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A B S T R A C T   

Background and Purpose: Knowledge-based planning (KBP) is based on a model to estimate dose-volume histo
grams, configured using a library of historical treatment plans to efficiently create high quality plans. The aim 
was to report configuration and validation of KBP for Volumetric Modulated Arc Therapy of cervical cancer. 
Materials and methods: A KBP model was configured from the institutional database (n = 125), including lymph 
node positive (n = 60) and negative (n = 65) patients. KBP Predicted plans were compared with Clinical Plans 
(CP) and Re-plans (Predicted plan as a base-plan) to validate the model. Model quality was quantified using 
coefficient of determination R2, mean square error (MSE), standard two-tailed paired t-test and Wilcoxon signed 
rank test. 
Results: Estimation capability of the model was good for the bowel bag (MSE = 0.001, R2 = 0.84), modest for the 
bladder (MSE = 0.008) and poor for the rectum (MSE = 0.02 R2 = 0.78). KBP resulted in comparable target 
coverage, superior organ sparing as compared to CP. Re-plans outperformed CP for the bladder, V30 (66 ± 11% 
vs 74 ± 11%, p < .001), V40 (48 ± 14% vs 52 ± 14%, p < .001), however sparing was modest for the bowel bag 
V30 (413 ± 191cm3 vs 445 ± 208cm3, p = .037) V40 (199 ± 105cm3 vs 218 ± 127cm3, p = .031). All plans were 
comparable for rectum, while KBP resulted in significant sparing for spinal cord, kidneys and femoral heads. 
Conclusion: KBP yielded comparable and for some organs superior performance compared to CP resulting in 
conformal and homogeneous target coverage. Improved organ sparing was observed when individual patient 
geometry was considered.   

1. Introduction 

Globally cervical cancer is the fourth leading cause of cancer death in 
women [1]. In India, it is the second most common cancer among 
women and contributes to 17% of the world burden [2–4]. The current 
evidence suggests that the use of advanced Image-Guided Intensity- 

Modulated Radiotherapy (IG-IMRT) in cervical cancer is associated with 
reduced early and late toxicity [5–10]. 

In recent years world over, an increase in the need for delivering 
IMRT for cervical cancer was observed especially in patients who are 
lymph-node positive or are receiving postoperative radiation [11]. 
Moreover in a clinical trial setting, where generating evidence is a 
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primary objective, consistent high-quality treatment plan is an essential 
component. Since there are no indicators for a “good plan”, very often 
the plans are not adequately optimized enough to reduce the dose to 
OARs [12]. Moreover IMRT plan optimization is time-consuming, skill- 
dependent, sometimes achieving all complex dose constraints may take 
several hours. This can also be particularly challenging when perform
ing nodal dose escalation using Simultaneous Integrated Boost (SIB) and 
extended targets as the patients are presented in a locally advanced stage 
[13]. Knowledge-based planning (KBP) which is a model built on a li
brary of previously created treatment plans has been reported to pro
duce high-quality consistent plans in an efficient manner [14]. 

KBP models for cervical cancer have been previously reported, albeit 
a handful, as compared to a large number of KBP models on other dis
ease sites such as Head & Neck and prostate [14–20]. Moreover the 
existing models on cervical cancer have included patients without 
lymph nodal involvement or in post-operative settings with a single 
target dose level. In addition the existing models have a small number of 
patients in the training and validation dataset. It has been previously 
reported that KBP model performance can be limited by various factors, 
mainly by limited size of dataset and poor-quality data [13]. The current 
investigation on KBP in cervical cancer innovates earlier studies with the 
inclusion of both lymph node-positive (N+) and lymph node negative 
(N− ) patients treating multi-target structures, with different levels of 
dose prescription in a single model, built with the largest sample size in 
the training set. 

The purpose of this study was to investigate KBP predictive models, 
for dose-volume histogram (DVH) both for N+ and N− cervical cancer 
involving SIB technique. It was also investigated if plans can be 
improved by re-planning with KBP as a base-plan, taking into account 
the individual patient geometry. 

2. Materials and methods 

This current study was a part of the research protocol that was 
approved by our institutional review board for the purpose of investi
gating the use of KBP [21]. A KBP model was made for cervical cancer 
(Rapidplan, Varian Medical Systems v13.5.23) with a training data set of 
consecutive 125 patients, from the institutional database treated with an 
on-going international multi-centric trial protocol, (EMBRACE II, 
https://www.embracestudy.dk/) (Table 1), The protocol is described 
briefly as follows. 

