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ABSTRACT: In the industrial sector, understanding the behavior of block
copolymers in supercritical solvents is crucial. While qualitative agreement with
polymer solubility curves has been evaluated using complex theoretical models in
many cases, quantitative predictions remain challenging. This study aimed to
create a rapid and accurate artificial neural network (ANN) model to predict the
lower critical solubility and upper critical solubility space of an atypical block
copolymer, poly(styrene-co-octafluoropentyl methacrylate) (PSOM), in different
supercritical solvent systems over a wide range of temperatures (51.75−182.05
°C) and high pressure (3.28−200.86 MPa). The experimental data set used in
this study included one copolymer, five supercritical solvents, one cosolvent, and
one initiator. It consisted of seven unique copolymer−solvent combinations (252
cloud point pressures) used to predict the model quantitatively and qualitatively.
To predict the PSOM−solvent interactions, the study considered two different
input systems: a six-variable system, a five-variable system, and one target output. Initially, we used a three-layer feed-forward neural
network to select the best learning algorithm (Levenberg−Marquardt) from 14 different algorithms, considering one sample
PSOM−solvent system. Then, the network topology was optimized by varying hidden neuron numbers from 2 to 80 for all seven
PSOM−solvent combination systems. The predicted cloud point pressures were in excellent agreement with the experimental cloud
point pressures, confirming the model’s accuracy. It is clear from the results of a minimum mean square error (≤1.90 × 10−27) and
maximum linear regression R2 (≥0.99) during training, validation, and testing of all the data sets. Further, the ANN model accuracy
was tested by statistical analysis, confirming the model’s ability to accurately capture the miscibility regions of polymers, enabling
efficient processing of various polymer materials. This data-driven approach facilitates the prediction of coexistence curves for other
polymers and complex macromolecular systems.

1. INTRODUCTION
Block copolymers have gained significant interest in recent
decades due to their unique microphase characteristics,
including thermal properties, elasticity, chemical resistance,
and tensile strength.1,2 They find applications in various fields,
such as automotive compounds, sports goods, hose tubing,
cosmetics, optical coatings, drug delivery, molecular semi-
conductors, high-density magnetic storage materials, and self-
polishing paint applications.3−5 Examples of different copoly-
mers include Styrene-acrylonitrile copolymer,6 Styrene-buty-
lene-styrene,7 nylon-6,6,8 ethylene chlorotrifluoroethylene,9

polypropylene random copolymer,10 etc. A block copolymer’s
macromolecule consists of different blocks of two or three
structured monomers, and it has a reactivity ratio of greater
than one.11 Unlike homopolymers, phase separation is
observed at a microscopic level with a better statistical
distribution of comonomers, which are chemically linked.
The linkage creates classical and complex morphologies in
block copolymers, including spheres, cylinders, lamellae,
gyroid, and perforated lamellae.12 To develop solubility

interactions with polar solvents and meet the requirements
of future technologies, understanding the phase behavior of
block copolymers in various conditions such as composition,
temperature, and pressure is essential for industrial applications
such as the synthesis, processing, self-assembly, and
purification of polymeric materials.
The Flory and Huggins lattice model was previously used to

capture the thermodynamics of polymer solutions, but it only
applies to certain polymer−solvent combinations and has
hidden assumptions.13,14 Later, equation of state,15,16 active
coefficient model,17−19 and quantity structure−property
relationship models20,21 were developed, but predicting phase
behavior remained challenging due to the need to solve
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multiple complex equations and understand the properties of
pure components. Some authors have attempted to quantita-
tively predict the polymer solubility space for any polymer−
solvent pair.22−25 Supercritical solvents such as water, ionic
liquids, and carbon dioxide (CO2) are particularly useful for
predicting polymer phase behavior because of their adjustable
features of viscosity, diffusivity, heat capacity, and solubil-
ity.26,27 In some cases, cosolvents, complexing agents, and
inverse micelles can be added to the supercritical solvent to
improve the solubility limitations of the compounds
mentioned above.28 The miscible-immiscible boundary
(cloud point), bubble point, and dew point behavior are part
of the phase behavior study and can be identified in the
supercritical system.29 Predicting the coexistence behavior of
copolymers and solvents depends on factors such as the
properties of the polymer composition, polymer weight-
average molecular weight (Mw), polydispersity (PDI), solvent
composition, solvent concentration, and processing state
variables such as cloud point temperature and cloud point
pressure.30,31 Ethier et al.31 revealed that the phase behavior
may be shifted from upper critical solubility (UCS) to lower
critical solubility (LCS) because of increasing polymer
molecular weight or reducing pressure. During shifting, UCS
reached a higher temperature, and LCS reached a lower
temperature, which decreases the area of miscibility percent-
age.
The separation of thermodynamic phases in binary

