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Abstract: Increased prevalence of food allergies in the last thirty years has been attributed to lifestyle
changes in Westernized countries. Among the environmental factors, nutritional factors and their
interaction with the gut microbiome in early life are thought to have an important role in the observed
epidemiological change. The gut microbiome synthesizes bacterial metabolites, which represent
a link among gut microbiome, nutrition, and immune system. The main metabolites produced
by gut microbiome are short-chain fatty acids (SCFAs). SCFAs have multiple beneficial effects on
human health including protective effects in autoimmune and inflammatory diseases. Among SCFAs,
butyrate is essential for maintaining gut immune homeostasis and exerts a pivotal role in immune
tolerance with strong anti-inflammatory effects in allergic diseases. Recent findings suggest that
butyrate takes part in the development of immunological tolerance to food, especially in the first
1000 days of life. Herein, we provide a critical review of the scientific literature on the role of butyrate
for prevention and treatment of food allergies with focus on the complex interplay among early life
nutrition, gut microbiome, and immune system.

Keywords: short chain fatty acids; immune tolerance; gut dysbiosis; gut microbiota metabolites;
cow’s milk allergy; gut homeostasis

1. Introduction

Increased prevalence of food allergies in the last thirty years has been attributed
to lifestyle changes in Westernized countries [1]. Among the changed lifestyle factors,
nutritional factors and their close interaction with the gut microbiome are thought to
play an important role in the observed epidemiological change, especially early in life,
when they influence the development of the immune system and oral tolerance to food
antigens [2]. The gut immune system continuously communicates with the wide range of
microorganisms that colonize the gut and with the different components of foods that are
eaten daily [3]. Bacterial metabolites synthesized by the gut microbiome play an important
role in the complex interplay between the gut immune system and gut microbiome [4].
Short chain fatty acids (SCFAs) such as acetate, butyrate, and propionate are the most
prevalent metabolites produced by gut microbiota. SCFAs, which result from the bacterial
fermentation of dietary fibers in the colon, have multiple beneficial effects in autoimmune
and inflammatory diseases because of their impact on the immune system [5,6]. Among
the SCFAs, butyrate exerts a crucial role in the development of immune oral tolerance with
strong anti-inflammatory effects in allergic diseases [7–9]. Interestingly, butyrate is the
only SCFA produced exclusively by microbial gut fermentation, while other SCFAs are
affected by host metabolism [10]. Recent findings support the hypothesis that butyrate
might contribute to the development of immune oral tolerance and in the prevention and
treatment of food allergies [11–13]. This review summarizes what is currently known about
the role of butyrate in food allergies, underlining the complex interplay among early life
nutrition, gut microbiome, and immune system.
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2. Gut Dysbiosis in Food Allergy
2.1. Evidence from Human Observational Studies

Growing evidence shows that gut dysbiosis, defined as an imbalance in the gut mi-
crobial community, has a decisive role in the onset of food allergy. Data from human
observational studies suggest that gut dysbiosis precedes the onset of food allergy, with
a crucial role for the timing of dysbiosis [14,15]. The first months of life are very impor-
tant for the future establishment of gut microbiome, and the first weeks after birth are
especially considered as a pivotal period in the interaction between the gut microbiome
and the immune system [16]. Gut dysbiosis in early life can predispose to the onset of
immune-mediated diseases including allergic diseases [16]. In particular, gut microbiome
composition in the first six months of life seems to have a central role in the onset of
food allergy [17]. Gut dysbiosis can affect not only the onset of food allergy, but also
the natural history of the disease, as suggested by the different characteristics of the gut
microbiome observed when comparing children who acquire oral tolerance with patients
who have persistent forms of food allergies [17]. The role of gut dysbiosis in food allergies
even in adulthood has been suggested by a recent study that performed a microbial and
metabolomic analysis of human stool samples obtained from pairs of twins, both with food
allergy or one twin with food allergy and the other twin without. This analysis revealed a
different composition of the gut microbiome and its metabolites even in adulthood among
twins with food allergy compared to those without food allergy, and also in the same pair of
twins, suggesting that gut microbiome may play a protective role against the onset of food
allergy beyond childhood [18]. Unfortunately, studies characterizing the gut microbiome
of patients affected by food allergy are still preliminary. A wide range of microorganisms
could be implicated with positive or negative influence on tolerogenic mechanisms and
no specific bacterial taxa could be associated with the onset of food allergies [14,17,19–27].
Most observational human studies have characterized the gut microbiome in children with
IgE-mediated food allergy or in children with sensitization to food allergens. Nevertheless,
data on the composition and functions of the gut microbiota in non-IgE-mediated food
allergies are not yet fully characterized. It is very interesting to note that children with
non-IgE-mediated cow’s milk allergy have a gut dysbiosis characterized by a prevalence
of Alistipes and Bacteroides (Bac 12) when compared to healthy subjects, with overlapping
signatures with children with IgE-mediated cow’s milk allergy and markedly lower fecal
concentrations of SCFA butyrate than healthy subjects [28–30].

