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ABSTRACT Consensus-designed tetratricopeptide repeat proteins are highly stable, modular proteins that are strikingly
amenable to rational engineering. They therefore have tremendous potential as building blocks for biomaterials and biomedi-
cine. Here, we explore the possibility of extending the loops between repeats to enable further diversification, and we investigate
how this modification affects stability and folding cooperativity. We find that extending a single loop by up to 25 residues does not
disrupt the overall protein structure, but, strikingly, the effect on stability is highly context-dependent: in a two-repeat array,
destabilization is relatively small and can be accounted for purely in entropic terms, whereas extending a loop in the middle
of a large array is muchmore costly because of weakening of the interaction between the repeats. Our findings provide important
and, to our knowledge, new insights that increase our understanding of the structure, folding, and function of natural repeat
proteins and the design of artificial repeat proteins in biotechnology.
INTRODUCTION
Tandem-repeat arrays are one of the most common protein
architectures. Their high frequency is considered to be
a result of DNA replication slippage and recombina-
tion events (1,2). The a-solenoids are one large family
composed of such tandem-repeat arrays. Their repeats
comprise between 12 and 45 amino acids that form pairs
of antiparallel a-helices. Examples include ankyrin re-
peats, armadillo repeats, HEAT repeats (huntingtin, elon-
gation factor 3, protein phosphatase 2A subunit, and the
yeast kinase TOR1), and tetratricopeptide repeats (TPRs)
(3–6). They function in mediating protein-protein interac-
tions by providing extended surfaces for molecular recog-
nition. Moreover, the modularity of their architectures has
allowed the design of ultrastable consensus repeat proteins
by selecting the most conserved residues in each family
(7–11).

In contrast with globular proteins, repeat proteins have
quasi-one-dimensional (1D) structures that are stabilized
exclusively by interactions between residues close in pri-
mary sequence. Despite the lack of sequence-distant con-
tacts, repeat proteins are able to fold in a cooperative
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manner. The cooperativity arises because of the mismatch
between the intrinsically unstable repeats and the highly
stabilizing inter-repeat interfaces (12). Repeat-protein
folding can be modeled using 1D Ising formalism (13),
which assumes that each repeat is either folded or
unfolded, and that this state is determined by both the
intrinsic repeat stability (DGi) and energetic coupling be-
tween the nearest neighbors, also referred to as the inter-
face stability (DGij). The simplest expression of the 1D
Ising model, the homopolymer model, assumes single
values of intrinsic and interfacial stabilities, and it has
been shown to be valid for proteins comprising tandem ar-
rays of identical repeats. One of the most important impli-
cations of this description of repeat protein folding is that
the stability of the protein should scale linearly with the
number of repeating units, referred to as the ‘‘additive
rule’’ of the 1D Ising model:

DGD� N ¼ nDGi þ ðn� 1ÞDGij;

where n is the number of repeating units (12,13).

The folding of natural repeat proteins has been char-

acterized both experimentally and in silico (14–22). The
best-studied consensus-designed repeat proteins are the
consensus ankyrin repeats (referred to as DARPins (8)
or CARPs (7)) and consensus tetratricopeptide repeats
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(CTPRs) (13,23). Although both have repeat units
composed of pairs of antiparallel a-helices, they are struc-
turally and energetically quite different. CARPs/DARPins
are stabilized by a much larger interfacial term than the
CTPRs. This can be attributed in part to the long semistruc-
tured loops of the former that have extensive hydrogen-
bonding networks (24,25). CTPRs, in contrast, have very
short (four-residue) loops that are involved in a more
limited, though still significant, number of stabilizing inter-
actions (24,25).

The structural simplicity of consensus-designed repeat
proteins makes them popular systems to engineer for
biotechnology purposes (10,26–29). Two significant out-
puts from these studies are the use of repeat proteins as
building blocks for self-assembly systems and as alterna-
tives to antibodies. In such systems, an avenue for further
functionalization would be the extension of the loops be-
tween repeats to enable additional materials diversification.
To this end, we created a series of 15 CTPR proteins that
contained different numbers of repeats of different se-
quences. Into two of these proteins (CTPR2 and CTPR6)
we engineered a loop between two adjacent repeats with
a poly-GS linker of variable length between 10 and 25 res-
idues. The loop-extension proteins, together with the other
proteins within the series, were assayed using equilibrium
denaturation experiments and globally analyzed using a
heteropolymer Ising model. This global analysis allowed
us both to determine the energetic contributions of
nonidentical repeat units and to dissect the contributions
from the intrinsic stability of each repeat and each interface
between repeats. The results show that extending a single
inter-repeat loop by up to 25 amino acids can be tolerated
within the overall native structure. Moreover, although
increasing the length of the inter-repeat loop weakens the
nearest-neighbor cooperativity, it does not completely
abolish it. Importantly, therefore, our results demonstrate
that CTPR arrays are amenable to further functionalization
through both large and small loop insertions. Strikingly, we
find that the loss of stability associated with loop insertion
is highly context-dependent: when a loop is inserted into a
two-repeat array, the destabilization incurred is much
smaller than the same loop inserted between the two cen-
tral repeats of a six-repeat array. These results indicate
that loop insertion destabilizes through both the entropic
cost of loop closure and also the decoupling of the adjacent
repeat modules.

In summary, our study provides important and, to our
knowledge, new insights into the TPR proteins, a family
with over 500,000 sequences in which long inter-repeat
loops are often observed (30). Our results show that the
insertion of a long loop between repeat motifs weakens
the inter-repeat interface, which could cause the repeats
to decouple, thereby stabilizing partly folded states. Such
decoupling would enable loop-containing proteins to
display enhanced conformational dynamics and/or me-
chanical flexibility. These properties may regulate the bio-
logical functions of natural repeat proteins and should
be considered when used as an avenue for functionaliza-
tion of artificial repeat proteins for biotechnological
applications.
MATERIALS AND METHODS

Construction of tandem-repeat genes from
individual repeat sequences

CTPRn, CTPR-YD, and CTPR2-loop constructs

All constructs were commercially synthesized by GeneArt Invitrogen

(Carlsbad, CA). Each construct was generated with a BamHI and a HindIII

site for subcloning into pRSET for His-tag purification.

