal. The blue rectangles
denote averages, while the blue bars standard deviations of the start and
end time of contraction of each segment. Only forward waves were
measured where the larvae did not perform left/right turning or exploratory

head extensions. The larvae did not crawl backward spontaneously.
(C) Mean ± SD of the segmental contraction durations of each segment
for the same 35 waves in (B). Each segmental contraction duration was
normalized by the total wave duration of the corresponding wave, and then
averaged. We also illustrate the normalized contraction duration and the
intersegmental phase lag quantified in (D) and (E). (D) Normalized
contraction duration for each abdominal segment for the 35 forward waves
in (B) in different shades of gray. Mean ± SD is shown in red.
(E) Intersegmental phase lag for the 35 forward waves in (B) in different
shades of gray. Mean ± SD is shown in red. (F,I) Mean ± SD of the
normalized segmental contraction durations of each segment for 15
forward waves (F) and 14 backward waves (I) recorded at 34◦C.
(G,J) Normalized contraction duration for each abdominal segment for the
15 forward waves (G) and 14 backward waves (J) recorded at 34◦C in
different shades of gray. Mean ± SD is shown in red. (H,K) Intersegmental
phase lag for the 15 forward waves (H) and 14 backward waves (K)

recorded at 34◦C in different shades of gray. Mean ± SD is shown in red.

2. The network should produce a propagating wave from
one end to the other, with duration and timing of
activity in neighboring segments matching experi-
mental recordings of crawling in Drosophila larvae
(Figures 1C–E).

3. Network connectivity should be symmetric such that a sin-
gle network supports wave propagation in both directions,
from posterior to anterior (as during forward crawling), and
from anterior to posterior (as during backward crawling)
(Figures 1I–K).
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4. The network should produce propagating waves without sen-
sory feedback characteristic of a CPG-driven network (Suster
and Bate, 2002; Crisp et al., 2008).

5. Sensory feedback to the CPG network should modulate its
output as previously shown in experimental studies (Hughes
and Thomas, 2007).

The model architecture is based on coupled neuronal pop-
ulations, excitatory and inhibitory, which represent the CPG
circuit underlying crawling. Thus, our model captures the gross
crawling behavior observed at the segment level, and does not
explicitly incorporate motorneuron or muscle dynamics. There
is little experimental evidence on the specific identity, anatomy,
and synaptic connectivity of central neurons that generate the
basic crawling rhythm; thus we aim to explore minimal mod-
els that can generate the above behaviors and elucidate general
principles behind connectivity of the motor networks for larval

crawling. Our model aims at providing constraints on future
modeling studies, but also at suggesting testable predictions for
future biological experiments.

A schematic of the larval body is illustrated in Figure 2A show-
ing its segmented organization. We modeled only the abdominal
segments (A8–A1), using a circuit consisting of 8 coupled excita-
tory and inhibitory population units (Figure 2B). Previous work
has explored how varying the intrasegmental connectivity param-
eters (a, e, c, and f , Table 1) in a single segment (EI unit) affects
the activity of the E and I populations in that unit (Wilson and
Cowan, 1972; Borisyuk and Krilov, 1992); here we study the
effects of variability in the intersegmental connectivity (b and d,
Table 1).

Since peristaltic waves in Drosophila larvae start crawling for-
ward by the contraction of the most posterior segment, we
assumed that activation of A8 elicits the beginning of a for-
ward wave. To initiate a single forward wave in the CPG network

Chead

T1

T2

T3

A8/A9

A1

A7

A6

A5

A4

A2

A3

BA

1 t.u.

0.
3

FIGURE 2 | A CPG network model of the segmentally repeated body of a

Drosophila larva. (A) A schematic of the body of a Drosophila larva. T1–T3
denote the thoracic segments (not analyzed/modeled), and A1–A8 the
abdominal segments. (B) A network model for peristaltic wave propagation
with eight interconnected segments, each consisting of an excitatory (E) and
an inhibitory (I) neuronal population. Connections a, c, e, and f are shown
only for segment A8, but are found in each segment. The segments are

connected with nearest-neighbor excitatory, b (blue, arrows), and inhibitory, d
(red, dots), connections. Forward waves are initiated by providing external
input Pext into the excitatory population of segment A8. (C) The excitatory
activity for each of the eight segments is shown in blue, and the inhibitory
activity in red during a forward wave as a function of time. A vertical line is
drawn where E8 exceeds threshold to highlight that the wave progresses
from posterior to anterior.

Table 1 | Network parameters for wave propagation.

a b c d e f τE τI τS Pext bE bI bS θE θI θS

16 20 −12 −20 15 −3 0.5 0.5 0.5 1.7 1.3 2 1.3 4 3.7 2

Default parameter values for the model simulations.
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(Figure 2B), a constant, external input Pext of fixed duration was
applied to E8 (Figures 3A,D), while to initiate a single backward
wave, Pext was applied to E1 (Figure 3E). No external input was
provided to the inhibitory populations, nor to the other excita-
tory populations in the model. Once the excitatory population
in the posterior segment, E8, was driven beyond the threshold for
activation, activity propagated to the other excitatory populations
(Figure 2C).