2.1. Contouring 

Target delineation was performed after fusing contrast-enhanced 
planning CT images and the T2 weighted MRI. The gross tumor vol
ume for the primary (GTVT) was delineated as a high signal intensity 
region in the cervix and vagina on T2 weighted MRI. The gross patho
logical lymph nodes (GTVN) were delineated from PET. The high risk 
clinical target volume (CTVHR) included GTVT and any remaining cervix 
not infiltrated by the tumour. The low risk clinical target volume 
(CTVLR) included parametria bilaterally, the whole uterus, bilateral 
ovaries, a margin of 20 mm below the lower extent of disease in the 
direction of vagina, sacrouterine ligaments and mesorectum if involved 
and invaded organs (bladder, rectum,bowel,sigmoid). The CTVN for the 
lymph nodes was generated from GTVN with a 5 mm margin. The 
elective nodal CTV (CTVE) included the elective nodal regions according 
to the risk stratification and CTVN. The internal target volume (ITV) was 
generated from CTVLR with a margin of 10 mm superiorly and 
anteriorly-posteriorly, 5 mm laterally and 0 mm inferiorly excluding 
muscles and bony structures. The planning target volumes (PTV45) and 
PTVN, were generated with an isotropic margin of 5 mm to ITV45 and 
CTVN respectively. The OARs considered were the bowel bag, the 
bladder, the rectum, the sigmoid, the kidneys, the femoral heads and the 
spinal cord. 

2.2. Model configuration and outlier analysis 

The training dataset consisted of plans made using Volumetric 
Modulated Arc Therapy (VMAT, Photon Optimizer, Acuros-XB, Eclipse 
v13.5, Varian Medical Systems). Plan geometry consisted of two 
coplanar arcs of 360˚, collimator angle of 5◦ or 355◦, field size 16 × 35 
cm2, and met the dose-volume constraints of the protocol (Supplemen
tary table 1). A brief overview of the basic principle of KBP model is 
provided in supplementary material Appendix 1 [22]. 

Three target structures (CTVN, PTVN, and PTV45) and 8 OARs (bowel 
bag, bladder, rectum, sigmoid, femoral heads, kidney, spinal cord, help 
contour) were considered for modelling. 

The KBP model creates regression models between geometric and 
dosimetric components, which can detect outliers that help in improving 
the predicting capability of the model. Geometric outliers were kept in 
the model as they do not negatively affect the model and may provide 
useful information for the model to estimate DVHs in plans with similar 
properties, such as pelvic PTV, PTV including paraaortic nodes, bowel 
bag, bladder of various volumes, the proximity between the PTV and 
OAR due to a structure being unusually large especially rectum, bladder 
and bowel bag. However, geometric outliers (n = 3) with large Cook’s 
distances (approximately more than 40–50) were removed from the 
model, as they may negatively affect the model. Sub-optimal plans in the 
training set were manifested as dosimetric outliers that affect the model 
fitting parameters negatively. 5/125, such dosimetric outliers were 
deleted, re-planned, before, including them back in the model. A model 
analytics cloud based tool from MyVarian.com, also helps in analyzing 
the model quality, typically for identifying the outliers for each 
modelled structure. 

Although RapidPlan can automatically generate priorities for OAR 
objectives, it was observed that, when generated priorities were used, 
PTV coverage was suboptimal. Hence suitable priorities were estab
lished using clinical experience (Supplementary table 2). Optimization 
rings to control the dose spillage outside the PTV were not used in the 
model. However, it was controlled by means of the normal tissue 
objective (NTO). The NTO parameter settings were based on clinical 
experience, priority was set to 190, distance from the target border was 

Table 1 
Summary of Knowledge Based Model in the current study – Training and vali
dation data set details.  

Parameter Model 

Tumor site Cancer of the uterine cervix with positive 
lymph nodes (N+) and without lymph nodes 
(N− ). 

Target structures (Dose 
prescription) 

45 Gy/25 fractions to PTV45 (n = 124). 
55 Gy/25 fractions to CTVN (n = 128) and 
49.5 Gy to PTVN (n = 129). 

Mean number of lymph nodes 2.4 ± 1.4 (range 1–5) 
OARs modeled Bowel bag (n = 125), Bladder (n = 125), 

Femoral heads (n = 250), Rectum (n = 125), 
Sigmoid (n = 125), Kidneys (n = 250) and 
Spinal cord (n = 125). 