2.2. Evidence from Animal Models of Food Allergy

Strong evidence from animal models has demonstrated the pivotal role of gut micro-
biome in the acquisition of immune oral tolerance. Indeed, mice given antibiotics as well as
germ free mice showed a predisposition to the onset of allergy. In particular, germ free mice
are unable to develop immune oral tolerance to food antigens, maintaining a Th2 immune
response [31–33]. The reconstitution of the gut microbiome in the first years of life, but
not later, can correct this effect. Notably, gut microbiome can also transmit susceptibility
to food allergy. In fact, when germ free mice were colonized with gut microbiome derived
from sensitized susceptible mice (susceptible because of a gain-of-function mutation in the
IL-4 receptor), but not from sensitized resistant mice, susceptibility to food allergy was
also transferred to the recipient mice [34]. Among the animal models, interesting evidence
about the protective role of the gut microbiome against food allergy derives from the
“humanized mouse models”. In particular, it has been shown that germ free mice colonized
with feces of healthy donors are protected from the development of cow’s milk allergy,
when sensitized and then exposed to cow’s milk proteins through an oral challenge. In
contrast, germ free mice colonized with feces from infants with cow’s milk allergy showed
severe allergic responses to cow’s milk proteins [35,36].
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3. Interrelation among Nutrition, Gut Microbiome, and Immune System: The Role
of Butyrate

The gut immune system continuously communicates with the wide range of microor-
ganisms that colonize the gut and with the different components of foods that are eaten
daily. Butyrate, a gut-microbiome derived metabolite, has received particular attention for
its multiple beneficial effects from the gut to the peripheral tissues. In particular, butyrate
has emerged since the discovery of its role in driving Tregs differentiation, maintenance of
gut homeostasis, and immune oral tolerance [7–9,37,38]. It represents an interesting link
between early life nutrition and gut microbiome in the onset of allergic diseases including
food allergies [39].

3.1. Fibers and SCFA Butyrate Production by Gut Microbiome

Diet impacts the gut microbiome, of which composition and function differs depend-
ing on the intake of fat, sugar, and fibers. Dietary fibers are made up of non-digestible
carbohydrates derived from plant polysaccharides and oligosaccharides, which are resis-
tant to chemical and enzymatic digestion up to the large intestine. These carbohydrates are
the main nutritional source for gut bacteria, and their fermentation leads to the production
of SCFAs [40]. Although SCFAs can also be derived from dietary proteins and glycoprotein
metabolism, carbohydrates represent the main sources [41]. Depending on gut microbiome
composition, the amounts and types of SCFAs produced are variable [41]. Gram-positive
anaerobic bacteria, which colonize the human colon, can generally produce butyrate. How-
ever, it is more correct to consider butyrate-producing bacteria as a functional group, rather
than a true phylogenetic group [42]. In gut dysbiosis, butyrate-producing bacteria are
reduced, resulting in a reduction in butyrate production.

3.2. Reduced Fecal Levels of SCFA Butyrate in Food Allergy: Evidence from Human
Observational Studies

In human observational studies, fecal levels of butyrate are different between allergic
and non-allergic children in early life [43]. In particular, gut dysbiosis with reduced fecal
butyrate levels was found in children with IgE-mediated and non-IgE-mediated cow’s
milk allergy compared to healthy controls [21,29]. On the other hand, high fecal butyrate
levels in early life are linked to a protective effect against the onset of food allergy [44]. In
addition, an enrichment of butyrate-producing bacteria was described in children with
faster resolution of cow’s milk allergy, also suggesting a role of butyrate in the history
of food allergy [17]. Significant associations were observed between diet composition
and fecal levels of SCFAs, thus diet can be an effective tool to modify microbial SCFA
production. Roduit et al. [44] analyzed SCFA concentrations in stool samples obtained
from 301 one-year-old children and evaluated their association with early life exposures,
particularly diet, and allergic manifestations later in their life. They observed that children
with the highest stool concentrations of butyrate at one year of age had significantly less
atopic sensitization to food and/or inhalant allergens and were less likely to have asthma
between three and six years as well as a reported diagnosis of food allergy or allergic
rhinitis. Furthermore, Cait et al. analyzed the fecal microbiomes of 105 atopic children
at three months and one year of age using shotgun sequencing. They found a positive
correlation between butyrate-producing bacteria depletion at three months of age and the
development of allergic manifestations later in life. Analyzing the gut microbiome function,
the authors also observed that these last infants lacked genes encoding key enzymes for
carbohydrate breakdown and butyrate production [10]. These longitudinal studies confirm
that early gut butyrate production is protective against the onset of allergic diseases later
in life (Table 1).
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Table 1. Main evidence from human observational studies on the fecal levels of SCFA butyrate in the
first years of life and food allergy/sensitization later in life (↑: increase; ↓: decrease).

