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Progress and challenges in preclinical 
stroke recovery research
Victoria Lea Wolf, Adviye Ergul

Abstract:
Significant innovations in the management of acute ischemic stroke have led to an increased incidence 
in the long‑term complications of stroke. Therefore, there is an urgent need for improvements in 
and refinement of rehabilitation interventions that can lead to functional and neuropsychological 
recovery. The goal of this review is to summarize the current progress and challenges involved with 
preclinical stroke recovery research. Moving forward, stroke recovery research should be placing an 
increased emphasis on the incorporation of comorbid diseases and biological variables in preclinical 
models in order to overcome translational roadblocks to establishing successful clinical rehabilitation 
interventions.
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Introduction

Acute ischemic stroke is a leading 
cause of adult disability worldwide 

with more than 60% of stroke survivors 
struggling to perform daily activities and 
to maintain their independence.[1] Stroke 
can lead to prolonged physical, cognitive, 
emotional, and social problems.[2] These 
can include deficits in memory, attention 
and concentration, perception, spatial 
awareness (neglect), apraxia, executive 
functioning as well as depression. As the 
mortality rate decreased for the 800,000 
annual stroke patients due to advancements 
in acute ischemic stroke treatment,[3] 
unfortunately, the incidence of these 
long‑term complications increased.

Stroke is not only associated with an 
acute decline in cognitive function 
but also accelerated and persistent 
poststroke cognitive impairment and 
poststroke anxiety/depression.[4] This 

phenomenon is of growing interest 
to stroke recovery and rehabilitation 
researchers. In this review, we will use 
the agreed definitions for recovery and 
rehabilitation that were described in 
great detail by the stroke recovery and 
rehabilitation roundtable task force.[5] 
Briefly, the term stroke recovery will be 
used here when considering the extent to 
which body structure, physiology, and 
activities have returned to their prestroke 
state. Whereas the term rehabilitation 
reflects the interventions or process of 
care designed to aid recovery.

Stroke recovery is influenced by many 
factors, including timing of treatment, 
severity of baseline impairments, comorbid 
conditions, age, and sex. The goal of this 
review is to briefly discuss rehabilitation 
strategies used in patients and then review 
how these approaches are applied to 
preclinical models with an emphasis on 
comorbid diseases and biological variables. 
Potential mechanisms contributing to 
the efficacy of some commonly used 
preclinical rehabilitation paradigms are 
also discussed.
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Stroke Rehabilitation: long‑term Functional, 
Cognitive, and Physical Outcomes

Stroke rehabilitation traditionally consists of some 
combination of physical, speech, and occupational 
therapies, depending on the patient’s unique deficits. 
Unfortunately, few patients recover fully from stroke, 
and there is a need for new interventions that can improve 
motor, cognitive, and psychological impairments. Due 
in large part to spontaneous recovery, many patients 
make rapid gains in motor function over the first few 
weeks following stroke, then motor recovery appears 
to plateau around 3–4 months poststroke[6] with some 
modest, gradual improvements over the next few years.[7] 
However, the gains observed in motor function may also 
be mediated by compensatory strategies as both humans 
and animals are very adept at finding alternative means 
to accomplish the activities of daily living.

It is also not clear if these clinical poststroke 
rehabilitation interventions have a significant impact 
on true recovery (reduction of impairment).[8‑10] The most 
efficacious form of recovery is spontaneous recovery from 
a clinical[8] and preclinical perspective.[11,12] The current 
standards of care most likely contribute to functional 
improvements through compensatory behaviors rather 
than true recovery. While compensatory behaviors can 
help survivors carry out daily tasks, the long‑term neural 
and behavioral ramifications of compensation are not 
well understood. There is an opportunity for preclinical 
researchers to design studies to (1) delineate the impact 
of physical rehabilitation on cognitive function and vice 
versa, (2) identify pathways that lead to true recovery 
rather than compensatory behaviors, and (3) differentiate 

spontaneous recovery from rehabilitation‑induced 
recovery. Although differentiating between true 
recovery and compensation is challenging, one potential 
strategy is to use a single pellet reaching task that 
factors in multiple behavioral measures.[13] For example, 
analyzing a variety of reach behavior measures, such 
as end‑point measures (successes, first try successes, 
and total reaching attempts), observational measures, 
movement‑notation based measures, and kinematic 
measures, can help provide insight into whether or not 
rodent responses in skilled reaching are compensatory 
or if they reflect true recovery.[13]

Figure 1 summarizes the broad scope of functional 
and neuropsychological deficits associated with the 
long‑term complications of stroke and some of the 
nonpharmacological therapeutic modalities currently 
being investigated by stroke recovery researchers, which 
are discussed below.