Total number of patients in 
training set. 

125 (65 N− and 60 N+) 

Number of pelvic and para aortic 
patients in training dataset. 

99 and 46 

Number of patients in validation 
dataset. 

10 N−

10 N+

Number of pelvic and para aortic 
patients in validation dataset. 

14 and 6 

Validation 1: Clinical plan versus Predicted plan. 
(Single optimization without any manual 
intervention) 

Validation 2: Clinical plans versus Re-plans over predicted 
plans. 
(Manual tweaking of objectives and priorities 
to meet DVH estimation from Predicted plans- 
single optimization).  
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0.4 cm, with a start dose of 100%, end dose of 60% and with a fall-off 
criteria of 0.4. 

2.3. Model validation 

The validation set consists of 10 each, N+ and N− patients, not 
included in the training set. For all validation plans, the same beam 
configuration as the clinical plan (CP) was used. Two types of validation 
were carried out (i) Comparing Predicted plans versus CP using single 
optimization without any manual intervention and (ii) Comparing Re- 
planned cases from the predicted DVH, versus CP. The first validation 
was a basic level validation of the KBP model in predicting the DVH, 
while the second validation is an advanced type of validation where the 
individual patient geometry and utilization of the optimization algo
rithm was taken into account. CPs made manually by an expert physicist 
for each patient was used as a reference plan. In Re-plans, the optimi
zation objectives/priorities were manually tweaked such that the DVH 
of the OAR to be at the lower border of the estimation band of DVH 
prediction without compromising the target coverage, with a single 
optimization. Predicted plans were used as a starting point for Re-plans. 
The planner was blinded to CP, during Re-plan to ensure a fair 
comparison. 

2.4. Evaluation 

Model quality was quantified by the coefficient of determination R2 

(with values between 0 and 1, 1 being ideal), goodness-of-fit statistics χ2 

(values of 1 or higher, with values near 1 implying a good fit), and by 
mean square error (MSE- closer it is to 0, better the estimation capa
bility) between the original and estimate [22]. Cook’s distance, the 
scaled change in fitted values, which is useful for identifying outliers 
(observations for predictor variables) also was considered [22]. Mean ±
SD volumes of target, OAR, and overlap structures for training and 

validation dataset were evaluated (Supplementary table 3). Quantitative 
comparison of the KBP (Predicated plan, Re-plan) and CP were estab
lished using the standard two-tailed paired t-test (for normally distrib
uted data), and Wilcoxon signed rank test (for non-normal data). All 
differences were reported with 95% confidence interval (Table 2). The 
qualitative comparison was made by visual inspection of PTV/CTV 
coverage and OAR, in each slice on the CT image. 

3. Results 

3.1. Model quality 

The estimation capability of the model was good for bowel bag (MSE 
= 0.001, R2 = 0.84), followed by kidney (MSE = 0.002, R2 = 0.88), and 
modest for femoral heads (MSE = 0.004, R2 = 0.71), followed by bladder 
(MSE = 0.008) (Table 3). Estimation capability of rectum and sigmoid 
was poor with MSE of 0.02 (R2 = 0.78) and 0.029 (R2 = 0.83) respec
tively (Table 3). Qualitative evaluation of the regression plots and DVH 
estimation band also have confirmed the above findings, and wherein, 
the estimation bandwidth was narrow for bowel bag, kidney, femoral 
heads as compared to the bladder, spinal cord, and rectum. Represen
tative figures of regression plot and estimation band have been pre
sented for bowel bag and bladder (Fig. 1a-d). 

3.2. Validation 

Rectum had the largest overlap of 65% with the target, followed by 
the bladder of 40%, and bowel bag of 8%. Other OARs such as kidney, 
femoral heads and spinal cord did not have much overlap with the target 
structures (<1%). The overlap volumes were similar between the 
training and the validation dataset, however, the mean volumes were 
different for target structures (PTV45, CTVN, PTVN), and OARs such as 
bladder and bowel bag and similar for rectum, kidney and femoral heads 

Fig. 1. Regression plot and estimation band of the model. a. Regression plot of bowel bag, b. Regression plot of bladder, c. Representative estimation band for bowel 
bag with dose-volume histogram obtained by predicted plan, d. Representative estimation band for bladder with dose-volume histogram obtained by predicted plan, 
the proportion of overlap volume is indicated as a broad band at the high dose region in c and d. 