Cait et al. 2019
(n = 105)

↓ Fecal levels of SCFA butyrate
(stool samples collected at

3 months and 1 year of age)

↑ Food allergy/food
sensitization

at 1 and 3 years

Ref.
[10]

Roduit et al. 2018
(n = 301)

↑ Fecal levels of SCFA butyrate
(stool samples collected at 1 year

of age)

↓ Food allergy/food
sensitization up to 6 years

Ref.
[44]

Sandin et al. 2009
(n = 139)

↓ Fecal levels of SCFA butyrate
(stool samples collected at 1 and

4 year of age)

↑ Food allergy/food
sensitization

at 1 and 4 years

Ref.
[43]

3.3. Early Life Nutrition and SCFA Butyrate in Food Allergy

Nutrition is a major environmental factor in early life. In this period, nutrition and
other environmental factors can influence not only the onset of food allergy, but also the
onset of other allergic diseases and immune mediated disorders. These environmental
factors act during the first 1000 days of life, a window of opportunity that ranges from
pregnancy to the first two years of life. During this vulnerable period, nutritional and
other environmental factors strongly influence gut microbiome composition and function
(bacterial metabolites) and immune system development (Figure 1).
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tyrate-producing bacteria and gut barrier integrity, which in turn favor a state of wellness 

Figure 1. Infant gut microbiome composition and function is related to multiple environmental factors, especially nutritional
factors in the first 1000 days of life. These factors are responsible for gut microbiome composition and diversity, related to
the different production of bacterial metabolites. The main class of gut microbiome-derived metabolites are SCFAs. Among
the SCFAs, butyrate is essential for gut homeostasis with strong anti-inflammatory effects. Butyrate exerts a pivotal role in
immune tolerance to food antigens later in life through immune and non-immune mechanisms of action.

During pregnancy and lactation, maternal diet influences not only maternal gut and
mammalian gland microbiome, but also infant gut microbiome [45]. Other protective fac-
tors against the onset of food allergy are vaginal delivery, breastfeeding, rural environment,
increased family size, exposure to pets, a high-fiber diet, and/or fermented food. These
environmental factors determine gut eubiosis, characterized by a prevalence of butyrate-
producing bacteria and gut barrier integrity, which in turn favor a state of wellness and
long-term protection against food allergies in adulthood. In contrast, cesarian delivery, a
junk-food-based and/or low-fiber diet during pregnancy and lactation, and exposure of
children to antiseptic agents and drugs (especially antibiotics and gastric acidity inhibitors)
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may lead to a predominant colonization by pathogenic bacteria (gut dysbiosis), reduced
production of immunomodulatory factors, and increased gut barrier permeability, with
consequent increased risk for the onset of food allergy [45–52].

3.3.1. Breastfeeding: Butyrate as Bioactive Human Milk Protective Component against
Food Allergy

The role of breastfeeding in the prevention of food allergies has not been conclusively
clarified. The immunological components of human milk would influence the acquisition
of immune oral tolerance and decrease the risk of allergic diseases [53,54]. Human milk is
a complex biological system and many bioactive factors present in human milk can affect
infant immune system maturation [55]. A recent study by Paparo et al. [11] suggests the
importance of butyrate as a bioactive human milk component that can protect against
the onset of food allergies. Human milk contains a significant level of butyrate. At
the detectable concentration in human milk, butyrate can modulate several tolerogenic
mechanisms underlying immune oral tolerance to food antigens. In a mouse model,
butyrate has been shown to upregulate the expression of several biomarkers of gut barrier
integrity as well as tolerogenic cytokines. In animal models of food allergy, pre-treatment
with butyrate significantly reduced allergic responses because of an upregulated expression
of tolerogenic cytokines, an inhibition of Th2 cytokine production, and a modulation
of oxidative stress [11]. In human enterocytes, butyrate has been shown to stimulate
mucin production, tight junctions, and human beta defensin-3 expression. In peripheral
blood mononuclear cells (PBMCs) from children with food allergy, butyrate enhanced
IL-10, IFN-γ, and Forkhead box P3 (FOXP3) expression through epigenetic mechanisms.
Moreover, it promoted dendritic cells, regulatory T cells (Tregs), and the precursors of M2
macrophages [11]. The authors concluded that an effective concentration of butyrate in
human milk could contribute to explain the protective role of breastfeeding against food
allergy. Therefore, a valid strategy to increase the protective role of human milk against
the onset of food allergies could be based on increasing the concentration of butyrate in
human milk through the modulation of maternal diet.