copolymer solutions depends on both entropic factors (related
to polymer size) and enthalpic factors (to monomer−solvent
interaction).32 Researchers have identified common phase
behavior for polymer−solvent systems in the literature such as
UCS, LCS, isopleths, and closed-loop solubility. Some
researchers have studied the phase behavior of different
copolymers in supercritical solvents that exhibit UCS and LCS
behaviors.33−35 In some cases, it is necessary to develop a
parametrization model to predict the behavior of each polymer
binary solution system instead of relying solely on liquid−
liquid equilibrium (LLE) experimental data. There are still
discrepancies between standard and experimental data,
indicating a need for complementary data-driven approaches
to predict the LLE data for polymer phase behavior.
Over the past few decades, there has been a growing interest

in using machine learning (ML) to speed up the design of
various systems in different fields and address their short-
comings.36−38 Artificial Intelligence neural networks (AI-
ANN) are widely used to model and predict linear and
nonlinear systems due to their high learning capacity,
predictive ability, good performance, nonlinearity, and
insensitivity to data noise.39−41 AI-ANN is a complete black
box model and can handle multiple input and output variables,
making it a better predictor than conventional empirical
models, even when limited information is fed to the system.42

The learning algorithm plays a crucial role in supervising
regression and is responsible for fast and accurate prediction.
Interestingly, AI helps to explore data through decision-
making, using active learning or experimentation, when the
data set is typically scarce. To ensure a reliable model, the
quality of the data set and the input and output parameters
must be appropriately decided. The use of AI-ANN in polymer
science,43,44 mechanical properties,45 thermal conductivity,46

and glass transition temperature47,48 is rapidly increasing.
Ethier et al.49 used cloud point data (3263 data sets curated
from CRC Handbook of LLE data of polymer solutions) to

train a deep neural network and Gaussian process regression
model to predict UCS and LCS curves. They retrieved the
polymer and solvent feature descriptors from the available
Hansen solubility parameter (HSP) and topological “finger-
prints” and concluded that the ML was used to estimate the
HSP even for unknown polymers.
Ethier et al.31 have curated a data set of 6524 cloud point

data points from the CRC Handbook of LLE data of 21
polymers/copolymers and 61 solvents. They tested this data
set using two regression models, gradient-boosted decision
trees, and ANN, with different descriptors like molecular
descriptors, Morgan fingerprints, and HSPs. The goal of their
study was to predict the phase behavior of polymer−solvent
systems using artificial neural networks (ANNs) and available
input and output variables. To investigate the framework of
data-driven prediction of LLE data using ANN models, we
proposed to predict cloud point pressure using the studied
solubility data on binary solutions of block copolymer in
various supercritical solvents. We selected a novel poly-
(styrene-co-octafluoropentyl methacrylate) (PSOM) block
copolymer in the current study (synthesized by our group;
data not shown) due to its biocompatibility and the related
block copolymeric materials applied in the field of biomedical,
textiles, packaging, and membrane synthesis. As far as we
know, there are no such reports published for predicting the
phase behavior of complex block copolymer−solvent systems
in this direction. This is the first study to predict the LLE data
of PSOM in polar and nonpolar solvents using AI-ANN with
the help of a learning algorithm.
This proposed study aims to appraise the potency of neural

network prediction of the coexistence space data for the block
copolymer of PSOM−different supercritical solvent systems.
The cloud point pressure data were predicted by seven
different systems that contain one polymer and various polar
and nonpolar supercritical solvents. Fourteen different back-
propagation learning algorithms were tested on the training
data, and after screening, the ANN architecture was optimized
by varying the neuron number in the three-layer feed-forward
network. The attainment of the ANN prediction was checked
by correlating the experimental and predicted cloud point
pressures, and the prediction accuracy was further tested by
statistical analysis. This framework can be extended to different
polymers and solvent systems for predicting the LLE data.