Neuromodulation
Neuromodulation via central  and peripheral 
nervous system stimulation devices is not currently 
standard‑of‑care but is considered by many experts 
in the field to be the next major frontier in stroke 
recovery research, although many unknowns remain. 
The therapeutic response depends on many factors, 
including the stimulation site and protocol (facilitatory 
vs. inhibitory) and the stroke phase and lesion location. 
We highlight three emerging approaches in the field 
of neuromodulation, including transcranial direct 
current stimulation (tDCS), transcranial magnetic 
stimulation (TMS), and vagus nerve stimulation (VNS), 
with a brief description of their clinical application 

Figure 1: Long-term complications of and therapeutic modalities for stroke. Stroke can lead to numerous long-term functional and neuropsychological deficits. Functional 
deficits can result from both sensorimotor and cognitive deficits, which neuropsychological deficits, such as anxiety and depression, can severely impact quality of life and 

adversely affect functional recovery. There is a broad range of therapeutic modalities currently being investigated in stroke recovery research
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and then discussion of preclinical applications of each 
approach, including potential mechanisms.

Brain modulation tools like tDCS can modulate 
cortical excitability and have lasting, dose‑dependent 
effects.[14] Despite the potential of tDCS to modulate 
human behavior, little is known about the underlying 
mechanisms. Neurotrophic factors like brain‑derived 
neurotrophic factor (BDNF) may play an important role 
in the long‑term effects of tDCS.[15] The BDNF val66 met 
polymorphism that partially affects activity‑dependent 
BDNF secretion[16] is associated with impaired motor skill 
acquisition in humans and mice. Additionally, tDCS did 
not induce long‑lasting synaptic potentiation in BDNF 
and TrkB mutant mice, suggesting that tDCS improves 
skilled motor learning in a BDNF‑dependent manner.[15] 
Identifying mechanistic pathways in preclinical models 
could help identify biomarkers that could be used to 
validate/refine the application of tDCS clinically.

Both clinical and preclinical studies have indicated that 
repetitive TMS (rTMS) has therapeutic potential in a 
variety of nervous system disorders, including stroke, 
trauma, depression, and Parkinson’s disease.[17,18] TMS 
generates rapid changes in the magnetic field in order 
to deliver electrical currents through the brain that 
can modulate cortical excitability by initiating action 
potentials.[19] Preclinical studies involving TMS have 
primarily focused on the acute phase of stroke care and 
motor deficits; however, they have been promising. 
Interestingly, combination therapy with rTMS and 
human neural stem cell transplantation led to accelerated 
functional recovery after ischemic stroke in rats that was 
associated with enhanced neurogenesis and increased 
levels of BDNF.[20] Possible mechanisms of TMS include 
increased synaptic plasticity, increased neurotrophic 
factors, and enhanced neurogenesis.[21] The role of BDNF 
in TMS‑induced plasticity is of particular interest to 
stroke recovery researchers because genetic variants 
of BDNF are associated with differential responses to 
TMS.[22] Studies in humans and animals have shown 
up‑regulation of BDNF following high‑intensity 
rTMS.[23‑26]

Targeted VNS is another promising area in stroke 
neuromodulation research.[27] Key findings from 
preclinical studies have formed the basis for two 
multi‑center, randomized controlled pilot trials to test 
the efficacy of VNS paired with rehabilitation in patients 
with moderate to severe upper limb weakness following 
ischemic stroke.[28] Preclinical studies have shown that 
VNS paired with rehabilitative training significantly 
improves forelimb motor functions compared to 
rehabilitative training alone.[29,30] Preclinical studies have 
also identified improvements in memory in response to 
VNS.[31] Repetitive bursts of VNS paired with movement 