Excitatory activity in the model was evaluated while it
exceeded a certain threshold (θC; see Materials and Methods). We
compared the timing of such suprathreshold excitatory activity in
the model to the timing of segmental contractions in the data. We
tested thresholds θC ∈ [0.2, 0.3] (activity was bounded in [0,0.5])
(Figures 3B,C). The normalized segment contraction duration
generated with the model matched that in the experimental data
(Figure 3B), except for one notable difference. While the nor-
malized contraction duration of all segments in the experiments
was similar (Figure 1C), in the model, the posterior segment E8

was active for longest, and the anterior segment E1 for short-
est (Figure 3B). This bias originates in the design of the model,
namely, the two end segments in the network receive inputs of
different strength: during forward wave propagation, E8 receives
external input Pext and also excitatory input from its neighbor E7;
E1, however, received excitatory input only from its neighbor E2

and no external input. We later show that this difference can be
overcome by adding sensory input to the model (see Figure 7).
The difference can also be overcome by reducing the duration
of Pext, which shortens the duration of suprathreshold activity
in E8 (Figure 3D). Interestingly, a qualitatively similar difference
has also been observed in experiments where activity from the
segmental nerve of posterior and anterior segments was recorded
(Fox et al., 2006). In particular, the recorded bursts tended to be
longer in segments where the waves originated, so in the case
of forward waves, longer bursts were observed in posterior seg-
ments. In this work, however, the segmental activity was recorded
for pairs of segments only (Fox et al., 2006). It would be interest-
ing to compare our simulated waves to recordings of all segments.
In addition to the normalized segment contraction duration, we
also examined the intersegmental phase lag for the model waves.
Figure 3C shows that the intersegmental phase lag was in the
same range as for the experimentally observed waves.

For most models we detected suprathrehsold activity using
a threshold of θC = 0.3. Decreasing this threshold increased
the duration of suprathreshold activity and, thus, the normal-
ized segment duration (Figure 3B). Decreasing the threshold
also increased the speed of propagation (by decreasing the
time between activation of neighboring segments) relative to
the overall wave duration (Figure 3C). Backward waves had the
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FIGURE 3 | Quantification of forward peristaltic waves in the CPG

network model. (A) An example of suprathreshold excitatory activity
(θC = 0.3, dashed line in inset) of each segment. Time is measured in arbitrary
time units (t.u.). External drive Pext = 1.7 was applied to E8 for 2 t.u. (B)

Duration of suprathreshold excitatory activity (corresponding to contraction)
for each segment normalized by the wave duration for waves generated with

different thresholds. For comparison, we have also plotted the experimental
data from forward waves at 25◦C (Figure 1D). (C) Intersegmental phase lag
for the same waves in (B). We also show the experimental data from forward
waves at 25◦C (Figure 1E). (D) Same as (A) except that the external drive
was applied for 1 t.u. (E) To generate backward waves, similar parameter
values were used as in (A), but with external drive applied to E1 (not E8).
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same normalized contraction duration and intersegmental phase
lags (Figures 3D,E). This is due to the bidirectionally-symmetric
connections between neighboring segments in this model and
because of the way backward waves were elicited by applying the
external drive Pext to the most anterior segment A1 instead of A8.

CONTINUOUS EXTERNAL DRIVE CAN EVOKE MULTIPLE WAVES
Network activity gradually rises upon the onset of an external
stimulus Pext due to several factors including network connectiv-
ity and the intrinsic dynamics of the E and I populations in each
EI unit. Figure 4A shows the time required for wave initiation
as the duration and intensity of Pext is varied. This agrees with
the original analysis performed for a single EI unit by Wilson and
Cowan (1972), who derive the intensity and duration of a rectan-
gular impulse which is sufficient for the excitatory population to
become self-exciting and transition from the quiet to the excited
state. In our model of 8 connected segments, a single peristaltic
wave is generated for short and weak external drive duration,
and the network returns to a quiet state. If the network receives
an external input of intermediate strength, multiple waves can
be generated for as long as the stimulus is applied (Figure 4B).
This demonstrates that multiple waves with appropriate duration
can be generated by suitably adjusting the external input, and
might explain how continuous straight crawling is maintained
in Drosophila larvae. However, Drosophila larvae often pause and
turn (Kernan et al., 1996; Berni et al., 2012), performing move-
ments coordinated by the head and the thoracic segments which
we did not model. As a result, our findings cannot account for
waves involving turning and decision making which occur during
spontaneous forward crawling. The continuous rhythmic output
that we observe in Figure 4 is generated by the network; external
input is required for the waves to occur, but delivers no tim-
ing information for the individual waves. For instance, in the

presence of constant external input, upon the completion of each
wave, a new wave will begin with the activation of the the pos-
terior segment A8 once the external input overcomes network
inhibition to E8 elicited by the previous wave. If the external drive
is stronger than 3.1, regardless of duration a single wave is gen-
erated, but the first segment in this wave remains continuously
active for a long period of time depending on the duration of the
drive. In the remainder of the paper we generated and quantified
single waves by applying external drive with appropriate strength
(see Table 1) and duration.

INTERSEGMENTAL CONNECTIVITY STRENGTH MODIFIES SPEED AND
PHASE LAG OF WAVE PROPAGATION
How does wave generation and propagation depend on the con-
nectivity of the proposed network? Since the connectivity of a
single EI unit used to model one segment has already been studied
(Wilson and Cowan, 1972; Borisyuk et al., 1995), we examined the
strength of intersegmental connections (b and d in Figure 2B).
To understand the balance between excitatory and inhibitory
connectivity, we performed two studies:

1. We analyzed the effect of varying the strength of excitatory b
and inhibitory d intersegmental connections. All excitatory or
inhibitory connections were varied together throughout the
entire network.

2. We examined the effect of intersegmental variability on the
generation of locomotor output. For each simulation, the exci-
tatory and inhibitory connection strengths b and d between
different segments were sampled from a Gaussian distribution
with a given mean and variance.

In the first case, we chose a particular value for b and d,
and examined segment activity duration and timing properties
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FIGURE 4 | Evoking multiple waves in the CPG network model.