3.3.2. Food Allergy and Relation to Diet and Microbial Metabolites

Grimshaw et al. evaluated the relationship between infant diet composition in the first
year of life and the onset of food allergy by two years of age. They concluded that an infant
diet consisting of high levels of vegetables, fruit, and home-prepared foods is associated
with fewer food allergies by two years of age [56]. Several studies suggest that a good level
of adherence to the Mediterranean diet in early life protects against the onset of asthma and
atopic manifestations in children [57,58]. Mediterranean diet is composed of high levels
of fibers found in fruit, vegetables, legumes and nuts, olive oil, moderate consumption
of red wine, poultry and fish, and a lower intake of red meat and sweets. The observed
effects could derive from the high intake of non-digestible carbohydrates, whose bacterial
fermentation leads the production of SCFAs with a protective role against allergic diseases.
Good adherence to the Mediterranean diet has been linked to increased levels of Prevotella
bacteria, other Firmicutes, and SCFAs production [59]. Conversely, the Western diet is
characterized by the high consumption of fat and sugar, and low consumption of fibers
may contribute to the development of allergic diseases in adolescents and children [60,61].
For example, consuming a high-fat diet can alter the composition of the gut microbiome
away from microbes that are efficient at digesting fibers and reduce levels of SCFA butyrate
in the colon or blood [62].

3.3.3. Emerging Role of Butyrate in the Active Diet-Therapy in Pediatric Patients with
Cow’s Milk Allergy

Cow’s milk allergy is the earliest and the most prevalent form of food allergy in the
pediatric age [63]. It can be one of the first manifestations of the so called “atopic march”,
characterized by the development of other allergic diseases later in life. The current disease
management is based on the elimination diet, access to rescue medication, and use of
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substitutive formulas [64]. However, dietary management of cow’s milk allergy is shifting
from a “passive” elimination diet to an “active diet therapy” that can modify the natural
history of food allergy, reducing disease duration, and protecting against the progression
of “atopic march” [65]. The latter strategy is supported by a better understanding of the
role of early life nutrition, gut microbiome, and tolerogenic mechanisms. It has been
demonstrated that in children with cow’s milk allergy, an extensively hydrolyzed casein
formula (eHCF) containing Lactobacillus rhamnosus GG (LGG) induced higher oral tolerance
rates after six and twelve months of treatment compared with eHCF alone and other special
formulas commonly used for the treatment of cow’s milk allergy [66,67]. At the three-year
follow-up of a pediatric cohort of 220 infants with cow’s milk allergy, a higher rate of oral
tolerance acquisition was confirmed after treatment with eHCF plus LGG compared with
eHCF alone, and a lower incidence of other allergic manifestations (“atopic march”) was
also observed [68]. The use of eHCF supplemented with LGG could exert a modulation
of immune tolerance network mediated, at least in part, by the activity of LGG on gut
microbiome composition and function, leading to an increased production of the SCFA
butyrate. eHCF plus LGG is able to modulate gut microbiome composition and function,
increasing the abundance of genera with increased production of SCFA butyrate (such as
Roseburia, Coprococcus, and Blautia) [21]. The efficacy of butyrate was also demonstrated
in enhancing desensitization of effector cells induced by oral immunotherapy in a mouse
model of cow’s milk allergy. With regard to this, effective reduction of mast cell activation
upon in vivo and basophil activation upon ex vivo challenge, and enhanced suppressive
activity of oral immunotherapy plus butyrate-derived Tregs have been demonstrated [69].