have been shown to modify motor synaptic connectivity, 
reorganize the motor cortex, and facilitate recovery of 
the forelimb after ischemic stroke.[32] VNS most likely 
leads to improvements via activation of the cholinergic 
nucleus basalis and the noradrenergic locus coeruleus, 
which then engages the sensory‑motor network during 
task‑specific learning.[33] A recent review discussed 
in detail the potential mechanisms responsible for 
the neuroprotective and neuroplasticity‑enhancing 
properties of VNS.[34] In summary, VNS stimulation may 
have anti‑inflammatory, neurogenic, and angiogenic 
properties, while it also works to inhibit oxidative stress, 
reduce excitotoxicity, protect the blood‑brain barrier, 
attenuate brain edema, suppress cell apoptosis, and 
ameliorate mitochondrial dysfunction.[34]

Task‑specific rehabilitation
Task‑specific rehabilitation can involve conventional 
occupational and physical therapy techniques or more 
elaborate, advanced technology via robotics or virtual 
reality. Conventional task‑specific therapies in clinical 
practice for cognitive rehabilitation include training to 
specifically target a type of deficit and compensatory 
strategy training.[35,36] While compensatory strategies 
can improve the performance of activities of daily living, 
they can cloud our understanding of the degree to which 
true recovery processes are being activated in response 
to rehabilitation. In response to a motor disability, the 
natural response is to learn new ways of accomplishing 
tasks in the form of compensatory behaviors. This can 
manifest in stroke survivors with upper extremity 
impairments when they learn to rely on the nonparetic 
hand and arm for daily activities. Unfortunately, this can 
exacerbate impairments in the paretic side.[37]

Preclinical applications of task‑specific rehabilitation 
include skilled reaching tasks. Skilled reaching tasks 
can be applied to experimental models to investigate 
motor behavior and sensorimotor integrations in stroke 
recovery. Skilled reaching is a learned, composite 
movement that involves reaching to grasp an object, such 
as a food pellet or dried pasta, inside a reaching box. 
Rodents rely on olfactory cues, proprioception, whiskers, 
and tactile nose sense to locate the food and to define a 
reaching path for the paw to target the pellet. Rats can 
readily learn to reach for food pellets by either single pellet 
or staircase tasks. These tests can be quantified and reveal 
both initial and chronic upper limb impairments.[38,39] 
These tests can be configured to promote the use of the 
impaired limb to discourage compensatory behavior. 
Additionally, constraint‑induced movement therapy can 
be used to encourage the use of the paretic limb through 
restraint of the nonparetic limb during task‑oriented 
training. Alternatively, bimanual task training that 
encourages the use of both the nonparetic and paretic 
limbs may also have some benefits, such as improved 
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unimanual function of the paretic side, even with some 
compensatory reliance on the nonparetic limb.[40]

Environmental enrichment
Environmental enrichment (EE) has predominantly been 
studied in preclinical applications with little translation 
into the clinical setting.[41] There is no standardized 
form of EE for clinical application. EE paradigms 
engage participants in a variety of dynamic physical, 
sensory, cognitive, and social activities or experiences. 
No large‑scale clinical trials to test the effectiveness 
of EE have been undertaken, but a few small (n = 14) 
to medium‑sized studies (n = 52) have demonstrated 
that activity levels can be increased[42] and appear to 
remain sustained over time within units.[43] Evidence 
of improvements in terms of disability, function, or 
participation is limited.

Enrichment can be multifaceted and comprised of many 
elements including social interaction, exercise, and 
nonspecific sensory, motor, and cognitive stimulation, 
making it difficult to attribute specific components to 
the recovery process.[44] However, it is apparent that 
the interaction of these elements induces changes 
in the brain by altering neuronal activity, dendritic 
morphology, resting‑state functional connectivity, and 
suppressing plasticity‑inhibitory factors.[44] EE can recruit 
endogenous repair mechanisms to enhance recovery 
by reversing learning impairment in the Morris water 
maze[45] and by promoting improved forelimb motor 
function and enhanced dendritic growth after focal 
ischemic injury in rats.[46] A recent study suggests that 
EE can enhance angiogenesis in the ischemic brain.[47] 
Angiogenesis may be an important target for stroke 
recovery interventions because greater microvessel 
density in the ischemic border correlates with longer 
survival in stroke patients.[48] EE in preclinical models has 
also been associated with enhanced vascular repair,[49] 
induction of angiogenesis,[47,50] and upregulation of nitric 
oxide synthase.[51]