(A) The time delay (indicated by the color) between applying external
input and wave onset for a range of external inputs whose strength and
duration are plotted on the abscissa and ordinate axes. Gray indicates that
no wave was initiated, which occurs for weak and short external drive. (B)

Number of waves generated for different external inputs. As the strength

and duration of external input increases, more waves are generated
(examples on right) with properties as in Figure 3. When the strength of
the external input is larger than 3.1 (regardless of duration) a single wave
is initiated; the first segment in this wave is active for a longer period of
time compared to the other segments (duration depends on the external
drive duration).
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during wave propagation (Figure 5). Strengthening the excita-
tory connections (b) more than the inhibitory connections (d)
increased the normalized segment activity duration (Figure 5A)
and decreased the intersegmental phase lag (Figure 5B) consis-
tent with increasing excitation or decreasing inhibition. A strong
imbalance between excitatory and inhibitory connection strength
completely eliminated waves. Figures 5A–C shows several param-
eter combinations which allow the model to generate waves.

These waves have distinct properties depending on the specific
value of connectivity pairs (b, d) (Figures 5D–F). The waves in
(D and E) have similar normalized segment activity duration
and intersegmental phase lag but different absolute speed of
propagation (Figures 5H,I). The wave in panel (F) has differ-
ent propagation properties: its segments are suprathreshold for
a significant proportion of the wave duration and the wave prop-
agates faster, i.e., intersegmental lags are shorter (Figures 5H,I).
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FIGURE 5 | Excitatory and inhibitory connectivity strength modulates

wave properties in the CPG model. (A–C) Effects of varying connection
strengths upon the normalized contraction duration (A), intersegmental
phase lag (B), and wave duration (C). Value of 0 indicates that no wave
was generated. For a given pair of (b, d) that produces waves, the total
extent of variations in inhibition d that preserve wave generation (vertical
line through the point (b, d)) is larger than the extent of variations in
excitation b (horizontal line through the point (b, d)) as shown by the cyan

and purple crosses. (D–F) Forward waves generated by the network with
parameters specified in each panel. For all panels, the other parameters
were set as in Table 1 and Pext was applied to E8 for a sufficient duration
to initiate a single forward wave. (G) Summary of the forward waves at
25◦C from Figure 1B. (H,I) The normalized contraction duration (H) and
intersegmental phase lag (I) for the three example waves in (D–F). For
comparison, we have also plotted the experimental data from forward
waves at 25◦C (Figures 1D,E).
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For comparison, we have also shown a summary of the forward
waves at 25◦C in Figure 5G.

Figures 5A–C also shows that wave generation in the model
is more robust to changes in the inhibitory connectivity, d, than
changes in the excitatory connectivity, b. For a given pair of (b, d)

that produces waves, the total extent of variations in inhibition
d that preserve wave generation (vertical line through the point
(b, d)) is larger than the extent of variations in excitation b (hori-
zontal line through the point (b, d)) (e.g., cyan and purple crosses
in Figure 5A).

Biological systems, however, are inherently variable. Therefore,
we tested the robustness of the model to variability in con-
nection strength. We started with a network whose excitatory
and inhibitory connection strengths were such that waves could
be generated with appropriate timing properties. Then, we per-
turbed connections by adding noise sampled from a Gaussian
distribution with a mean fixed to the chosen values, and a given
variance. We examined whether wave generation was still possi-
ble as the variability in connection strength increased. Figure 6
shows the fraction of propagating waves from 20 simulations for
a given set of initial (b, d) parameters. The model is reasonably

robust to noise: larger mean values of b and d increase robust-
ness. Therefore, strongly connected networks are more likely to
generate waves even if connection strength is not precisely tuned.
In contrast, weakly connected networks require more precise tun-
ing of excitation and inhibition to generate appropriately-timed
propagating waves.

SENSORY FEEDBACK IMPROVES WAVE PROPAGATION
Stretch-sensitive sensory neurons have been demonstrated to
strongly affect the pattern of wave propagation (Hughes and
Thomas, 2007; Song et al., 2007). Two classes of multiple-
branched (md) sensory neurons provide the majority of feed-
back during normal larval crawling: the bipolar dendritic (bd)
neurons, and the class I dendritic arborization (da) neurons
(Hughes and Thomas, 2007). The dendrites of both classes of neu-
rons are attached to the epidermis innervating a receptive area,
which spans the width of each segment (Grueber et al., 2002;
Schrader and Merritt, 2007). They become activated when ten-
sion increases in neighboring segments, providing feedback about
the propagating wave (Merritt and Whitington, 1995; Hughes
and Thomas, 2007; Simon and Trimmer, 2009). We therefore
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FIGURE 6 | Robustness of forward peristaltic waves generated by the

CPG network model as excitatory and inhibitory connection

strengths between segments are sampled from a Gaussian

distribution. The colorbar indicates the fraction of trials (20 trials per
panel) when the model generated waves. (A–F) Connections were
sampled from a Gaussian distribution with means b and d given in each

panel, and standard deviation σb and σd varying as shown on each axes
(weights were not allowed to change sign even when the noise level
was high). Remaining parameters were set as in Table 1. The particular
intersegmental connectivity values (b and d) were chosen such that the
waves in (A–C) had average normalized segment duration of 0.42, while
the waves in (D–F) of 0.57.
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examined how such sensory feedback could be integrated into our
model to adequately modulate wave propagation.