2. MATERIALS AND METHODS
2.1. Data Acquisition. The phase transition behavior of a

copolymer−solvent system was studied to curate the LLE data
set. Our research group recently developed a novel block
copolymer of PSOM using dispersion polymerization in a
supercritical CO2 reactor at high pressure.

22 To examine the
phase equilibria behavior of PSOM with different solvents,
experiments were conducted in a supercritical system with 1-
butene (BT), propylene (PP), dimethyl ether (DE),
chlorodifluoromethane (CM), BT + tetramethyl orthosilicate
(BTTM), DE + tetramethyl orthosilicate (DETM), and carbon
dioxide + tetramethyl orthosilicate (CTM). The copolymer
synthesis methodology and reactor setup for phase liquid
equilibria for a different copolymer [poly(pentyl acrylate-co-
methyl methacrylate)] were reported in detail by Byun.33

The high-pressure reactor setup consists of three sections: a
variable volume view cell, a high-pressure pump generator, and
a data acquisition system. The working volume and pressure of
the cell are 28 cm3 and 300 MPa, respectively, with an ID of
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1.59 cm and an OD of 6.4 cm, used to measure the phase
behavior. A rotating piston of about 2.54 cm in size is
connected to the high-pressure pump generator where the
pressurized water shifts the piston inside the cell. The Heise
gauge and digital multimeter thermometer are used to record
the pressure and temperature of the mixture of the cell. The
solution phase transition behavior was identified through a
sapphire window located above the cell. The data acquisition
section is interconnected with the borescope camera, which is
utilized to visualize the phase transition behavior of the
systems. A video monitor is employed for real-time
monitoring, where cloud points are identified at different
operating conditions.
An initial level of purging was performed in an empty cell

several times with the help of nitrogen and supercritical
solvents to remove residual foreign contaminants. An
appropriate amount of copolymer, solvent, and cosolvent was
introduced into the reactor cell by using pressure bombs. The
copolymer−solvent-cosolvent sample inside the reactor cell
was subjected to compression until a one-phase reaction was
achieved. To ensure thermal stability, maintain the equilibrium
condition under a pressurized environment for 30 min. Later,
the pressure was slowly reduced until the solution system
exhibited cloudiness. The observed opalescence point in the
solution was termed as a cloud point. The cloud point pressure
measurements were performed three times at each temperature
condition and the average measurements for copolymer in
different supercritical solvent systems.
The data set consists of 252 cloud points, including one

copolymer called PSOM, five supercritical solvents (BT, PP,
DE, CM, and CO2), one cosolvent (TM), and one initiator
[2,2-azobis(isobutyronitrile)] (AN). There are seven unique
copolymer−solvent systems in the data set. The study used the
PSOM copolymer with different Mw of 49.5, 42.4, 33.8, 26.8,
24.1 kDa and corresponding PDI values 2.9, 1.94, 2.25, 2.94,
and 2.07, respectively. Further, AN composition varied from 1,
2, to 4% by mass. The copolymer compositions varied to 2.7,
2.8, 3, 3.1, 3.2, and 3.4% by mass. The study investigated the
phase behavior of the copolymer across different compositions
of PSOM and different supercritical polar and nonpolar
solvents at temperatures ranging from 51.75 to 182.05 °C and
high pressure ranging from 3.28 to 200.86 MPa in the
supercritical system. The LLE solubility curves of UCS and
LCS behavior were observed for seven different copolymer
binary solvent systems used for the data-driven process. These
measurements were reproduced at least twice, with a precision
of within ±0.28 MPa and ±0.20 °C. The physical properties of
supercritical solvents such as chemical formula, Mw, critical
pressure (Tp), critical temperature (Tc), dipole moment (μ),
acentric factor (ω), and polarizability (α) are displayed in
Table S1.
The data set for the solubility curve includes different