CTPRa2 construct

The tandem repeat arrays of two repeats was constructed by the concate-

merization of two individual CTPRa motifs using BamHI and BglII sites

(31). Briefly, a single CTPR (CTPRa1) was purchased as a ‘‘gBlock’’

oligo (Fig. S1) and inserted into the multicloning site of the vector

pRSET B between the BamHI and HindIII restriction sites (ThermoFisher

Scientific, Waltham, MA). An oligo consisting of the CTPRa1 ‘‘gBlock’’

was then polynucleotide-chain-reaction (PCR)-amplified using primers

complementary to the T7 promoter sites on each side of the multicloning

site of pRSET B. This PCR product and the CTPRa1 gene in the pRSET

B vector were then digested with BamHI/HindIII and BglII/HindIII re-

striction enzymes, respectively. The two digested products could then

ligate to form a CTPRa2 gene (as the BamH1 and BglII sites leave

compatible ligation ends). The ligation of BamHI and BglII leaves an

Arg and a Ser after the Pro at position 31 of the CTPR sequence. This

results in a DPRS loop in the CTPRa2 (i.e., two-repeat array) (32).

This process can be repeated as many times as required to generate

CTPRa arrays of different lengths.

CTPR6-YD-loop constructs

Loop extensions of different length were added to the C-terminus of

CTPR3n templates at the DNA-level by whole-plasmid round-the-horn

PCR (33). This method enables large insertions to be made in a plasmid.

Primers are designed so that they anneal back to back on the plasmid,

with the desired insertion on the 50-end of one primer (or separated onto

both primers for large inserts).
Protein purification

The pRSET B (His-tagged) constructs were transformed into chemically

competent Escherichia coli C41 cells by heat shock and plated on LB-

Amp plates (LB medium, MP Biomedicals; Agar, MP Biomedicals).

Colonies were grown in 2xYT media (MP Biomedicals, Santa Ana, Cal-

ifornia) containing ampicillin (50 mg/mL) at 37�C, 220 rotations per

minute, until the optical density at 600 nm reached 0.6. Cultures were

then induced with isopropyl b-D-1-thiogalactopyranoside (IPTG)

(0.5 mM) for 16–20 h at 20�C. Cells were pelleted by centrifugation

at 3000 � g (4�C, 10 min) and resuspended in lysis buffer (10 mM so-

dium phosphate pH 7.4, 150 mM NaCl, one tablet of SIGMAFAST pro-

tease inhibitor cocktail (Sigma-Aldrich, St. Louis, Missouri) (EDTA-free

per 100 mL of solution), and lysed on an Emulsiflex C5 homogenizer

(Avestin, Mannheim, Germany) at 15,000 psi. Cell debris was pelleted

by centrifugation at 15,000 � g at 4�C for 45 min. Ni-NTA beads,

50% bed volume (GE Healthcare, Little Chalfont, UK) (5 mL), were

washed once with phosphate buffer (10 mM sodium phosphate (pH

7.4), 150 mM NaCl) before binding the supernatant from the cell lysate
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for 1 h at 4�C in batch. The beads were washed three times with phos-

phate buffer (40 mL) containing 30 mM of imidazole to prevent nonspe-

cific interaction of lysate proteins with the beads. Protein was eluted

using phosphate buffer with 300 mM Imidazole and purified by size-

exclusion gel filtration using a HiLoad 16/60 SuperdexG75 column

(GE Life-Science, Little Chalfont, UK) preequilibrated in phosphate

buffer (10 mM sodium phosphate (pH 7.4), 150 mM NaCl) and proteins

separated in isocratic conditions. Purity was checked by NuPage protein

gel (Invitrogen), and pure protein fractions were pooled. Purified protein

was flash-frozen and stored at �80�C until further use. Concentrations

were determined by absorbance at 280 nm using a calculated extinction

coefficient (ExPASy ProtParam) (34) for each variant. Protein molecular
lobs ¼
aN þ bN½D� þ ðaD þ bD½D�Þ � exp

�
mD�N

�½D� � ½D�50%
���

RT

1þ exp
�
mD�N

�½D� � ½D�50%
�� ; (1)
weight and purity was confirmed using mass spectrometry (MALDI)

(Mass Spectrometry Facility, Department of Chemistry, or PNAC,

Department of Biochemistry).
Circular dichroism spectroscopy

All circular dichroism (CD) measurements were made under the

same configuration on a Chirascan CD spectrometer (Applied Photophy-

sics, Leatherhead, UK) in 1-mm-pathlength Precision Cells (110-QS;

Hellma Analytics, M€ullheim, Germany) at 25�C. All protein samples (at

5–20 mM concentration) were prepared in 50 mM sodium phosphate buffer

(pH 6.8), 150 mM NaCl, and the CD spectrum was measured between 200

and 280 nm wavelengths using a 1-nm bandwidth unless specified other-

wise. Measurements were taken at 1-nm intervals and were collected every

0.5 s; each reading was repeated between three and five times and the data

averaged.
Equilibrium denaturation monitored by
fluorescence spectroscopy

High-throughput equilibrium denaturation experiments were carried out as

previously described (35). Briefly, solutions were dispensed into Corning

96-well, half-area, black polystyrene plates (CLS3993; Corning, NY)

with a Microlab ML510B dispenser (Hamilton, Reno, NV). All plate mea-

surements were carried on a CLARIOstar Plate Reader (BMG LABTECH,

Offenburg, Germany) with a tryptophan-detection set consisting of three fil-

ters, an excitation of 280–10 nm (275–285 nm), a dichroic PL325 nm, and

an emission at 360–20 nm (350–370 nm) at 25�C. Protein concentrations

were 0.3–1 mM. For each protein, three sets of serial dilutions were plated

consecutively. Plates were covered with Corning 96-well Microplate

Aluminum Sealing Tape (Corning) to prevent evaporation, shaken for

30 s with the CLARIOstar double orbital shaking option, and incubated

at 25�C for 1 h. The temperature was set at 25�C for the duration of the

experiment.
Equilibrium denaturation monitored by CD

Aliquots of GdmHCl (300 mL) were prepared by dispensing the appropriate

volume of stock solution of GdmHCl (7 M) in buffer (50 mM sodium phos-

phate buffer (pH 6.8), 150 mM NaCl) and sodium phosphate buffer (or

otherwise indicated) using a Hamilton Microlab ML510B (Hamilton).
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Samples were equilibrated at 25�C for 2 h. The a-helicity was monitored