Preclinical EE conditions can vary widely, and concerns 
have been raised about how well it can mimic clinical 
EE conditions. Although hospitalized subacute patients 
can be significantly deprived of physical activity and 
social interaction, the least enriched human situation is 
unlikely to be equivalent to being in a cage all day with 
nesting materials and a couple of cage mates. In this case, 
EE may only normalize living conditions if standard 
rodent housing conditions are considered relatively 
impoverished compared to the human experience. 
Preclinical EE outcomes should include measures of 
anxiety/depression to compare to standard housing 
conditions. Behavioral mapping in preclinical settings 
using video shape recognition or radio‑frequency 
identification tagging can also help to align preclinical 

and clinical EE methodologies tracked using wearable 
devices.

Enriched rehabilitation
Interestingly, EE alone does not promote recovery of 
skilled forelimb movements[52] that require fine motor 
dexterity, such as pellet retrieval, and it may not be 
an alternative for task‑specific therapies that target 
the primary motor impairment. The combination of 
EE and task‑specific training in the form of enriched 
rehabilitation (ER) is thought to capitalize on the 
neuroplastic milieu that EE stimulates so that task‑specific 
training can induce neuroplastic changes with maximal 
efficiency. Additionally, the social interaction component 
of ER decreases anxiety and depression‑like behaviors, 
which can also positively impact functional recovery.[53] 
Although the mechanisms are not clear, socialization 
can contribute to more rapid and extensive function 
recovery from stroke compared to social isolation.[54] 
Potential synergistic mechanisms of EE and task‑specific 
rehabilitation in ER are summarized in Figure 2. ER 
likely contributes to motor, cognitive, and psychological 
recovery via vascular mechanisms. Brain microvascular 
endothelial cells in particular are a significant source of 
proangiogenic and neurotrophic BDNF,[55] which has 
known effects on recovery.[56] There is a need for more 
research in this area to understand how angiogenesis 
and vascular remodeling contribute to the EE‑associated 
neuroplastic milieu and neuroplastic changes in response 
to task‑specific training.

Translational Challenges and Gaps in 
Preclinical Stroke Recovery Research

Over the past few decades, researchers have identified 
many compounds that were effective in preclinical 
models of acute stroke that were found to be ineffective 

Figure 2: Potential mechanisms of enriched rehabilitation in stroke recovery. 
Enriched rehabilitation is a term used to describe a combination therapy that 
includes environmental enrichment and task-specific rehabilitation. Potential 
mechanisms of enriched rehabilitation include decreased neuroinflammation, 

increased angiogenesis, increased remyelination, decreased neuronal cell death, 
and decreased anxiety and depression-like behaviors
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in clinical trials. These failures led to consortiums that 
identified differences in the overall achievements of 
preclinical and clinical stroke research (i.e. STAIR and 
CAMARADES).[57] These consortiums have noted (1) 
the experimental protective effect of pharmacological 
agents is typically determined by reduction of the size 
of the lesion, while clinically, functional recovery is 
expected, (2) a large majority of the preclinical studies 
have been conducted in the short term (a few days) 
while functional recovery in patients surviving stroke 
is expected over the long‑term, and (3) preclinical 
models are often transient models of ischemia, which 
has become an important factor with an increasing 
number of patients receiving intravenous thrombolysis 
or endovascular treatment. However, interventions also 
need to be tested in permanent ischemia models because 
in clinical practice long, or even permanent, ischemia 
is still often observed. Importantly, these preclinical 
studies have been geared more towards neuroprotection 
and acute stroke treatment to halt ischemic injury rather 
than the subsequent recovery‑promoting strategies. In 
this section, we will discuss in more detail some specific 
translational challenges and gaps in stroke recovery 
research, including dosing, experimental models and 
comparative hurdles, sex differences, and comorbid 
disease models.