3.4. Butyrate: Immune and Non-Immune Mechanisms of Action Against Food Allergy

Butyrate stimulates immune and non-immune protective responses against food aller-
gies. It represents the main energy source for colonocytes and influences the expression
of genes involved in gut epithelial barrier permeability and defense function. Increased
gut epithelial barrier permeability determines increased antigen uptake and promotes Th2-
type allergic response by activation of ILC2s, mast cells, basophils, and dendritic cells [70].
Butyrate can improve gut epithelial barrier integrity through increasing the thickness of the
mucus layer (enhancing the expression of mucin genes, in particular MUC2) [11,37] and the
expression of tight junctions [11,71]. Among the immune mechanisms of action, butyrate
acts through different pathways. One of the molecular mechanisms by which SCFAs
including butyrate modulate immune system functions is through binding to specific G
protein-coupled receptors (GPR) such as GPR43, GPR41, and GPR109a. These receptors are
expressed not only on intestinal epithelial cells (IECs), but also on gut immune cells such
as Tregs and dendritic cells. Butyrate affects gut CD103+ dendritic cells by stimulating the
GPR109a cell surface receptor, which allows this tolerogenic dendritic cell subpopulation to
trigger proliferation and expansion of Tregs in mesenteric lymph nodes [72]. Furthermore,
the GPR109a receptor mediates butyrate induction of IL-18 in colonic epithelium, which
is responsible for strengthening the tolerance to commensal bacteria and promoting gut
homeostasis. Butyrate is also able to enhance vitamin A metabolism, which in turn induces
the activity of aldehyde dehydrogenases (ALDH) in gut CD103+ dendritic cells and in-
creases the percentage of Tregs and IgA production [73]. Moreover, high-fiber diet-induced
activation of GPR43 and GPR109A activates the NLRP3 inflammasome, which is essential
for gut homeostasis [74]. Butyrate can also act through epigenetic mechanisms. It can pas-
sively cross the cell membrane, thus inhibiting histone deacetylases (HDAC) in epithelial
and gut immune cells. Acetylation/deacetylation of histones is an epigenetic mechanism,
which modulates cellular gene expression without modifying genomic DNA sequence. The
butyrate-mediated downstream epigenetic effect on enterocytes is expressed by regulation
of the expression of genes involved in energy metabolism, cell proliferation and differentia-
tion, and strengthening of the gut barrier integrity through increased expression of tight
junctions and enhanced mucus layer thickness [75]. Through HDAC inhibition, butyrate
also regulates Tregs size and function in the colon. Indeed, inhibition of HDAC increased
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FOXP3 expression and Tregs numbers enhanced the suppressive function of FoxP3+ Tregs
under homeostatic conditions and amplified Tregs cell-mediated attenuation of colitis in
mice [7,8]. Through HDAC inhibition, butyrate can also induce B cell differentiation and
production of IgA and IgG [76] (Figure 2).
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Furthermore, butyrate stimulates the production of tolerogenic cytokines (IFN-γ
and IL-10) in PBMCs [77]. Butyrate induced HDAC3 inhibition promotes macrophage
maturation and induces antimicrobial activity in vivo [78]. Overall, immune and non-
immune mechanisms of action of SCFA butyrate are essential for gut homeostasis.

4. Conclusions

Current evidence suggests that gut microbiome is influenced by multiple environmen-
tal factors including nutritional factors, especially in early life. Gut eubiosis modulates,
at least in part through butyrate, gut barrier permeability and enhances a tolerogenic
environment by immune mechanisms of action. Starting from immune and non-immune
mechanisms of action, butyrate represents an interesting link between early life nutrition
and gut microbiome in the development of food allergy. This complex interplay and its
role in the pathogenesis of food allergy in early life should be better explored in future
studies to lay the foundations for new approaches to prevent or treat food allergies.

Author Contributions: Conceptualization, M.D.C.; Writing—original draft preparation, M.D.C.;
Writing—review and editing, M.D.C., N.D.P. and G.B.; Visualization, M.D.C., N.D.P. and G.B.;
Supervision, G.B. All authors have read and agreed to the published version of the manuscript.
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Abbreviations

ALDH Aldehyde dehydrogenases
eHCF Extensively hydrolyzed casein formula
FoxP3 Forkhead box P3
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GPCRs G-protein coupled receptors
HDAC Histone deacetylases
IECs Intestinal epithelial cells
ILC Innate lymphoid cells
IFNγ Interferon gamma
IL Interleukin
LGG Lactobacillus rhamnosus GG
MUC2 Mucin2
NLRP3 NOD-, LRR-, and pyrin domain-containing protein 3
PBMCs Peripheral blood mononuclear cells
RALDH Retinaldehyde dehydrogenases
RORγt Retinoic acid-related orphan receptor γt
SCFAs Short-chain fatty acids
Th T helper
Tregs Regulatory T cells
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