by ellipticity at 222 nm. Results were plotted using GraphPad Prism

(GraphPad Software, San Diego, CA).
Equilibrium denaturation data analysis

Data were analyzed in two different ways as follows: they were either

analyzed with a two-state model (36) or with a heteropolymer Ising model

(12). Analysis of the data with the heteropolymer Ising model is described

below. In the case of two-state model analysis, the protein chemical dena-

turations were fitted directly using Eq. 1:
where lobs is the observed signal, aN and aD are the intercepts, bN and bD
are the slopes of the baselines at the low (N) and high (D) denaturant con-

centrations, [D]50% is the midpoint of unfolding, [D] is the concentration of

denaturant, and mD-N is a constant that is related to the increase in solvent

exposure of the protein upon unfolding (37).

Equation 1 is based on a two-state model of denaturation in which only

the native and the denatured states are populated and assumes that the signal

of the native state, lN, and the denatured state, lD, are linearly dependent on

the denaturant concentration (lN ¼ aN þ bN[D], lD ¼ aD þ bD[D]); for a

detailed derivation, see (36). Values for [D]50% and mD-N are obtained with

their standard errors. The free energy of unfolding in water can then be

calculated using Eq. 2:

DGH2O
D�N ¼ mD�N � ½D�50%; (2)

whereDGH2O
D�N is the free energy of unfolding in water,mD�N is them-value,

and ½D�50% is the equilibrium midpoint.
Heteropolymer Ising model

For the Ising analysis, each equilibrium denaturation curve was individually

converted to fraction unfolded ðlUÞ using Eq. 3:

lU ¼ lobs � ðaN þ bN½D�Þ
ðaD � aNÞ þ ðbD � bNÞ½D�

; (3)

where aD/aN are the y-intercept values of the denatured/native baselines

and bD/bN are the slopes of the denatured/native baselines.

After normalization, all of the curves were globally fitted to a heteropol-

ymer Ising model using the PyFolding package (38). We constructed the 1D

heteropolymer Ising model using a matrix formulation as previously

described (12). Briefly, the model comprises a 1D linear series of equilib-

rium constants. These account for the intrinsic folding stability (DGi) and

the interfacial energy (DGi�1,i) for each repeated unit in a nearest-neighbor

TPR array. The intrinsic stability of the repeating unit has an associated co-

efficient (m) to represent its sensitivity to the external stimulus—in this

case, chemical denaturant.

In previous studies on CTPR proteins, the repeating Ising unit used has

been at the level of individual helices within each array (13,32,39). Here,

the CTPR series were fitted to both 1) different repeating units of individual

helices and 2) different repeating units of TPR motifs. The fits showed that

the model with different repeating unit of TPRmotifs gives better agreement
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to the experimental data. This ismost likely due to the nature of the input pro-

tein series used, i.e., the input proteins differ in number of TPR motifs as

opposed to one with differing numbers of helices. Thus, asymmetry of

CTPR proteins was modeled via unique sets of parameters to represent a

‘‘standard’’ CTPR motif (DGCTPR
i , DGCTPR

i�1;i , and mCTPR), a CTPR motif

with the D to Y mutation (DGCTPR�Y91D
i , DGCTPR�Y91D

i�1;i , and mCTPR�Y91D),

and inserted single loops with the CTPR motif proceeding it (DGloop�CTPR
i ,

DGLoop�CTPR
i�1; i , and mLoop�CTPR). The m parameters (mCTPR, mCTPR�Y91D, and

mLoop�CTPR) gave a denaturant dependence to the intrinsic stabilities. The ex-

pressions defining the equilibrium constants (Eqs. 4 and 5) and the protein

partition function, q(n) are given below (Eq. 6):

ki ¼ e½�ðDGi�mxÞ=RT�: (4)

and
ti�1;i ¼ e½�DGi�1;i=RT�; (5)

where DGi is the free energy of folding for the domain at position i,

with denaturant sensitivity m and at denaturant concentration x. DGi�1,i

is the free energy for the interface between domains at positions i � 1

and i. R is the gas constant, and T is experimental temperature in Kelvin.

The full partition function of the protein with n repeat motifs is given

by Eq. 6:

qðnÞ ¼ ½0 1�
�
k1t�1 1

k1 1

�
/

�
kntn�1 1

kn 1

��
1

1

�
: (6)

This defines the fully folded state. The model allows for fitting of sepa-

rate parameters (k and t, thus DGi, DGi�1;i , and m) to describe behavior of

the various repeat motif units by globally fitting to data for degenerate

CTPR protein compositions.

The fraction folded, lF, is then simply defined as the sum of the subpar-

tition functions divided by the number of terms (repeat motifs) multiplied

by the full partition function (Eqs. 7 and 8):

qðiÞ ¼ ½0 1�/
�
kiti�1 0

ki 0

�
/

�
1

1

�
(7)

and
lF ¼ 1

nqðnÞ
Xn

i¼ 0

qðiÞ: (8)

From the fitted variables, the stability of any CTPR ensemble or part

thereof ðDGH20
0/jÞ can be calculated by adding energy terms (Eq. 9):

DGH20
0/j ¼ nDGi þ ðn� 1ÞDGi; j ¼ �RT ln kntðn�1Þ;

(9)

where DGH20
0/j is the free energy of folding in water for a protein with j

repeat motifs, n is the number of folded repeat motifs in each protein,

DGi is the free energy of folding for the motif at position i, and DGi�1,i

is the free energy for the interface between motifs at positions i � 1 and i.
Stopped-flow fluorescence

Aliquots of guanidinium hydrochloride (GdmHCl) were prepared by

dispensing the appropriate volume of stock solution of GdmHCl in sodium

phosphate buffer (50 mM sodium phosphate buffer (pH 6.8), 150 mM

NaCl) using a Hamilton Microlab ML510B dispenser (Hamilton). For each

protein, two aliquots (3 mL) were prepared to a final concentration of
10 mM of protein. One aliquot was fully folded in sodium phosphate buffer

(or low concentrations ofGdmHCl), and the other denatured in 6MGdmHCl.