We introduced a “sensory” population that becomes acti-
vated by differences in excitatory activity between neighboring
segments (Figure 7A, modulated by α in Equations 8–10) mim-
icking stretch sensing. We connected the sensory populations
to both excitatory and inhibitory populations in the absence of
more detailed connectivity information (Figure 7A, parameters
β and γ, respectively). Figure 7B shows the activities of all neu-
ronal populations in the model during forward wave propagation.
Sensory activity in the middle segments exhibited two peaks,
because of the “stretch” coming from the excitatory activity in
each of the two neighboring segments. Also, in more anterior
segments, sensory activity occurred before excitatory activity,
indicative of its effect on promoting forward propagation.

We modulated the different strengths of excitatory (β)
and inhibitory (γ) connections from the sensory population
(Figures 7C,F) to examine how they might affect the tim-
ing relationships between segments. As the excitation pro-
vided by β increased (keeping γ = 0), the excitatory popula-
tion in segments A1–A7 was suprathreshold progressively longer
(Figure 7D). This additional excitation allowed for each segment
to be suprathreshold for a similar time (compare to Figure 3B).
However, in general all segments were suprathreshold for longer
(∼ 0.6 of the wave duration) than observed in the experimental

data (Figure 1). To achieve the observed duration of ∼ 0.41, we
increased the inhibition strength γ (Figure 7G).

The intersegmental phase lag decreased equally for all segment
pairs when the excitation strength from the sensory popula-
tion β increased, thus preserving the same phase relationship
between segment pairs as without sensory input (Figure 7E).
Smaller intersegmental phase lag implies that activity propagates
faster from one segment to another, which is expected given the
increased input into the excitatory population from the sensory
neurons. Increasing inhibition strength from the sensory popula-
tion (γ) increased the intersegmental phase lag for the anterior,
but not posterior, pairs of segments (Figure 7H). In summary,
additional excitatory drive coming from the sensory population
increases the speed of wave propagation and generates a more
uniform pattern of segment contraction duration in the CPG
network.

Sensory feedback mechanisms could also improve the reli-
ability of wave propagation against perturbations and noise.
We therefore evaluated whether sensory feedback could rescue
wave propagation in conditions when intersegmental connec-
tivity was inappropriately tuned. Figure 8A shows an exam-
ple in which although segmental activity crossed threshold
in the correct order, suprathreshold activity rapidly spread to
neighboring segments and stayed above threshold for a long time.
Thus, the wave had longer normalized suprathreshold activity
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FIGURE 7 | Effects of sensory feedback on wave propagation in the

CPG network model. (A) Schematic of the model with sensory
feedback. The activity in sensory neuronal populations (Si for i = 1, . . . , 8)
increases as a function of the difference in excitatory activity between
neighboring segments through the connection α. This activity provides
additional excitatory input to both excitatory and inhibitory populations in
each segment, with connections denoted with β and γ, respectively.
(Connections are shown for only one segment i ). (B) The excitatory
(blue), inhibitory (red), and sensory activity (black) for the eight segments
during a forward wave as a function of time (here α = 25, β = 20,
and γ = 17). We also show suprathreshold excitatory activity for each

segment (gray). (C) The suprathreshold excitatory activity as excitatory
connection β from the sensory population to the excitatory population
increases. Parameters: α = 25, β ∈ {0, 10, 20}, γ = 0, θC = 0.3. (D,E)

Normalized segment contraction duration and intersegmental phase lag
for waves in (C) and β ∈ {0, 5, 10, 15, 20}. (F) The suprathreshold
excitatory activity as excitatory connection γ from the sensory population
to the inhibitory population increases. Parameters: α = 25, β = 20,
γ ∈ {5, 10, 15}, θC = 0.3. Pext was applied to E8 for 2.5 t.u. to initiate a
single forward wave. Other parameters were as in Table 1. (G,H)

Normalized segment contraction duration and intersegmental phase lag
for the waves in (F) and γ ∈ {0, 5, 10, 15, 17}.
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than the experimentally-observed value of 0.41 (Figure 8E)
and shorter intersegmental phase lag than the experimentally-
observed value of ∼0.09 (Figure 8F). Adding sensory feedback
brought wave properties closer to the experimentally-observed
values (Figures 8B,E,F). Sensory feedback also rescued wave
propagation in a case where inhibition was too strong to gener-
ate waves (Figure 8C). An example of a wave restored by sensory
feedback is shown in Figure 8D and quantified in Figures 8E,F.

In summary, we have shown that adding sensory feedback
significantly modulates wave propagation patterns in the model.
Although CPG networks can generate propagating waves on their
own, sensory feedback brings segmental contraction duration
and speed of propagation closer to experimental observations.
This sensory feedback also rescued the timing relationships dur-
ing wave propagation in networks where excitation and inhibition
were inappropriately tuned.

A TWO-SIDED MODEL CAN GENERATE SYNCHRONOUS ACTIVITY
Drosophila larvae crawl in circles when the left and right side con-
tractions differ in magnitude; they can also turn by producing
a unilateral backward peristaltic wave in the most anterior seg-
ments (Berni et al., 2012), suggesting the existence of bilaterally
located CPGs. Left and right hemisegments contain identical neu-
rons which need to be synchronized to allow the larvae to crawl
in a coordinated fashion. Thus, we sought to find the types of

connectivity across the midline that could synchronize activity
in corresponding segments of two independent networks. For
computational tractability, we considered only short-range con-
nectivity between neuronal populations within the same segment.

Bifurcation analysis of a much simpler system consisting of
two coupled EI units highlighted conditions for synchronization
of the two units with four different types of connections
(Borisyuk et al., 1995). We examined the same four types of
connections in a two-sided model of eight segments, shown in
Figure 9: (A) connections between the two excitatory popula-
tions on the left and right sides of the same segment, E → E,
(B) connections from the inhibitory population on one side to
the contralateral excitatory population, I → E, (C) connections
from the excitatory population on one side to the contralateral
inhibitory population, E → I, and (D) connections between the
two inhibitory populations on the left and right sides, I → I.
All these connections may be present and acting simultane-
ously, however, we analyze how they independently affect network
dynamics to understand which connectivity patterns might be
necessary to synchronize the two networks.