J. Swamidas et al.                                                                                                                                                                                                                              



Physics and Imaging in Radiation Oncology 18 (2021) 61–67

64

(Supplementary table 3). 
KB plans resulted in comparable and better plans as compared to CP, 

comparable for target coverage, and better for conformity (Figs. 2 and 
3). Re-plans did not result in much improvement in target coverage as 
compared to CP. Most of the DVH parameters related to target structures 
were found to be statistically not significant comparing CP vs Predicted 
plan and CP vs Re-plan, however, KB plans resulted in homogeneous and 
conformal dose as compared to CP (Table 2). 

Overall observation for OARs, was that CP and Predicted plans were 
comparable. However, Re-plans outperformed CP, especially for the 
bladder. Femoral heads also resulted in better sparing in Re-plans as 
compared to CP (Figs. 2 and 3). For bladder, CP and Predicted plans 
were comparable, however, significant sparing was observed in Re-plan, 
V30 (73.9 ± 10.6% vs 65.7 ± 11.4%, p < .001), V40 (52.2 ± 14.4% vs 
47.8 ± 13.7%, p < .001), and Dmax (105.7 ± 4.4% vs 103.1 ± 0.98%, p =
.032) (Table 2). For bowel bag, CP and Predicated plans were compa
rable; however, modest sparing was observed in Re-plan, V30 (445 ±
191cm3 vs 413 ± 191cm3 p = .037) and V40 (218 ± 127cm3 vs 199 ±
105cm3 p = .031). For rectum, all the three plans were comparable for 
V30 (CP vs Predicted Plan vs RePlan; 93.1 ± 9.2% vs 93 ± 9.9% vs 90.9 
± 10.3%, p = .683, 0.049) and V40 (77.4 ± 18.9% vs 76.6 ± 18.9% vs 
73.8 ± 18.9%, p = .690, 0.063), however, Dmax, was significantly less in 
KBP (104 ± 2.4% vs 101.9 ± 1.6%, p = .001) as compared to CP. Spinal 
cord and kidneys resulted in significant sparing in KBP as compared to 
CP (12.4 ± 12.7Gy vs 16.2 ± 16.9Gy, p = .001, 3.4 ± 4Gy vs 4.5 ± 5Gy, 
p = .006). However, femoral heads have resulted in significant sparing 
only in Re-plans (p = .007). 

Both KBP resulted in highly significant conformal plans as compared 
to CP, (Conformity Index CI43 and CI36; 1.07 ± 0.05 vs 1.01 ± 0.02, 1.58 
± 0.11 vs 1.45 ± 0.06, p < .001) (Table 2). Number of monitor units 
required also was significantly less in KBP as compared to CP (541 ± 28 
vs 643 ± 143; p = .004) (Table 2). 

4. Discussion 

In the current study, we have presented a KBP model for cervical 
cancer, configured from the database of our hospital, consisting of both 

N+ and N− patient data, treated as a part of an ongoing clinical trial. 
The KBP model performed well as compared to CPs both for target and 
for OARs efficiently. KBP as a baseplan followed by optimization to take 
into account the individual geometry results in superior plans as 
compared to CP. 

KBP model performance can be limited by poor-quality data and 
limited size of dataset [13]. The training and validation dataset in the 
current study, is the largest series published so far in the literature for 
cervical cancer, consisting of well balanced sample size, between the 
two groups, N+(n = 60) and N− (n = 65), such that the prediction is 
good for all types of patients [14–20]. In addition, the data quality in the 
training set was maintained, as it was from a well monitored clinical trial 
[18]. The strength of this model was the training set data that describe 
all type of clinical situations, such as N+, N− patients with a multiple 
number of lymph nodes, PTV in pelvic region and extending upto the 
paraaortic region, bladder volumes of varying capacity, bowel volumes 
for pelvic PTVs and those extending upto the paraaortic region, so that, 
the prediction capability is good overall, considering the heterogeneous 
sample of patients in the training and the validation datasets (Table 3). 
Regarding the target, the current RapidPlan model was trained to handle 
both N− and N+, with distinct dose prescription levels, thus further 
increasing the model’s scope. In the current study, 50% of the patients 
had a single dose level, and the rest had three dose levels. Hence, the 
dose scaling was different for these patients resulting in a large width of 
the estimation band for the overlapping part of the OARs (Fig. 1c-d). 
This doesn’t mean that the DVH estimation was uncertain in that part of 
the OAR, but refers to the dose scaling effect. 