Sampleswere equilibratedat 10or 25�Cfor 2 h.Theproteins and theGdmHCl

solutions were mixed at a 1:5 ratio. An excitation wavelength of 280 nm was

used, and the emission was measured using a 330-nm cutoff filter. Unfolded

protein was refolded by rapid mixing with increasing concentrations of

GdmHCl up to the denaturation midpoint as defined by equilibrium denatur-

ation. Folded protein was unfolded by rapid mixing with increasing concen-

trations of GdmHCl above the equilibrium denaturation midpoint. Multiple

traces were acquired at each GdmHCl concentration, averaged and then fitted

to a single exponential or a double exponential in GraphPad Prism.

Chevron plots that showed nonlinear folding and/or unfolding arms were

fitted using a broad transition state barrier model originally described by

Oliveberg and coworkers (40). Nevertheless, the fit was simply qualitative,

as the refolding rates of these CTPR proteins are faster than the limit of

detection of our instrument:

lnkobs ¼ ln
	
kH2O
f exp

�� mkf ½denaturant�



þ exp
	
� m�

kf
½denaturant�2



þ kH2O

u

þ expðmku½denaturant�Þ
þ exp

�
m�

ku
½denaturant�2��:

(10)

Statistical analysis

All measurements were performed in triplicate unless indicated otherwise,

and the errors for the two-state fits are the standard errors of the mean. The

errors from DGH2O
D�N calculation were propagated from standard errors of the

mean. Errors of the fitted variables by the 1D heteropolymer Ising model

were determined by calculating a covariance matrix from the Jacobian

matrix after a subsequent least-squares minimization of the fit. Errors in

DGH20
0/1 were propagated from the errors obtained from the fitted variables.
Data availability

iPython Jupyter notebooks of the heteropolymer Ising model analysis are

included as Supporting Materials and Methods. All data is available upon

request. To create the figures in the study, the fitting results from PyFolding

were exported as CSV files and plotted using the program Prism (GraphPad

Software).
RESULTS

Design of consensus-repeat modules and loop
extensions

In this study, we constructed 15 CTPR proteins that contain
different numbers of repeats with two consensus-repeat se-
quences differing by a pointmutation and a single-loop inser-
tion of different lengths (shown schematically in Fig. 1).
Comparison of the biophysical characteristics of all these
different CTPR constructs enabled us to delineate the effects
of loop insertion and of size of loop inserted versus the effects
of point mutation. The 15 CTPR proteins consisted of the
following: 1) a CTPR3module (comprising three CTPRmo-
tifs), as studied previously by Regan and colleagues and
referred to here as CTPR3-YD. This CTPR sequence con-
tained a single-point mutation, Y91D, in the third repeat
Biophysical Journal 114, 2552–2562, June 5, 2018 2555



FIGURE 1 Sequences, topologies, and modeled

structures of the 15 proteins used in this study.

(A) The repeating TPR motif sequences used (each

repeat contains two a-helices) are as follows:

CTPRn (red), CTPR-YD (gray), and CTPR-YD-

loop (green). (B) The topology of the CTPR series

of four proteins containing only the ‘‘CTPR’’ motif

(CTPR2,CTPR3,CTPR4, andCTPR6) (9) is shown.

Repeats are colored as per (A) to show that all pro-

teins in this series contain only the CTPR sequence.

(C) The topology of the CTPR series containing

‘‘CTPR,’’ ‘‘CTPR-Y91D,’’ and ‘‘CTPR-Y91D-

loop’’ motifs (CTPR3-YD, CTPR6-YD, CTPR6-

YD-loop10, CTPR6-YD-loop15, etc.) is shown.

Repeats are colored as per (A) to show where the

loop-containing and YD-containing repeats occur.

(D) The topology of the CTPR2 series containing

‘‘CTPRn,’’ ‘‘CTPR-Y91D,’’ and ‘‘CTPR-Y91D-

loop’’ motifs (CTPRa2 and CTPR2 with either a

10-residue or a 25-residue loop between the two re-

peats and a version of them with the Y-to-D point

mutation) is shown. Repeats are colored as per (A)

to showwhere the loop-containing and YD-contain-

ing repeats occur. (E) A ribbon representation of the

atomic structures of CTPR2, CTPR3, and CTPR6

based on the crystal structure 2HYI (56) is shown.

The dots represent the fact that this series also in-

cludesCTPR4 (data not shown). Repeats are colored

as per (A) to show that all proteins contain only the

CTPRn sequence. (F) A ribbon representation of the atomic structures of CTPR3-YD, CTPR6-YD, and CTPR6-YD-loop proteins based on crystal structure

2HYI (56) is shown. Repeats are colored as per (A) to show that, for example, CTPR3-YD is composed of two CTPR repeats and a C-terminal CTPR-YD repeat.