To start a wave in this two-sided model, we applied exter-
nal drive to the most posterior excitatory unit E8 in each, left
and right, network for forward propagation. Each network, how-
ever, received a slightly different external drive such that even
though wave properties were identical, activity was misaligned
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parameters α = 25, β = 45, and γ = 55. (C) Weak excitatory connections
prevent wave initiation. (D) As (C) but with sensory feedback (α = 25,
β = 40, γ = 0). The additional excitation from the sensory population rescues

wave propagation, bringing excitatory activity above threshold. Pext was
applied to E8 for a duration of 0.8 t.u. in (A,B) and 1.2 t.u. in (C,D) to initiate a
single forward wave. Other parameters were as in Table 1. (E,F) Normalized
segment contraction duration and intersegmental phase lag for the waves in
(A,B, and D) (no waves generated for C). For comparison, we also show the
experimental data from forward waves at 25◦C (Figures 1D,E).
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FIGURE 9 | A two-sided CPG network model for synchronous wave

propagation. The CPG network model for wave propagation in Figure 2

(without sensory feedback) was replicated for each side of the body to
model activity in the two sides of the Drosophila larval body. Four types
of connections within each segment were evaluated for synchronizing
activity in the two sides: (A1) excitatory–excitatory, (B1) inhibitory–
excitatory, (C1) excitatory–inhibitory, and (D1) inhibitory–inhibitory. Only
one segment (j ) is shown, but all segments are identically coupled.
(A2,B2,C2,D2) Typical left and right suprathreshold excitatory activity in
the two-sided model for one example of each of the four possible types
of contralateral connections. In each case we used a threshold of
θC = 0.3 for detecting suprathreshold activity. The values of the

contralateral connections were chosen so that a synchronous wave was
generated, if possible, based on Figure 10. (A3,B3,C3,D3) Normalized
segment contraction duration and intersegmental phase lag for the waves
in (A2,B2,C2,D3); also compared to the one-sided model with the same
intersegmental connection parameters. (E) (Left) Pext = 1.7 was applied to
E8 on the left side and Pext = 1.72 on the right side of the network, for a
duration of 35 t.u. In the case of no connectivity between the two sides,
the waves eventually de-synchronized despite the small difference in
external input on each side. (Middle) Left/right synchronous activity for
one example of the I → E connection (B2). (Right) Left/right asynchronous
activity for one example of the I → I connection (D2). In all cases we
show the last 9 t.u. of the simulated waves.
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(Figure 9E, left). External drive was applied for a sufficient dura-
tion (35 t.u.) and waves were analyzed after eliminating tran-
sient dynamics, thus we observed multiple waves consistent with
Figure 4. We examined how changing the strength of the four
types of contralateral connections affected wave propagation and
synchronization between the two networks. Because these con-
nections modify the relative extent of excitation and inhibition
received by each segment, investigating the effects of these con-
tralateral connections was done concurrently with the interseg-
mental connections on each side, b and d. In Figure 10A we show
the average time difference between segmental activation of the
left and right network for a different pair of connection strengths
(b, E → E) (left) and (d, E → E) (right). The figure shows that
segmental activity in the left and right network is synchronous
when the E → E connection takes values less than 10. When the
total amount of inhibition received by a segment increased with d,
the activity of each segment was below 0.3, so we used threshold of
0.2 to quantify the resulting waves. Using this lower threshold for
the detection of suprathreshold activity produced left/right syn-
chronous waves over a larger range of parameters (blue boundary
in Figure 10A denotes the 0.3 threshold).

One example of synchronous wave activity generated by our
two-sided model with E → E connection of strength 2 is shown
in Figure 9A2. Figure 9A3 shows that the normalized contrac-
tion duration in the two-sided model was slightly longer than for
the one-sided model with the same connection strengths. This

was due to increased excitation in the model coming from the
E → E connection. The effect was amplified for even stronger
E → E connections, eventually saturating excitatory activity and
eliminating waves when the connection strength E → E exceeded
approximately 10 (Figure 10A). The intersegmental phase lag for
the activity of each side in the two-sided model was similar to the
one-sided model (Figure 9A3).

The model with I → E connections generated synchronous
waves over the largest range of parameters compared to the
other types of contralateral connections (Figure 10B). Because
the total inhibition increased with stronger d or I → E, the overall
activity levels were lower. Using threshold of 0.2 increased the
range of parameters over which left/right synchronous waves were
observed (blue boundary in Figure 10B denotes the 0.3 thresh-
old). Connecting the left and the right side with I → E equal to
−5 (Figure 9B2) synchronized the two networks without affect-
ing the timing relationships during wave propagation (Figure 9E,
middle). The normalized contraction duration and the interseg-
mental phase lags are shown in Figure 9B3 for the left and the
right waves, and are compared to a one-sided wave generated with
the same connectivity strengths.