The authors did attempt to re-plan the CPs for bladder sparing during 
the outlier analysis, however, was found that further optimization could 
not improve bladder sparing, without compromising the target coverage 
and losing the hard constraints, which may be attributed to the overlap 
volumes of the bladder with the target, which is about 40% (Supple
mentary table 3). When the overlap volume was less (<10% for bowel 
bag), CPs were optimal, while KBP did not result in much improvement. 
However, when the overlap volume was more, of the order of 40% in the 
case of bladder, CPs were suboptimal, while KBPs resulted in significant 
improvement, especially, in Re-plans, which took into account the 

Fig. 2. Average dose volume histogram comparison of clinical plan, Predicted plan and Replan for various organs at risks.  
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individual variation in the organ geometry. On the other hand, in the 
rectum, the overlap volume was of the order of 65%, where, neither CP 
nor KB, including Re-plan, yielded any improvement (Supplementary 

table 3). Moreover, the volume of the bowel bag was more consistent, as 
compared to the bladder, due to variation in the filling capacity of the 
individual patient (Supplementary table 3). It is worth noting here that 

Fig. 3. A representative qualitative comparison of dose distribution of clinical plans and Knowledge based Re-plans.  

Table 2 
Mean ± standard deviation of the dose-volume parameter of clinical plans as compared to validation plans – Predicted and Re-plan, p values are given for Clinical plan 
vs Predicted plan, Clinical plan vs Re-plan (p < 0.05 considered as significant). Clinically significant values have been marked in bold font.  

Organ DVH parameter Clinical plan Validation P Values 

Predicted plan Re-plan CP vs Predicted plan CP vs Re-plan 

CTVN DMax [Gy] 58.4 ± 0.6 57.5 ± 0.2 57.9 ± 0.4  0.000  0.015 
D98% [Gy] 55.4 ± 0.2 55.3 ± 0.1 55.5 ± 0.2  0.646  0.174 
D50% [Gy] 56.9 ± 0.4 56.4 ± 0.1 56.7 ± 0.2  0.009  0.240 

PTVN D98% [Gy] 50.1 ± 0.3 50.2 ± 0.2 50.3 ± 0.3  0.434  0.252 
PTV45 DMax[%] 110.2 ± 4.9 108.7 ± 3.0 108.5 ± 2.5  0.078  0.232 

V42.8Gy[%] 96.9 ± 1.1 97.0 ± 0.7 96.3 ± 0.6  0.780  0.007 
ITV45 DMax[%] 109.8 ± 6.4 108.0 ± 4.8 108.1 ± 4.5  0.093  0.101 

V42.8Gy[%] 99.9 ± 0.2 100 ± 0.0 100 ± 0.0  0.161  0.575 
Help contour DMax[%] 102.9 ± 1.6 102.3 ± 0.8 101.6 ± 0.8  0.208  0.008 
Bowel bag DMax[%] 106.9 ± 4.6 104.7 ± 2.9 104.7 ± 2.7  0.061  0.135 

V40Gy[cc] 218 ± 127 209 ± 112 199 ± 105  0.351  0.031 
V30Gy[cc] 445 ± 208 446 ± 211 413 ± 191  0.940  0.037 
V15Gy[cc] 1341 ± 442 1383 ± 462 1312 ± 448  0.088  0.296 

Sigmoid DMax[%] 104.1 ± 3.7 102.1 ± 1.4 101.9 ± 1.3  0.021  0.002 
Bladder DMax[%] 105.7 ± 4.4 103.6 ± 0.9 103.1 ± 1.0  0.108  0.032 

V40Gy[%] 52.2 ± 14.4 50.1 ± 14.3 47.8 ± 13.7  0.041  0.000 
V30Gy[%] 73.9 ± 10.6 71.3 ± 11.6 65.7 ± 11.4  0.118  0.000 