In the representation of theCTPR6-YD-loopproteins, theCTPR-YD-loopmotif is located in repeat 3 (green). The loopswere inserted after the third repeat (green)

and before the fourth repeat (red). The sequences for all proteins are found in Table S1. To see this figure in color, go online.
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relative to other published CTPR sequences (41); 2) a six-
repeat series built from two CTPR3-YDmodules with either
a native loop between the two modules (CTPR6-YD) or a
poly-GS loop of differing length between 10 and 25 residues
inserted between the two CTPR3-YD modules (CTPR6-
YD-loop10, CTPR6-YD-loop15, etc.). The poly-GS loop
2556 Biophysical Journal 114, 2552–2562, June 5, 2018
contained a thrombin cleavage site that allowed us to demon-
strate that the loop is solvent-accessible (see Fig. S4); 3)
a series of four proteins (CTPR2, CTPR3, CTPR4, and
CTPR6) comprising between two and four repeats of the
original consensus sequence in (9); and 4) a two-repeat series
comprising CTPRa2 andCTPR2with either a 10-residue or a
FIGURE 2 Biophysical analysis and compari-

son of the CTPR, CTPR-Y91D, and CTPR-

Y91D-loop series of proteins. (a) Far-UV CD

spectra, (b and c) averaged equilibrium denatur-

ation curves monitored by (b) CD at 222 nm and

converted to molar ellipticity and (c) fluorescence

converted to fraction unfolded for ease of compar-

ison, and (d) chevron plots are shown. The denatur-

ation curves are fitted to a two-state model. The

chevron plots are fitted to a two-state model in

which folding and unfolding reaction proceed

via a broad transition-state model. Measurements

were performed at 25�C in 50 mM sodium phos-

phate buffer (pH 6.8), 150 mM NaCl. To see this

figure in color, go online.



TABLE 1 Parameters Obtained by Fitting the Equilibrium

Denaturation Data to a Two-State Model for the CTPR,

CTPR-YD, and the CTPR6-YD-Loop Proteins Series

Experiment/

Protein D50% (M)

m-Value

(kcal mol�1 M�1)

DGH2O
D�N

(kcal mol�1)

Equilibrium Denaturation Monitored by Fluorescence

Loop Extension in Tandem-Repeat Proteins
25-residue loop between the two repeats and versions of them
with the Y-to-D point mutation. To simplify the analysis, all
of the proteins lack the C-terminal so-called ‘‘solvating’’ he-
lix used in some previous studies. All expressed inE. coli in a
soluble form and eluted as singlemonomer-sized peakswhen
subjected to size-exclusion chromatography.
CTPR2 3.53 5 0.01 2.09 5 0.04 �7.4 5 0.1

CTPR3 4.30 5 0.02 2.8 5 0.2 �12.0 5 0.9

CTPR4 4.80 5 0.01 4.0 5 0.3 �19.2 5 0.9

CTPR6 5.30 5 0.03 4.8 5 0.2 �25.5 5 1.1

CTPR2-YD 2.28 5 0.01 2.1 5 0.04 �4.8 5 0.1

CTPR3-YD 3.93 5 0.02 2.9 5 0.2 �11.4 5 0.8

CTPR6-YD-

loop10

4.35 5 0.01 3.4 5 0.1 �14.9 5 0.6

CTPR6-YD-

loop15

4.32 5 0.02 3.1 5 0.3 �13.4 5 1.1

CTPR6-YD-

loop20

4.37 5 0.02 3.4 5 0.3 �14.9 5 1.3

CTPR6-YD-

loop25

4.38 5 0.02 3.1 5 0.2 �13.6 5 0.9

CTPR6-YD 4.99 5 0.03 4.5 5 0.5 �22.5 5 2.3

Equilibrium Denaturation Monitored by CD

CTPR2 3.50 5 0.01 2.2 5 0.03 �7.6 5 0.1

CTPR3 4.46 5 0.01 3.3 5 0.04 �10.3 5 0.1

CTPR4 4.85 5 0.01 4.8 5 0.1 �23.3 5 0.5

CTPR6 5.41 5 0.01 4.9 5 0.1 �26.5 5 0.5

CTPR2-YD 2.32 5 0.02 1.8 5 0.1 �4.2 5 0.1

CTPR3-YD 3.96 5 0.01 2.31 5 0.03 �9.6 5 0.1

CTPR6-YD-

loop10

4.19 5 0.01 2.69 5 0.06 �11.3 5 0.3

CTPR6-YD-

loop15

4.24 5 0.01 2.64 5 0.04 �11.2 5 0.2

CTPR6-YD-

loop20

4.21 5 0.01 3.08 5 0.04 �12.9 5 0.2

CTPR6-YD-

loop25

4.20 5 0.01 2.88 5 0.04 �12.1 5 0.2

CTPR6-YD 4.97 5 0.01 4.3 5 0.1 �21.3 5 0.4

All measurements were performed in triplicate, and the errors listed are the

SE of the mean. The DGH2O
D�N for the loop-extension proteins are apparent

values only, as their low m-values indicate that the unfolding transitions

are not fully cooperative.
Comparison of the CTPR, CTPR-YD, and CTPR-
YD-loop constructs: loop extension
compromises the thermodynamic stability and
cooperativity but not the overall native structure

To determine whether loop insertion radically alters the sec-
ondary structure of the native state, for example, by unfold-
ing repeats or decoupling sections of the CTPR array into
independently folding units, far-ultraviolet (UV) CD spectra
were recorded and thermal/chemical denaturations per-
formed. Far-UV CD spectra show that the CTPR6-YD
loop-extension constructs have the same a-helical content
as CTPR6-YD (Fig. 2 a). Moreover, the CTPR6-YD-loop
series showed very high melting temperatures, similar to
that of CTPR6-YD (Fig. S2). Thus, a single loop extension
of up to 25 residues does not compromise the native struc-
ture of CTPR6-YD protein.

Next, chemical denaturation experiments were performed
by monitoring both tryptophan fluorescence (there is a tryp-
tophan residue in each repeat) and CD (monitored at
222 nm). Initially, all curves were fitted to a two-state equa-
tion to give the midpoints of unfolding (D50%), m-values,
and free energies of unfolding (Table 1). Fig. 2, b and c
shows a comparison of the denaturation curves of the
CTPR6-YD-loop proteins with those of the CTPR series
and CTPR-YD series, from which a number of features
and trends are apparent.

First, each chemical denaturation curve, whether moni-
tored by CD or fluorescence, showed a single unfolding
transition. Moreover, there is good agreement between
denaturation curves monitored by CD and by fluorescence.
This result indicates that denaturation occurs via concurrent
loss of native secondary and tertiary structures. Importantly,
the native pretransition baselines of the CD-monitored dena-
turations were essentially flat. Thus, the single-loop and
single-point-mutation-containing proteins do not partially
unfold before the major transition.