The two-sided model with the I → I connection always
produced alternating left/right activity (Figures 9D2 and E,
right). Therefore, Figure 10D shows that synchronous waves
were produced for no range of parameters. The normalized
contraction duration and the intersegmental phase lags are shown
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FIGURE 10 | Varying the connectivity between the two sides in the

two-sided model. In the two-sided model in Figure 9, we varied one of the
intersegmental connections b or d together with one of the four contralateral
connection types (E → E (A), I → E (B), E → I (C), I → I (D)). The other
intersegmental connection was set to a particular value, b = 20 if d varied, or
d = −20 if b varied. The color indicates the time difference (after disregarding

transient activity) between threshold crossings of excitatory activity on the
left and the right side (averaged across segments). Time differences above 1
t.u. were considered asynchronous, and were not analyzed (colored gray). In
all cases we quantified waves using threshold for detecting suprathreshold
activity θC = 0.3 (colored regions inside the blue boundaries) and θC = 0.2
(entire colored regions).

Frontiers in Computational Neuroscience www.frontiersin.org April 2013 | Volume 7 | Article 24 | 14

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Gjorgjieva et al. Wave propagation in Drosophila larvae

in Figure 9D3 for the left and the right waves, and also for a
wave generated with the one-sided model using the same con-
nectivity strengths. After further increasing the I → I connection
strength, the excitatory activity on each side became indepen-
dent, and the normalized contraction duration for each side
was the same as in the one-sided model (data not shown).
Alternating activity was also observed in the majority of the
models with E → I connections, except for a small range of
parameters for which the excitatory activity of the left and the
right sides was synchronized (Figure 10C). We show one wave
in Figure 9C2 with the quantification in Figure 9C3. Very strong
connections completely eliminated the excitatory activity on one
side of the model, while preserving the waves on the other side.
When comparing the two-sided to the one-sided wave proper-
ties, we observed that increasing excitation (E → E) or decreasing
inhibition (I → I) increased segment contraction duration in
the two-sided model waves, while increasing inhibition (E → I)
or decreasing excitation (I → E) decreased segment contrac-
tion duration in the two sided-model waves. Consequently, in
the former case the two-sided waves propagated faster, while
in the latter case they propagated slower than the one-sided
model waves.

This work suggests that a two-sided model which generates
synchronous left/right side excitatory activity can be constructed
by simply connecting two networks, each representing a one-
sided CPG model. We found that, in general, only contralateral
connections into the excitatory neuronal populations (E → E and
I → E) synchronized left and right activity in the network, but for
a limited strength of this connectivity. The other two connection
types produced left/right alternating activity for all (I → I), or for
the majority of connection strengths (E → I) in our model.

DISCUSSION
The rhythmic behavior of many organisms can be described by
the activity of a CPG (Grillner, 2003, 2006; Marder et al., 2005;
Feldman and Del Negro, 2006). In most locomotor circuits (lam-
prey, Xenopus, leech), coordinated motor patterns are produced
by left-right (dorso-ventral in the case of leech) alternating activ-
ity of two reciprocally-coupled half center oscillators (Grillner,
1985, 2003; Kopell and Ermentrout, 1988; Tunstall et al., 2002;
Hill et al., 2003; Roberts et al., 2010). Unlike these CPG circuits,
rhythm generation in the nematode C. elegans is governed by sen-
sory feedback within the motor circuit; yet locomotion consists of
an alternating pattern of dorso-ventral contractions which prop-
agate from head to tail generating a sinusoidal wave pattern of
muscle contractions along the worm body (Wen et al., 2012).
Such models fail to describe the synchronous propagation of mus-
cle contractions on both sides of the midline during crawling
in Drosophila. Furthermore, lamprey and Xenopus do not have
clearly defined segments along the body axis, but consist of many
(possibly hundreds) repeated units or network elements that pro-
duce a quasi-sinusoidal wave that travels along the body with
a constant phase shift (Kopell and Ermentrout, 1988; Zhaoping
et al., 2004; Grillner, 2006). In contrast, the Drosophila larval body
consists of only eight segmentally repeated units which contract
sequentially during a propagating wave in a state-dependent man-
ner (Crisp et al., 2008; Dixit et al., 2008; Lahiri et al., 2011; Berni
et al., 2012).

Models for leech swimming (Cang and Friesen, 2002) based
on the experimentally identified architecture (Friesen, 1989a,b;
Brodfuehrer et al., 1995) can generate the constant phase lags
observed during swimming, suggesting that some of the net-
work motifs responsible for the generation of coordinated motor
output might be shared among species. CPG models for crawl-
ing in leech and caterpillar have also been developed (Cacciatore
et al., 2000; Trimmer et al., 2006). Leech crawling consists of
alternating elongation and contraction patterns (Eisenhart et al.,
2000; Friesen and Kristan, 2007; Puhl and Mesce, 2008), and
in addition uses descending inputs that ensure intersegmental
coordination of the locomotion oscillators (Puhl and Mesce,
2010). However, the waves of activity during swimming and
crawling in leech always progress along the body from ante-
rior to posterior end (Friesen and Cang, 2001; Puhl and Mesce,
2008) unlike Drosophila. Furthermore, leeches also cannot swim
backwards, which is supported by the asymmetric intersegmen-
tal connectivity along the body (Cang and Friesen, 2002). All of
these reasons suggested to us that central pattern generation in
Drosophila crawling is different from other locomotor behaviors
previously studied.

Despite the wealth of knowledge about the neuronal iden-
tity and morphology of local and intersegmental interneurons
in Drosophila, few studies have investigated the neuronal com-
position of the crawling CPG. It is known that the circuitry for
crawling is located in segments posterior to the suboesophageal
ganglion and that it must contain numerous interconnected
interneurons, but no detailed information exists on the neu-
ronal identity of the CPG components (Suster et al., 2003;
Iyengar et al., 2011; Berni et al., 2012). For this reason, we pro-
posed a model based on a coupled neuronal populations. Each
segment was modeled as a single unit consisting of an excita-
tory and an inhibitory population (Wilson and Cowan, 1972).
Models of neuronal populations have been previously used even
for systems where the neural properties are known such as the
lamprey CPG (Zhaoping et al., 2004; Grillner, 2006; Mullins
et al., 2011). Similar mean field models have also been used to
explain differences in episodic activity generated spontaneously
in the developing spinal cord by representing only average activ-
ity rather than individual spikes times (Vladimirski et al., 2008;
Tabak et al., 2010). Therefore, the neuronal population-based
framework we have implemented is a good starting model for
the central networks involved in Drosophila larval crawling. Our
model can be further refined when distinct central neuronal
populations in Drosophila become characterized in the future.