Dose reporting across preclinical and clinical 
stroke recovery
From a stroke recovery perspective, the SRRR 
recently developed a framework for stroke recovery 
trial development, which identified key issues and 
translational challenges observed in clinical and 
preclinical stroke recovery treatment trials.[58] The 
SRRR emphasized the importance of clear, operational 
definitions of dose (i.e. number of repetitions, duration, 
and intensity) and dose schedule in both preclinical 
and clinical studies. While preclinical studies typically 
report the number of repetitions of a task, clinical studies 
generally report a threshold dose in units of time (minutes 
of training), and both preclinical and clinical studies 
commonly fail to include measures of training intensity. 
Experts in stroke recovery research also recently 
published a framework for transparent and accurate 
reporting of nonpharmacological dosing.[59] The optimal 
timing of treatments relative to stroke onset to promote 
upper limb recovery and cognitive improvements is 
also currently unknown. Preclinical evidence suggests 
that starting upper limb training and exposure to EE 
>/=5–14 days poststroke is feasible, safe, and has 
better recovery outcomes in comparison to later start 
points.[60] There is less confidence about when to initiate 
upper limb rehabilitation in human trials, and this is 
often determined by practicality rather than biological 
variables.[58]

An example of how to incorporate some of the SRRR 
can be found in a recent study published by McDonald 
et al. They compared early versus late delivery of remote 
ischemic conditioning following ischemic stroke using 
an endothelin‑1 (ET‑1) reperfusion model using both 
male and female animals.[61] Although delayed Remote 
ischemic conditioning (RIC) failed to enhance poststroke 
behavioral recovery, their findings did suggest that RIC 
may be effective in the hyperacute and early acute phases 
of stroke, when other interventions such as exercise 
would be contraindicated.[61]

Experimental animal models for stroke recovery 
research
There is a large variety of experimental stroke models 
that each has their own advantages and disadvantages 
for stroke recovery research. The four most common 
experimental models used in stroke recovery research 
are intraluminal middle cerebral artery (MCAO), distal 
MCAO, photothrombotic (PT) stroke, and ET‑1‑induced 
stroke. These models have been reviewed extensively 
elsewhere, and we would like to refer the reader to 
one of these for more details on the advantages and 
disadvantages of a specific model.[62‑64] The most 
frequently used experimental model in preclinical 
stroke research is the intraluminal suture MCAO model. 
MCAO can be used to model permanent ischemia 
or transient focal cerebral ischemia with a variety of 
reperfusion time points. This model closely resembles 
numerous manifestations of human stroke since most 
thromboembolic infarcts in humans occur in the MCA 
territory;[65] however, intraluminal MCAO can lead to 
variable damage with large infarcts making it difficult to 
target therapies. Distal MCAO is easier to perform and 
is associated with higher survival than the intraluminal 
MCAO model, but it does not significantly impact 
motor function.[66] The PT stroke model is reproducible 
and ideal when the goal is to induce stroke for in vivo 
optical studies in mice or for targeting a specific cortical 
region, but it cannot be used to target subcortical brain 
structures. Similarly, ET‑1 can also be used to target 
specific brain structures in rats, but it has reduced 
efficacy in mice.

There are also some notable species differences among 
rodent models used for experimental stroke recovery 
research. For example, rats frequently survive permanent 
filament MCAO, while mice have much higher mortality 
postfilament MCAO secondary to inadequate food 
and/or water intake.[67] Providing mice with nutritional 
support reduces the mortality bias significantly to allow 
for the long‑term morphological and functional sequelae 
of stroke.[67] It would be wise, therefore, for preclinical 
researchers to pay careful attention to food and/or water 
intake and report any nutritional supplementation, 
considering the impact on mortality. Because food and 
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water intakes are closely monitored in the clinical setting, 
preclinical researchers should consider nutritional 
supplementation in the postoperative period regardless 
of species.

Comparative anatomical and physiological 
hurdles
Experimental models of stroke have unique sensory 
pathways that do not always translate to the human 
condition. For example, rodents have facial whiskers 
that provide important spatial and textural information 
about their immediate surroundings. All other mammals 
besides humans have whiskers, but human fingertips 
may be represented by isolated regions of cortex 
like whisker sensory pathways. Furthermore, rodent 
reticulo‑ and vestibulospinal tracts are larger in size 
and play a bigger role in motor control (e.g. voluntary 
locomotion and grooming).[68] Furthermore, there is 
not enough evidence to conclude whether secondary 
motor areas in rodents are true homologs of the primate 
premotor cortex, supplementary motor cortex, or a 
combination of the two. Thus, identical appearing strokes 
in the rodent and human may have different clinical 
presentations. For example, many have documented 
motor deficits in humans with cortical lesions that have 
not been observed in rodents with similar lesions.[69]