Second, the chemical denaturations of the four loop vari-
ants overlay and give the sameD50% andm-valueswhenfitted
to a two-state equation. Significantly, these values are lower
than those of the parent protein, CTPR6-YD, yet higher than
‘‘half’’ of it (CTPR3-YD). The inserted loop, therefore, ap-
pears to cause a loss in stability and cooperativity, and this
effect is independent of the length of the loop. However,
because the CTPR6-YD-loop variants have significantly
higher D50% and m-values than those of CTPR3-Y91D,
the repeats must be folded as a CTPR6 unit rather than
exist as two fully uncoupled CTPR3-YD halves. The two-
state fits of the data indicate an apparent loss in stability of
7.5 kcal mol�1 upon loop extension (Table 1).
Un/folding kinetics of the loop-extension
constructs show that loss of thermodynamic
stability is mainly through increased rates of
unfolding and TPR motifs are not uncoupled

The unfolding and refolding kinetics of the proteins were
measured using stopped-flow fluorescence. The refolding
traces for all proteins were fitted to the sum of two expo-
nential phases, the faster of which constituted �80–95%
of the overall amplitude (Fig. S3). The smaller, slower
phase could be the result of proline isomerization, as there
is a proline residue in each CTPR module (at the end of the
second helix). The refolding traces at GdmHCl concentra-
tions below 2.5 M were too fast to be fitted accurately. The
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unfolding traces were fitted to a single exponential phase
(Fig. S3).

Both unfolding and refolding kinetics are shown in Fig. 2 d
as chevron plots. These show that all proteins exhibit curva-
ture in both the refolding arm and the unfolding arm. There-
fore, although the kinetics is more complex than a simple
two-state transition, two effects of loop extension are readily
apparent. First, the loop-extension proteins have rate con-
stants for unfolding that lie between those of the three-repeat
and six-repeat arrays, CTPR3-Y91D and CTPR6-Y91D.
Second, loop extensions have only a small effect on the re-
folding rates. Thus, the kinetics show that the major effect
of the loop extension is to destabilize the native state via
increased unfolding rates. Moreover, the intermediate nature
of the loop constructs’ chevron plots corroborates the equi-
librium finding that the loops do not completely uncouple
the six-repeat protein into two CTPR3-YD units.
Delineating the effects of loop extension on
stability and cooperativity using 1D
heteropolymer Ising model analysis

The above two-state fitting of the equilibrium denaturation
data is only of limited, qualitative use, given that there is
clearly evidence of deviation of the loop-extended protein
from this simple model. Global Ising model analysis of
repeat-protein denaturation curves has been shown to be
an effective means of quantifying repeat-protein energetics,
as it enables us to dissect the contribution that individual
repeat units make (inter-repeat interfacial energy and
intrinsic repeat stability) to the overall stability and cooper-
ativity (11,39,42,43). Here, we use a heteropolymer Ising
model, as our TPR arrays are composed of nonidentical
repeat motifs (Fig. 1; Supporting Material). We therefore
globally fitted 27 denaturation curves of the following
eleven proteins (the majority of which were performed in
triplicate): the CTPR series (CTPR2, CTPR3, CTPR4, and
FIGURE 3 Equilibrium denaturation curves for the CTPR, CTPR-YD, and CT

Topologies used for each protein when fit to the Heteropolymer Ising model are

CTPR-YD-loop repeat (green). (b) Equilibrium denaturation curves for the CTP

polymer Ising model. The minimal unit of repetition was set as an individual h
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CTPR6), the loop series (CTPR6-YD-loop10, CTPR6-YD-
loop15, CTPR6-YD-loop20, and CTPR6-YD-loop25), and
the mutant series (CTPR2-YD, CTPR3-YD, and CTPR6-
YD) (Fig. 3), thereby determining the energetics of all three
types of repeat units used (CTPR, CTPR-YD, and CTPR-
YD-loop), for which the unit of repetition was defined as
the whole TPR motif, i.e., helix-turn-helix-loop. As there
was no significant length dependence of the stability of
the CTPR6-YD-loop series, we fitted all of them with the
same energetic terms. The denaturation curves were first
converted to fraction unfolded (using Eq. 3), as the CD
data showed that there was no pretransition unfolding of
the proteins. The heteropolymer model was able to describe
the equilibrium denaturation curves of these 11 proteins
with a total of nine globally fitted parameters. These param-
eters are the intrinsic stability (DGi), the interfacial stability
(DGij), and the m-value (mi) for each of the three types of
repeat units (CTPR, CTPR-YD, and CTPR-YD-loop).
Fig. 3 show the high quality of the fits, and Table 2 summa-
rizes the results.

The Ising model confirms the two-state analysis, showing
that the CTPR-YD loop-containing repeat is the least
stable, followed by the point-mutation-containing CTPR-
YD repeat, with the CTPR repeat being the most stable.
Furthermore, the Ising model analysis shows that the desta-
bilizing effect of the point mutation is mostly localized to
the intrinsic energy term, whereas the effect of loop exten-
sion was mostly localized to the interfacial energy term
with little effect on the intrinsic energy term. Thus, the
energetic effect of the loop insertion relative to that of
the point mutation can be calculated as DDG ¼ DGH20

0/1

(CTPR variant 1) � DGH20
0/1 (CTPR variant 2), where

DGH20
0/1 ¼ DGH20

i þ DGH20
i�1;i. Table 3 summarizes the

results and shows the effect of the point mutation (3.3 5
0.3 kcal mol�1) compared with the loop (4.3 5
0.4 kcal mol�1). This means that the loop value is four times
the energetic cost of a 10-residue loop extension observed
PR-YD-loop proteins fitted globally to a 1D heteropolymer Ising model. (a)

shown as follows: CTPR repeat (red), the CTPR-YD repeat (black), and the

R, CTPR-YD, and CTPR-YD-loop proteins fitted globally to a 1-D Hetero-

elix-turn-helix-loop repeat. To see this figure in color, go online.