components of polymer, solvent, and state variables. Input
parameters include PDI, copolymer composition (mass %),
solvent composition (mass %), cosolvent composition (mass
%), initiator composition (mass %), and cloud point
temperature (°C). The target parameter for developing the
ANN model is the cloud point pressure (MPa). Out of the
seven-variable systems, four systems considered the five-
variable system and three systems considered the six-variable
system. The name of the system is based on the input variables
taken for data-driven processing. Table 1 displays the input
and target components of the polymer, solvent, and state

variables involved in ANN modeling. The data were collected
at different compositions of copolymer and solvent and
corresponding to different values of cloud point temperature.
Ethier et al. predicted the LLE data using ML for different
polymer−solvent systems where the minimum number of
cloud points used is 7 and the maximum of 991.49 Although
the amount of available data for every system is excellent, for
developing the ANN model for LLE prediction in the current
study, data collection accuracy is based on the reproducibility
of phase transition measurements, and uncertainties are ±0.28
and 0.40 MPa for cloud point pressure and ±0.20 °C for cloud
point temperature, respectively.
2.2. ANN Modeling. The black-box models are preferred

over white-box models, and ANN is one such black-box model
because it does not require any preliminary knowledge of
structure, properties, and relationship between the input and
target variables. In this study, a three-layer neural network was
used, and it comprises an input layer, one hidden layer, and an
output layer. Each of these layers consists of many neurons,
and these are connected to those in the adjacent layers via
weights (w) and biases (b). The selection of a learning
algorithm and optimization of neuron topology is very crucial
in developing the ANN model.50,51 The neuron number of the
input layer and output layer is based on the integer of input
and target variables, respectively. The network has a transfer
function of the sigmoid (tansig) in hidden neurons and is
linear in output neurons (purelin), suitable for this regression
task. Figure 1 shows the schematic representation of the ANN
architecture showing the input, hidden, and target variables of
phase equilibria behavior study for the six-variable (Figure 1a)
and five-variable systems (Figure 1b).
The selection of the hidden layer is based on the process

complexity, and it is determined by a trial-and-error procedure
and is calculated by using eq 1.42

O IF( )j j= (1)

where Oj, Ij, and F are the input of ith neuron, the output of ith
neuron, and the transfer function, respectively. There are two
functions such as weighted summation and transformation
functions used in the hidden layer that predict the target value.
The input of each neuron (Ij) is calculated by eq 2 concerning
outputs from the previous layers (Oj), weights connecting the
ith neuron to the jth neuron (wij) and bias of the jth neuron
(bj).

40

I iw y bj i jij= + (2)

The activation function used in the hidden layer is a sigmoid
function, which is represented by eq 3

Table 1. Input and Target Components of Copolymer,
Solvent, and State Variables Involved in ANN Modeling

input parameters

five-variable system six-variable system

IP1 PDI PDI
IP2 copolymer composition

(mass %)
copolymer composition
(mass %)

IP3 solvent composition (mass %) solvent composition (mass %)
IP4 initiator composition (mass %) co-solvent composition (mass %)
IP5 cloud point temperature (°C) initiator composition (mass %)
IP6 cloud point temperature (°C)

target parameter
TP1 cloud point pressure (Mpa) cloud point pressure (Mpa)
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If( )
1

1 ej Ij
=

+ (3)

2.3. Optimization of Training Algorithms and ANN
Topology. The experimental data for the cloud point were
randomly divided into three parts, using the dividerand

algorithm: 70% for training, 15% for validation, and 15% for
testing. This division helps in rigorously training the data sets.
The training set is used to train and adjust the network based
on its error value. The validation data set is used to benchmark
the network’s generalization, and the testing data set is used to