Preclinical research should prioritize the study of 
potential mechanisms involved in recovery and 
responsiveness to training in models that better 
reflect lesion profiles that are common in the stroke 
population. Having preclinical stroke models that are 
not representative of the clinical population can also 
negatively affect translational outcomes, and lesion 
location can differentially affect functional outcomes 
following stroke.[70] Lesion location is a prognostic 
biomarker that has been relatively neglected in both 
preclinical and clinical studies, but a recent study 
showed a relationship between lesion location and 
functional impairment and recovery in reaching/
grasping, spontaneous limb use, and hindlimb 
placement during walking.[71] This could explain some 
of the variability in differential responses to treatment 
between individuals in clinical studies. Standardizing 
lesion mapping practices across preclinical and clinical 
domains could help maximize the likelihood of 
translational success.[72]

Preclinical models have the potential to inform how 
noninvasive brain stimulation can be refined for 
clinical applications, especially promoting recovery 
of reach‑to‑grasp behavior following brain injury. 
One advantage of this behavioral outcome measure 
is that there is a high degree of homology in the 
circuitry involved with reach‑to‑grasp behavior in 
humans and rodents.[73] However, reach‑to‑grasp 

behavior is rarely assessed because it is extremely time 
intensive and has traditionally involved manual video 
analysis. Advances in automated/AI‑based analysis of 
rodent behavior with tools such as Imetronic (Pessac, 
France, www.imetronic.com) may circumvent some 
of these time constraints, allowing more researchers 
to incorporate skilled reaching outcome measures. 
Reach‑to‑grasp task or reaching tasks are considered 
skilled learned tasks that involve the acquisition of 
a specific and fine‑tuned sequence of movements.[74] 
Skilled motor learning is dependent on intra‑cortical 
integration of sensory and planning information[75,76] 
in addition to cholinergic[77,78] and dopaminergic[79,80] 
afferent projections to the motor cortex. However, 
there are notable differences in morphology, laminar 
distribution, and density of cholinergic basal forebrain 
innervation among humans, nonhuman primates, 
and rodents.[81,82] The role of this system in stroke 
recovery is not clear, but the laminar distribution of 
cholinergic systems and control of synaptic plasticity 
by cholinergic inputs is highly conserved between 
rodents and humans.[83,84]

Sex differences in stroke recovery research
Significant sex differences in poststroke quality of 
life measures have been observed.[85,86] A recent study 
investigating factors contributing to sex differences 
in poststroke quality of life measures found that 
women’s advanced age, stroke severity, prestroke 
dependency, and poststroke depression were all factors 
associated with poorer health‑related quality of life.[87] 
Unfortunately, few preclinical studies include both male 
and female animals, and those that do have resulted 
in some conflicting data. Some studies have shown 
greater benefits of EE in females compared to males or 
vice versa,[88,89] while others suggest that there are no 
sex differences.[90] However, only ~17% of EE studies 
have included both male and female animals, and only 
a minority of these have been concerned with stroke 
recovery.[91]

Stroke severity has been linked to hormonal fluctuations 
that occur in a rodent’s reproductive cycle (4–5 days).[92] 
For translational researchers who intend to model clinical 
stroke, reproductively senescent or aged female animals 
would be recommended.[93] If intact cycling females are 
used, researchers may encounter large within‑group 
variations that could mask the effects of female sex 
hormone contributions in preclinical studies that are 
designed to directly address sex differences.[93] One 
approach to control for this would be to monitor the 
estrus cycle by daily vaginal smear and select for females 
in estrus or diestrus (when estrogen levels are low) when 
initiating experimental stroke. One study has shown 
that this can provide smaller within‑group variations in 
infarct volume and functional outcomes.[94]
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Another important consideration for sex‑specific 
differences in stroke recovery is that preclinical outcomes 
in stroke recovery research have traditionally employed 
behavioral tests, such as novel object recognition, 
Y‑maze, and passive avoidance, that were optimized for 
relatively young male animals with the assumption often 
being that the same conditions could be used to draw 
conclusions about females, when females happened to be 
included in the experimental design. Before conclusions 
can be drawn, researchers need to consider optimizing 
behavioral testing procedures for female animals.