TABLE 2 Values of Intrinsic and Interfacial Stabilities for the Three Different Repeat Units Analyzed Using the Heteropolymer Model

Repeat Type DGi (kcal mol�1)a DGij (kcal mol�1)a mi (kcal mol�1 M�1)a DGH20
0/1 ((kcal mol�1)b

CTPR �0.59 5 0.12 �6.08 5 0.08 1.1 5 0.7 �6.7 5 0.2

CTPR-YD 2.53 5 0.07 �5.60 5 0.01 0.6 5 0.3 �3.1 5 0.2

CTPR-YD-loop 2.59 5 0.03 �1.36 5 0.03 0.38 5 0.12 1.2 5 0.1

Only the intrinsic stability term has a denaturant dependence (mi). Intrinsic stabilities are represented as DGi. Interfacial stabilities are represented as DGij.
aErrors of thefitted variableswere determined by calculating a covariancematrix from the Jacobianmatrix after a subsequent least-squaresminimization of thefit.
bDGH20

0/1 ¼ DGH20
i þ DGH20

i�1;i, i.e., the stability gained when a single repeat is added to a folded TPR ensemble. Errors in DGH20
0/1 were propagated from the

errors obtained from the fitted variables.
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previously for globular proteins (1.1 kcal mol�1) as calcu-
lated by the Ising model and seven times as calculated by
the two-state model (44). The difference between the two
may be a result of partially folded intermediate states being
taken into account in the Ising model.
Loop extension incurs only a small energetic cost
in the context of a two-repeat array

The additivity rule of the Ising model allows us to predict
the stability of a protein comprising any combination of
CTPR, CTPR-YD and CTPR-loop units. The large stability
loss of loop extension observed for the six-repeat protein
would be predicted to render a two-repeat protein with the
YD mutant (CTPR2-YD-loop) to be mostly unfolded and
a two-repeat protein (CTPR2) to be very destabilized (see
the predicted denaturation curve for CTPR2-YD-loop in
Fig. 4 b). To test this prediction, we made four two-repeats
proteins with and without the Y-to-D mutation and with
loop extensions of 10 residues and 25 residues: CTPR2-
YD-loop10 and CTPR2-YD-loop25, and CTPR2-loop10
and CTPR2-loop25. Previous reports on CTPR proteins
have demonstrated how changing the amino-acid composi-
tion of the short loop between repeats has a small but
significant effect on the interfacial stability. Specifically,
changing the sequence from NN to RS results in a loss in
stability of 1 kcal mol�1 because of differences in side-
chain interactions upon mutation. This effect was found to
follow the additivity rule of the Ising model (32). We do
not know how the loop extension would affect these loop
interactions, and therefore, we made an additional CTPR2
variant with the DPRS sequence (CTPRa2) for comparative
purposes.
TABLE 3 Energetic Costs of the YD Mutation and the Loop

Extension, Calculated as the Changes in the Free Energy of

Unfolding from a Heteropolymer Ising Model Fit

DDG (kcal mol�1)a

CTPR to CTPR-YD þ3.6 5 0.3

CTPR to CTPR-YD-loop þ7.9 5 0.2

CTPR to CTPR-loop þ4.3 5 0.2

Free energy of unfolding is represented as DDG.
aDDG ¼ DGH20

0/1 (CTPR variant 1) � DGH20
0/1 (CTPR variant 2), where

DGH20
0/1 ¼ DGH20

i þ DGH20
i�1;i. Errors in DDG were propagated from the

errors in DGH20
0/1.
Fig. 4 a shows a comparison of the CD spectra of CTPR2-
loop25 and CTPRa2. As CTPRs are all-helical proteins, they
should show a double minimum in the CD spectrum at 208
and 222 nm. However, CTPR proteins do not have a pro-
nounced 208-nm minimum (9,23,39). Interestingly, the
spectrum of CTPR2-loop25 did show the double minimum
expected for an a-helical protein. The similar 222-nm
ellipticities of CTPR2-loop25 and CTPR2 indicate that loop
extension does not compromise the overall structure of the
protein.

Fig. 4 b shows a comparison between the experimentally
observed denaturation curves of all the CTPR2 variant pro-
teins (CTPR2, CTPRa2, loops and YD series) with the
Ising-predicted denaturation curve based on the energetic
terms obtained from the CTPR6 variants as discussed above.
As can be seen, all of the two-repeat proteins had the same
m-value within error, indicating that folding cooperativity is
not perturbed by loop extension (Table 4). The stability loss
because of the DPNN-to-DPRS mutation was 1 kcal mol�1,
the same as the value obtained from the six-repeat data (and
consistent with previous measurements (32)). However, the
energetic cost of the loop extension in the two-repeat protein
was �2.5-fold smaller than the value of 4.3 kcal mol�1 ob-
tained from the heteropolymer model for the CTPR-loop in
the six-repeat protein. It is also noteworthy that this energetic
cost is length-dependent, unlike the length-independent effect
of loop extension observed for the six-repeat array. Fersht and
colleagues used the following polymer model to predict the
entropic cost of a loop extension in a globular protein (45):

DDG ¼ �T DDSconfig: ¼ �T

�
�3

2

�
Rln

�
nþ dn

n

�
;

(11)

where n is the loop length and dn is the length of the

extension. Accordingly, the entropic cost should be
1.1 kcal mol�1 for a 10-residue loop extension and
1.75 kcal mol�1 for a 25-residue loop extension. These
values are much closer to those observed for the loop
extensions in the two-repeat array (Table 5). As would be
expected, globally fitting the CTPR2-YD-loop proteins
together with the other series to the heteropolymer Ising
model produced values that were not thermodynamically
consistent with the data, further underlining the observation
Biophysical Journal 114, 2552–2562, June 5, 2018 2559



FIGURE 4 Effects of loop extension on the two-

repeat CTPR array. (a) CD spectra of CTPRa2,

CTPR2, and CTPR2-loop25 are given. (b) Equilib-

rium denaturation curves monitored by fluorescence

(converted to fraction unfolded for comparison) for

all CTPR2 variants (CTPR2, CTPRa2, loops, and

YD series) and CTPR2-YD-loop predicted accord-

ing to Ising behavior are given. The data are fitted

to a two-state model. All measurements were per-

formed at 25�C in 50 mM sodium phosphate buffer

(pH 6.8), 150 mM NaCl.
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that loop extension in a CTPR2 array is not energetically
equivalent to loop extension in a CTPR6 array.
DISCUSSION

Here, we have asked whether TPR proteins can be
functionalized by extending the loops between repeats
and how these structural alterations affect their folding.
It is interesting to compare TPRs to ANK-repeat pro-
teins in this respect (7,13,23,43), as the major differences
between them are the lengths of the helices and of
the inter-repeat loops. ANK proteins have shorter
helices that contribute less to stability than the longer
TPR ones. However, the long semistructured inter-repeat
loops in ANKs contribute to high overall stability through
forming a network of stabilizing hydrogen bonds. This
creates a large mismatch between intrinsic and inter-
facial stabilities, thereby resulting in highly cooperative
folding (19).