Figure 1. Schematic representation of the ANN architecture showing the input, hidden, and target variables of phase equilibria behavior study for
(a) five-variable and (b) six-variable systems.
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evaluate the network’s independent performance during and
after training. To optimize the weights and biases of the
network, learning algorithms need to be screened. In this
investigation, the ANN model was tested with 14 back-
propagation (BP) learning algorithms, such as BFGS Quasi-
Newton (Trainbfg), bayesian regulation (Trainbr), conjugate
gradient with Beale-Powell restarts (Traincgb), conjugate
gradient BP with Fletcher-Reeves restarts (Traincgf), con-
jugate gradient with Polak-Ribiere restarts (Traincgp), gradient
descent (Traingd), gradient descent with momentum
(Traingdm), gradient descent with adaptive learning rate
(Traingda), gradient descent with momentum and adaptive
learning rate (Traingdx), Levenberg−Marquardt (Trainlm),
one step secant (Trainoss), random weight/bias rule (Trainr),
Rprop-Resilient (Trainrp), and scaled conjugate gradient
(Trainscg). Each training algorithm has individual and peculiar
merits and limitations. The study used the Learngdm adaptive
function. Initially, the number of neurons in the hidden layer
was fixed at 10 to select the best BP learning algorithm.
Table 2 shows the internal network training parameters used

for choosing the best BP algorithm and ANN architecture for

the phase behavior equilibrium. The minimum mean squared
error (MSE) plays a pivotal role in the selection and advised
training of the network to reach a local minimum MSE and
maximum correlation coefficient (R2) between the targeted
and predicted data. Following the screening of the BP
algorithm, the ANN architecture was optimized by varying
the hidden layer neurons from 2 to 80 and all other parameters
are constant. The factual ANN architecture is reached after
iterating the process several times until the MSE reaches a
satisfactory level. The best validation was performed by
reducing the epochs to minimum error. The best network
topology depends upon the integer of hidden layers, neuron
number of the hidden layer (NH), learning rate (η), epoch size
(Ec), momentum term (α), BP algorithm adjustment
parameter (μ), training cycle, and transfer function.
2.4. Model Training of Cloud Points and Sensitivity

Analysis. The block copolymer PSOM is soluble in different
supercritical solvents such as PSOM−BT, PSOM−PP,

PSOM−DE, PSOM−CM, PSOM−BTTM, PSOM−DETM,
and PSOM−CTM systems. To determine the solubility
behavior of PSOM in these solvents, the predicted cloud
point pressure parameter is used. The training of the ANN has
been carried out by using 252 cloud point data sets for
different solvents, i.e., UCS and LCS. Among the seven
different copolymer−solvent systems, the PSOM−BT system
has been selected for finding the best learning algorithm. Since
the number of data sets of the PSOM−BT system is much
higher (56 data sets) than the other systems, it has been taken
as a model to be involved in the algorithm screening process at
fixed hidden layer neurons (10). Then, the optimum topology
has been identified for all the copolymer−solvent systems by
training seven data sets separately by varying neurons from 2 to
80. The performance of all seven copolymer−solvent phase
liquid equilibria was evaluated by increasing the hidden layer
neuron number. The topology of all seven systems has been
identified by training until reaching the minimum error with
R2. The best learning algorithm and topology can predict the
cloud point pressures with ±0.28 MPa uncertainty values
observed in the MSE values for PSOM in various solvents.
Finally, the parity plots developed between the observed
benchmark values and the corresponding predicted values. The
plots have been used to evaluate the significance of the model
fitting and coexistence behavior of the copolymer−different
supercritical solvent systems.
The performance of the ANN model was estimated for its

prediction accuracy using different statistical parameters such
as mean error (ME), MSE, root MSE (RMSE), standard error
of prediction (SEP %), average absolute relative deviation
(AARD %), bias factor (Bf), and Accuracy factor (Af). In
addition, a linear regression analysis (R2) between the
experimental target values and the network-predicted values
was evaluated. Thus, the closeness of model values to the
experimental ones was determined using the equations below
(4−11).39

T T

n
ME

( )i
n

i i1 ,exp ,pre= =
(4)

T T

n
MSE

( )i
n

i i1 ,exp ,pre
2

= =
(5)
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i
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2 1 ,exp ,pre
2