Comorbid disease models: from hypertension and 
diabetes to autoimmune‑rheumatic diseases
Comorbid diseases such as obesity, hypercholesterolemia, 
diabetes, hypertension, and autoimmune‑rheumatic 
diseases are associated with increased risk for stroke and 
are often associated with worsened outcomes.[95] The use 
of predominantly young and healthy male animals in 
experimental stroke research has hindered progress in 
the translation of findings to clinically relevant patient 
populations. Predominantly young and healthy animals 
are suitable for pure mechanistic research and ideal for 
the more fundamental, basic science studies because 
they limit confounding factors. However, subsequent 
studies with comorbid models should be considered 
prior to translation in the clinical setting. By expanding 
the number of preclinical studies that utilized animal 
models with these comorbid conditions, stroke recovery 
researchers could identify novel mechanisms with the 
strategic potential to improve long‑term functional, 
cognitive, and psychological outcomes in the alarming 
number of individuals affected by stroke with these 
underlying conditions. While the underlying reasons 
of worsened stroke recovery in comorbid diseases are 
multifactorial, vascular disease and inflammation appear 
to be common themes. Here we will briefly suggest 
some comorbid disease models that can be utilized for 
stroke research, but for more information about specific 
experimental models for common comorbidities, we 
would like to direct the reader to a related review on the 
topic from our laboratory.[96]

Hypertensive animals have larger infarct sizes compared 
to normotensive animals with a similar duration 
of experimental ischemia, while also being less 
responsive to many therapeutic interventions.[97] 
Chronic hypertension results in significant remodeling 
of the cerebrovasculature with reduction of the lumen 
diameter occurring in resistance vessels and an increase 
in wall thickness and wall‑to‑lumen ratios.[98] This 
cerebrovascular remodeling can lead to impaired blood 
flow autoregulation and increased infarct size. It is not 
yet clear how abnormal neurovascular remodeling, 
inflammation, and blood–brain barrier dysfunction in 
hypertension can impact neurorestorative pathways 

in response to specific rehabilitation paradigms. 
Male spontaneously hypertensive rats are by far the 
most common model for experimental hypertension 
and stroke.[96] The appropriate age for inducing 
experimental stroke in this strain, which gradually 
develops hypertension, is most likely 17–19 weeks, when 
they have a significant and sustained increased in blood 
pressure.[99]

Diabetes and its associated hyperglycemia also induce 
dysfunction and pathological remodeling of the 
cerebrovasculature.[100] Ischemic injury in the setting of 
diabetes is associated with exacerbation of deleterious 
microglial activation.[101] This microglial activation 
can adversely affect neurogenesis, angiogenesis, and 
restoration of the blood–brain barrier, which are key factors 
in functional recovery after stroke.[102] Our laboratory 
has shown that there is significant vasoregression after 
stroke in diabetes and this is associated with poor stroke 
recovery. The impact of rehabilitation on vascular and 
neuronal repair and restoration after stroke is unknown. 
The streptozotocin (STZ)‑induced model of Type 1 
diabetes is the most commonly used diabetes model 
in stroke research,[96] while low dose STZ (30 mg/kg) 
paired with high‑fat diet has been used to model Type 2 
diabetes.[103,104]

Although obesity is a known risk factor for stroke, the 
effect of obesity on functional recovery is less clear. In 
a recent systematic review, 3,070 participants from 7 
studies and 5 countries undergoing inpatient stroke 
rehabilitation were evaluated.[105] Two of the studies 
found a positive association between obesity and 
functional outcomes measures, while two studies found 
no association, and the three remaining studies reported 
a negative association.[105] The clinical correlation between 
obesity and other comorbid conditions, like hypertension 
and diabetes, that contribute to metabolic syndrome 
in clinical stroke makes it challenging to attribute 
one specific risk factor to poor functional outcomes. 
Preclinical models that can mimic one or a combination 
of these risk factors could lead to more clear guidelines. 
It has been theorized that obesity can aid recovery by 
protecting against poststroke catabolism because weight 
loss after stroke is a common observation and important 
determinant of outcome.[106,107] The most commonly 
used model for studying obesity and the closely related 
pathologies of hyperlipidemia or dyslipidemia is high 
fat diet‑induced.[96]