The mismatch of intra- and inter-repeat stabilities is
smaller in the TPRs (13,39). The interfacial stability of
the CTPRs is provided mainly by the hydrophobic packing
between a-helical residues in adjacent repeats, with a
smaller contribution from specific interactions of residues
in the inter-repeat loop. Disruption of the loop contacts
TABLE 4 Fit of the Equilibrium Denaturation Data to a Two-

State Model for the CTPR2 Proteins

Protein D50% (M)a
m-Value

(kcal mol�1 M�1)a
DGH2O

D�N

(kcal mol�1 M�1)b

CTPR2a 3.07 5 0.02 2.09 5 0.04 �6.4 5 0.1

CTPR2n 3.53 5 0.01 2.09 5 0.04 �7.4 5 0.1

CTPR2-YD 2.28 5 0.01 2.09 5 0.04 �4.8 5 0.1

CTPR2-YD-

loop10

1.43 5 0.02 2.09 5 0.04 �3.0 5 0.1

CTPR2-YD-

loop25

1.25 5 0.02 2.09 5 0.04 �2.6 5 0.1

CTPR2n-

loop10

2.71 5 0.02 2.09 5 0.04 �5.7 5 0.1

CTPR2n-

loop25

2.45 5 0.02 2.09 5 0.04 �5.1 5 0.1

All measurements were performed in triplicate.
aErrors are the SEs of the mean.
bErrors were propagated from the errors obtained from the fitted variables.
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upon mutation of the NN sequence to RS decreases the over-
all stability of the repeat (�1 kcal mol�1 per loop) (32). Ac-
cording to polymer theory, a loop extension of 10 residues
should have a similar-sized energetic cost as the NN to RS
mutation, with longer loops having greater entropic penalty
(44). Consequently, we would expect that a loop-extended
CTPR array should still be highly stable. However, what
we observe is different from this prediction: a single loop
extension introduced into the two middle repeats of a
six-repeat array causes a much larger than expected and
length-independent decrease in both stability and coopera-
tivity. Strikingly, when the same loop is inserted into a
two-repeat array, only a small and length-dependent loss
of stability is observed, similar to that predicted by polymer
theory. Moreover, there was no significant effect on the
m-value, indicating that cooperativity of the two-repeat
array is not compromised by the loop extension. In contrast,
loop insertion in a six-repeat array lowered the both the
m-value and D50% and brought these values close to, but
importantly, still larger than that of a three-repeat array.

The folding behavior of CTPR proteins is dependent on
the number of repeats: CTPR2 has been described as the
most two-state like, resembling a four-helix bundle (i.e., a
globular protein) as much as a tandem-repeat array.
Increasing the number of repeats in the array results in an
increase in the overall stability of the protein because of
the nearest-neighbor cooperativity between repeats and the
mismatch between intrinsic and interfacial stability. The
TABLE 5 Energetic Cost of the Point Mutation and Loop

Extensions in a Two-Repeats Array of CTPRs

DDGH2O
D�N (kcal mol�1)

Cost of YD mutation in CTPR2n 2.6 5 0.1

Cost of RS loop instead of NN loop 1.0 5 0.1

Cost of loop10 in CTPR2-YD 1.8 5 0.1

Cost of loop25 in CTPR2-YD 2.2 5 0.1

Cost of loop10 in CTPR2 1.7 5 0.1

Cost of loop25 in CTPRn 2.3 5 0.1

Theoretical entropic cost of a loop10a 1.1

Theoretical entropic cost of a loop25a 1.7

DDGH2O
D�N values are calculated as the difference in DGH20

D�N between the

specified proteins. Errors were propagated from the errors obtained from

the fitted variables.
aThe theoretical entropic cost of both loop lengths.
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central repeats have been shown by hydrogen-deuterium ex-
change experiments to be the most highly protected from
solvent and therefore the least likely to explore unfolded
conformations (11,46,47). Moreover, the degree of protec-
tion increases with increasing number of repeats in the array,
the trend breaking down only when the number of repeats in
the array is sufficiently large for intermediates to be popu-
lated. We have shown that loop extension weakens the un-
folding cooperativity of the array. We would therefore
expect the loop-extended repeat to be much less protected
from hydrogen-deuterium exchange than the consensus
counterpart. TPRs (and ankyrin repeat proteins) have been
shown to exhibit dynamic spring-like behavior in solution,
whereby a spring constant can be used to define the fre-
quency of the protein ‘‘breathing’’ (16,48–51); thus, the
loss of nearest-neighbor cooperativity and stability induced
by loop extension should manifest as an increase in dynamic
properties at the loop-extended interface.

In conclusion, our study shows that the introduction of
loops into CTPR arrays is context-dependent and can lead
to a more dynamic and less stable CTPR protein array
than expected. TPR proteins function as molecular scaffolds
(52–55), and long loops of 10 or more residues are
commonly observed (30). The break in cooperativity, the
population of intermediates, and the dynamic and mechani-
cal consequences of a weakened inter-repeat interface may
be important for their mechanism of action and/or regulation
of binding partners. Importantly, we have shown that large
inter-repeat loop extensions can nevertheless produce very
stable and natively folded CTPR arrays. Although folding
cooperativity is weakened, it is not completely destroyed.
Thus, our study demonstrates that CTPR arrays are
amenable to both large and small loop insertions ready
to be exploited in various biotechnology and biomedical
applications.
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