We examined how well our proposed model captured the
propagating peristaltic waves anteriorly along the body axis dur-
ing larval crawling (Crisp et al., 2008; Dixit et al., 2008; Lahiri
et al., 2011; Berni et al., 2012; Heckscher et al., 2012). We quan-
tified such locomotor patterns by recording the movement of
segment boundaries during peristaltic crawling. These bound-
aries move as a consequence of muscle contractions and they are
the basic unit for peristaltic locomotion at the body wall level
(Lahiri et al., 2011; Berni et al., 2012). Even though the dynam-
ics of contraction of particular muscles have been described
(Heckscher et al., 2012), our premise is that such biophysical
realism at the muscular level is not critical for capturing the prop-
erties of the waves generates by circuits in the parasegmentally
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organized central nervous system (Landgraf et al., 2003). We
reported the duration of contraction for each segment and
the intersegmental phase lag between neighboring segments (in
agreement with Heckscher et al. (2012)). We first tested the basic
requirement for the propagation of neuronal activity (without
sensory feedback) consistent with crawling in Drosophila larvae
[Figure 1; Heckscher et al. (2012)]. We used units of excitatory
and inhibitory populations to represent each segment in the net-
work, and determined how these must couple to neighboring
segments to support wave propagation. We found that short range
connectivity, spanning nearest-neighbor segments only, was suffi-
cient to generate waves which propagate with properties similar to
experimental data. To what degree this is consistent with interseg-
mental connectivity in Drosophila larvae needs to be addressed.
For example, the chain of abdominal segments could be short-
ened to a pair of segments with optogenetic tools or surgical
ablation to test whether propagating muscle contractions can still
be produced in the complete absence of long-range connectivity.

The requirement for short range connectivity for normal
propagation of peristaltic waves is consistent with experimen-
tal evidence that the CPG for crawling in Drosophila is locally
distributed. In that context, Dixit et al. (2008) have shown that
homeotic transformation of three thoracic segments into abdom-
inal identity is sufficient to incorporate them as part of the
peristaltic wave. However, this is not the case in other animals
where CPGs underlie locomotion. For instance, intersegmen-
tal coupling in leech spans approximately six segments (Poon
et al., 1978; Friesen and Hocker, 2001), although modeling has
shown that intersegmental interactions must be relatively weak
compared to oscillator interactions within intersegmental ganglia
(Zheng et al., 2007).

Moderately modulating levels of excitation and inhibition in
our network model did not disrupt wave propagation. Waves,
however, were more robust to changes in inhibition than exci-
tation. This may suggest that the strength of inhibitory input is
less precisely regulated than that of excitatory inputs, which in
turn, could result in higher variability of the patterns of inhibitory
connectivity. This may also suggest possible differences between
excitatory and inhibitory synaptic plasticity mechanisms act-
ing during development, for instance, excitatory and inhibitory
connection strengths may be tuned following different spike tim-
ing rules. Very little is known about inhibitory plasticity and
only in vertebrate neural circuits [reviewed in Kullmann et al.
(2012)]; most studies have focused on the plasticity of excita-
tory synapses (Bi and Poo, 1998; Sjöström et al., 2001). Although
Hebbian style plasticity was characterized in the olfactory sys-
tem in insects (Cassenaer and Laurent, 2007) it is unclear what
the implications are for the tuning of excitation and inhibition
in a motor network. Such questions could be investigated by
selectively blocking excitatory or inhibitory activity during devel-
opment when activity-dependent mechanisms appear to play an
important role for the appropriate tuning of network connectivity
(Crisp et al., 2008, 2011).

In our model strongly-connected networks were more
likely to generate waves even if connection strength was
not precisely tuned. In contrast, weakly connected networks
required precise tuning of excitation and inhibition to generate
appropriately-timed propagating waves. Although this would

always argue for strongly-connected networks, there is most
likely a trade-off between robust networks and the cost
imposed by metabolic constraints of maintaining strong synapses
(Chklovskii, 2000; Attwell and Laughlin, 2001; Wen and
Chklovskii, 2008). It is therefore likely that there are many fea-
sible solutions that can generate coordinated network activity as
has been shown in other experimental systems (Marder, 2011).

We have based our model on the assumption that rhyth-
mic output during crawling in Drosophila larvae is generated by
interconnected CPGs in the absence of any sensory feedback.
This assumption is supported by many experiments which have
blocked sensory input in the embryo and the larva and observed
that rhythmic output is still generated, albeit with altered wave
properties (Suster and Bate, 2002; Hughes and Thomas, 2007;
Crisp et al., 2008; Berni et al., 2012) [although see Song et al.
(2007)]. Therefore, our model differs from models of other
systems (for instance, C. elegans) where sensory input is a criti-
cal element of the pattern generating mechanisms (Bryden and
Cohen, 2008).