Rectum DMax[%] 104.0 ± 2.4 101.9 ± 1.5 101.9 ± 1.6  0.001  0.001 
V40Gy[%] 77.4 ± 18.9 76.6 ± 18.9 73.8 ± 18.9  0.690  0.063 
V30Gy[%] 93.1 ± 9.2 93.0 ± 9.9 90.9 ± 10.3  0.683  0.049 

Spinal cord DMax[Gy] 16.2 ± 16.9 13.2 ± 13.6 12.4 ± 12.7  0.001  0.001 
Femoral heads_L DMax[Gy] 40.5 ± 4.5 40.5 ± 2.7 37.1 ± 3.7  0.709  0.007 
Femoral heads_R DMax[Gy] 39.4 ± 5.2 39.1 ± 4.1 36.2 ± 4.9  0.752  0.014 
Kidney_L DMean[Gy] 4.2 ± 5.0 3.6 ± 4.3 3.4 ± 4  0.008  0.006 
Kidney_R DMean[Gy] 3.8 ± 4.3 3.5 ± 3.9 3.4 ± 3.7  0.126  0.073 
Conformity Index CI43 (V43Gy of Body/Volume of PTV) 1.07 ± 0.05 1.03 ± 0.02 1.01 ± 0.02  0.001  0.000 

CI36 (V36Gy of Body/Volume of PT) 1.58 ± 0.11 1.49 ± 0.07 1.45 ± 0.06  0.000  0.000 
MU  643 ± 143 541 ± 28 573 ± 36  0.004  0.041  
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the geometric outliers were not excluded, especially for bladder, to in
crease the scope of the model for bladder volume variation. It was also 
previously reported that the exclusion of outliers did not change the 
prediction capability of the model [15,22]. In cervical cancer, most of 
the OARs are hollow in nature with varying volumes with respect to the 
content. Hence, to increase the scope of the model, geometric outliers 
were not excluded, especially for bladder, however, extreme outliers 
such as patients with large Cooks distance were excluded, and few 
dosimetric outliers were re-planned before including them back in the 
model [23,24]. 

KBP resulted in highly conformal plans as compared to CP, espe
cially, for SIB of CTVN and PTVN. According to the clinical protocol, SIB 
for lymph nodes was based on coverage probability principle, where the 
central part of the CTVN receives a higher dose, and the edges of PTVN 
are cooled down with a lower dose. During CP, these constraints were 
difficult to achieve, especially when the volumes were small, of the order 
of 10–15 cm3 for CTVN, and with multiple nodes, requiring a number of 
optimization structures, to meet the dose constraints [15]. In the current 
model, for N− , patients, no new optimizations structures were used, 
thus saving a lot of time, however, for N+ patients, PTV45, ITV45 and 
OARs were cropped from PTVN when they were overlapping, as the dose 
levels were different. It is the principle of RapidPlan to partition auto
matically into sub-volumes (in-field, out-of-field, leaf transmission and 
target overlap) of the OARs. 

In the majority of patients, Predicted plan produced comparable 
results with that of CP, however, Re-plans outperformed CP, especially, 
it resulted in significant sparing of the bladder, femoral head and spinal 
cord. This may be attributed to the tendency of planners, where, a lot of 
attention was given to the hard constraints for the target and salient 
OARs, such as bowel bag, bladder, rectum, while soft constraints were 
overlooked, however, in KBP, all the OARs were optimally spared irre
spective of the nature of the constraints – soft or hard, where, a good 
trade-off was applied to all structures equally, such that one organ is not 
over spared at the cost of the other. 

Any modifications to this model, such as new dose level, inclusion of 
new structure in the future, needs model configuration and validation 
again, which is a time consuming process [25]. Moreover, the current 
model was built on a certain clinical protocol, if in the future, we 
develop a new protocol based on the evolving evidence, for e.g., new 
dose constraints, dose levels, or new structures, it will not be possible to 
use this model. A new methodology for model training and validation 
may be needed to adapt to the changes, the automatic model configu
ration and validation method proposed by Li N et al, appears a promising 
tool, such that the modifications to the existing models can be made 
[18]. 

KBP was comparable, and for some OARs even outperformed as 
compared to clinical plans, while producing conformal, homogeneous 
target coverage. Improved OAR sparing was observed in Replans, when 
Predicted plans were used as a base plan, by tweaking dose volume 
objectives and priorities to take into account the individual patient 

geometry. 
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