The female predominance of many autoimmune 
rheumatic diseases is also an important consideration 
for stroke recovery. Autoimmune‑rheumatic diseases 
are associated with an increased risk for atherosclerosis 
and vascular‑endothelial dysfunction, but there are 
few studies concerned with how autoimmunity can 
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influence stroke recovery pathways. Functional recovery 
after stroke can be delayed or reduced when there are 
preexisting conditions associated with joint pain and 
swelling of the extremities.[108] There are limited studies 
concerning the impact of autoimmune‑rheumatic 
diseases, such as rheumatoid arthritis (RA) and systemic 
lupus erythematosus (SLE) on functional outcomes 
following rehabilitation. Patients with RA from a 
retrospective cohort analysis were found to have lower 
functional status upon discharge from an inpatient 
rehabilitation unit compared to patients without RA or 
SLE when the data was adjusted for admission functional 
independence measure score.[108] There is a need for more 
autoimmune‑rheumatic disease‑focused stroke recovery 
research on both clinical and preclinical sides.

Looking beyond motor impairments in preclinical 
applications
There has been a larger focus on motor compared 
to nonmotor recovery in the preclinical stroke field 
by using sensorimotor tasks, such as rotarod, ladder 
crossing, limb placement, and adhesive strip removal.[41] 
Nonmotor deficits range from disabilities related to 
learning and memory to increased risk of depression, 
addictive behaviors, and epilepsy. Depression and 
anxiety are major clinical findings following stroke 
that affect approximately 40% of stroke survivors.[109] 
Poststroke anxiety/depression can greatly impact quality 
of life and adversely affect functional recovery. 
Therefore, psychological health should be considered in 
rehabilitation paradigms. Unfortunately, many clinical 
trials have excluded patients with poststroke depression 
and identifying depressive behaviors in animal models 
can be challenging. Moving forward, it will be important 
for preclinical and clinical stroke rehabilitation and 
recovery researchers to work together to refine methods 
to account for this wide range of nonmotor functional 
deficits that can lead to long‑term consequences. 
Implementing these types of studies in preclinical studies 
will not be easy, as they will require long‑term follow‑up 
and require additional resources.

Preclinical stroke researchers have been gradually 
implementing anxiety‑and depression‑related behavioral 
tests, such as the elevated plus maze, shuttle box, open 
field test, forced swim test, and sucrose consumption, 
with some success.[110] Advantages and disadvantages of 
these tests have been recently reviewed.[111] The extensive 
amount of time it takes to habituate and test these animals 
and analyze the data for signs of anxiety or depression 
is a major hurdle for preclinical stroke researchers. This 
is another area where advances in automated/AI‑based 
platforms can help advance the field.

In addition to these functional outcome measures, careful 
consideration should also be given to neuroimaging 

techniques that are commonly used to characterize 
pathophysiological changes in preclinical and clinical 
studies. Longitudinal, simultaneous mapping of neural 
activity and hemodynamic changes is recommended, 
although difficult to achieve. A recent study by He et al. 
employed a multimodal neural platform in a mouse 
model of stroke for long‑term, spatially resolved tracking 
of intracortical neural activity and cerebral blood flow 
with speckle imaging in brain regions.[112] Disrupted 
neurovascular coupling was observed immediately after 
small‑scale stroke, extended into chronic periods (8‑week 
follow‑up), and varied with the level of ischemia.[112]

Conclusions

Preclinical stroke recovery research would be more likely 
to lead to significant patient outcomes if more studies 
would include models that mimic the comorbidities 
and variability seen in the stroke patient population. 
Incorporation of more biological variables into preclinical 
stroke recovery research experimental design is needed to 
increase the translational impact of promising rehabilitation 
paradigms. Unfortunately, this will require more time and 
resources to complete studies that are powered sufficiently 
with well‑designed inclusion and exclusion criteria. It also 
means that the field may need to be more open to and 
encouraging of the publication of negative data because 
chronic comorbid disease will likely lead to worsened 
recovery in response to rehabilitation paradigms compared 
to otherwise healthy animals. Preclinical researchers have 
traditionally felt pressured to focus on more short‑term, 
but only partially clinically relevant, mechanistic studies 
because they have a better chance of being published in 
high‑impact journals compared to potentially negative, 
although more clinically relevant, findings.
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