Behavioral experiments in freely moving Drosophila larvae
have shown that sensory feedback affects the speed of wave prop-
agation leading to an abnormal pattern of muscle contraction
(Suster and Bate, 2002; Hughes and Thomas, 2007). However,
these experiments lacked a detailed evaluation of the phase rela-
tionship between contractions of neighboring segments and the
speed of wave propagation. Our modeling results showed that
adding sensory feedback to our CPG model affected both speed
and intersegmental phase relationship. Both experimental and
modeling results from swimming circuits in leech have demon-
strated that sensory feedback alters the phase of the local central
oscillators producing the rhythm (Cang and Friesen, 2000, 2002).
Such sensory input does not appear necessary in the swimmeret
system of crayfish or for swimming in adult lamprey (Friesen
and Cang, 2001). It is likely that such species differences have
evolved due to the different environments to which each species
has adapted. It will be interesting to compare these differences
with Drosophila as an experimental system, and to our model-
ing predictions. To our knowledge, it is not known how sensory
feedback connects to the CPG network in Drosophila. We have
varied the sensory input to both inhibitory and excitatory neu-
ronal populations and demonstrated that intersegmental phase
lag is predominantly affected by connecting the sensory input
to the inhibitory population, whereas connecting sensory input
to the excitatory population primarily regulates the contraction
duration.

When CPG connectivity was poorly tuned in our model
such that the network failed to generate propagating waves, we
showed that adding sensory feedback rescued wave propagation.
Patterned sensory feedback is not required for the initial devel-
opment of coordinated peristalsis (Suster and Bate, 2002). Crisp
et al. (2008) have proposed that network connectivity undergoes
a period of refinement following the first generation of peri-
staltic waves. It would be informative to test whether sensory
input might influence the successful maturation of crawling by
acutely removing sensory input at late stages of embryogenesis.
Our model predicts that embryos raised with normal sensory
feedback should produce propagating waves more robustly even
when CPGs have not yet fully matured.
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We have proposed connectivity patterns that can support
synchronization of contraction between right and left side of
the body. In particular, connection types which increased the
amount of excitation (E → E) succeeded in achieving network
synchronization. Consistent with Borisyuk et al. (1995), we
found that synchrony was produced for only small values of
connection strength. Synchronization with commissural exci-
tatory connections has been observed in the CPG for breathing
(Feldman and Smith, 1989; Shao and Feldman, 1997; Feldman
and Del Negro, 2006), however, these systems exhibit only tem-
poral rhythm generation, rather than longitudinal coordination
of multiple segments as observed during crawling in Drosophila
larvae. In rodent CPG for locomotion, excitatory glutamatergic
commissural neurons that project directly to motor neurons are
thought to be active during hopping, a condition of synchronous
activity (Quinlan and Kiehn, 2007). The role for contralateral
excitatory connections for synchronized gait is also supported
by evidence that reducing the number of inhibitory connections
across the midline synchronizes left and right side in mice and
horse (Kullander et al., 2003; Restrepo et al., 2011; Andersson
et al., 2012).

In our two sided model, commissural inhibitory connec-
tions connecting the inhibitory population on one side to the
inhibitory population on the other side (I → I) always produced
alternating left/right activity. Although this is consistent with
modeling and electrophysiological data in lamprey and Xenopus
tadpole (Soffe et al., 1984; Wang and Rinzel, 1992; Borisyuk et al.,
1995; Kiehn, 2011), the inhibitory interneurons in these systems
project contralaterally to both excitatory and inhibitory neurons,
thus both types of I → E and I → I connections are simulta-
neously present, a condition which we did not consider in our
model. A further difference in our model from these systems is
the presence of the I → E connection within a segment; as part
of the Wilson–Cowan oscillator for the model of each segment,
this type of connection contributes to the generation of rhythmic
behavior that we observed.

Interestingly, we showed that connections from inhibitory
populations on one side to contralateral excitatory population
(I → E) generated synchronous waves of activity over the largest
range of parameters. Such type of commissural neurons have
not been described so far experimentally, but they may well
be present in the larva. Our prediction of the existence of this
type of I → E connection was only possible because we model
rhythm generation along the body as well as activity synchro-
nization across the body. Borisyuk et al. (1995) also found that
the I → E connection can lead to left/right synchrony in a
model of a single segment. However, their observation was true

only for weak connection strength; increasing the connection
strength produced anti-phase oscillations, eventually leading to
chaotic dynamics. These differences could be explained by the
additional coupling that E and I populations in our eight seg-
ment model receive from neighboring segments. We focused on
determining the conditions for synchronous left/right activity
because of their relevance to Drosophila larval crawling; therefore,
we did not systematically explore other oscillatory regimes for
our model.

In summary, we have proposed a modeling framework which
captures the neuronal dynamics essential for generating propagat-
ing peristaltic waves by a simple CPG architecture with a minimal
number of parameters. Two other styles of modeling lie at each
extreme of our chosen framework. On one end are phase cou-
pled oscillator models which ignore the neuronal dynamics and
have a limited ability to make predictions related to rhythm gen-
eration (Kopell and Ermentrout, 1988; Skinner and Mulloney,
1998a). On the other end are detailed biophysical models which
incorporate detailed descriptions of known neurons and connec-
tions (Ekeberg et al., 1991; Skinner and Mulloney, 1998b). As
detailed experimental data about the circuits involved in wave
propagation in Drosophila are not yet available, we believe that
these detailed biophysical models are not yet appropriate for
our system. We provide an alternative framework of moderate
complexity avoiding nonessential detailed dynamics and specific
biophysical details (such as muscle dynamics). Through numer-
ical simulations we determine relevant parameter ranges which
achieve good fit of behavioral data and make several predictions.
Therefore, our model demonstrates that the abstraction of bio-
physical phenomena into segmental units with the appropriate
connections between them is sufficient to generate the observed
rhythmic patterns.
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