1 ,exp ,exp
2= =

= (11)

Table 2. Internal Network Training Parameters for
Choosing the Best BP Algorithm and ANN Architecture

parameters best value

total number of epochs (Ec) 1000
number of neurons in the input layer
fixed for two different systems

5 and 6

the range of number of neurons used in
the hidden layer (NH) for topology
optimization

2−80

number of neurons in the target layer 1
learning rate (η) 0.001
transfer function used in the hidden and
target layers

tansig and purelin

error tolerance 0.001
data division (random) dividerand (70:15:15)
adaptive function Learngdm
network type feed-forward BP
training algorithm 14 BP algorithms

(screen: Levenberg−Marquardt)
performance MSE
adjustment parameter (μ) 0.005
momentum value (α) 0.9
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where Ti,exp, Ti,pre, and T̅i,exp are the experimental, predicted,
and mean experimental outputs, respectively, and n is the
number of experiments.
2.5. Software Utilization. ANN modeling codes were

generated, and the entire training, validation, and testing was
performed by using the shareware version of the ML-ANN
software of MATLAB (Version 7.11.0.584, R2016b) utilizing
Neural network Toolbox, The Math Works Inc., USA.

3. RESULTS AND DISCUSSION
3.1. Experimental Phase Transition Behavior of

Copolymer Binary Solvent Systems. The data used in
this study on copolymer-supercritical solvent phase behavior
consist of 4 data sets with five variables and 3 data sets with six
variables. These data sets were obtained from our recent

research work, but the data are not shown. The cloud point
from the phase behavior experiment is used to examine the
range of copolymer-supercritical solvent solubility space over a
wide range of temperatures from 51.75 to 182.05 °C and
pressures from 3.28 to 200.86 MPa. The experimental cloud
point profile of the copolymer−solvent system shows the
predictive performance of an UCS and LCS of PSOM in
different supercritical polar and nonpolar solvents such as BT,
PP, DE, CM, BTTM, DETM, and CTM.
Figures 2−4 demonstrate the cloud point pressure as a

function of cloud point temperature, which exhibited an upper
critical solution behavior for PSOM-BT (Figure 2a), PSOM−
PP (Figure 2b), and PSOM-CM (Figure 3b) systems, whereas
lower critical solution behavior was observed for PSOM-DE
(Figure 3a), PSOM-BTTM (Figure 4a), and PSOM-DETM

Figure 2. Cloud point profile of phase transition behavior of (a) PSOM−BT and (b) PSOM−PP systems.
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(Figure 4b). Interestingly, the phase transition pressure curve
of PSOM in BTTM and CTM shifted from UPS to LCS
behavior when the temperature was increased (Figure 4c).
Therefore, the two types of binodal curves obtained in the
above-mentioned systems show that the solubility of
copolymer PSOM decreased asymmetrically for both polar,
nonpolar, and combinations of solvents, and reducing the
pressure plays a role.
The cloud point pressure of the solubility space varies

depending on the solvents and cosolvent systems used. Among
the UCS types, the block copolymer PSOM achieved the cloud
point at supercritical pressures of 197.24 and 198.79 MPa in
CM and CTM solvent systems, respectively. The PSOM-
carbon dioxide + tetramethyl orthosilicate system reached the
LCS behavior through the maximum cloud point pressure of
70.86 MPa. The composition and type of solvent and
cosolvent have a significant effect on the solubility space of
block copolymer PSOM, but they do not have any significant
effects on the other properties of the polymer, solvent,

cosolvent, and initiator. However, the coexistence space shifted
from UCS to LCS behavior (Figure 4c) due to decreasing the
solvent (CO2) composition from 53.4 to 27.8 mass % and
increasing the cosolvent (TM) composition from 44 to 68.9
mass % at a constant loading of the initiator. This lowest
solubility curve is achieved for the CO2 system due to limited
molecular interactions because of the nonpolar solvent. The
pressure of cloud points or coexistence points observed in all
systems was found to decrease with increasing temperature.
Similar trends were observed in recently published works for
different polymer-supercritical solvent systems.26,52,53 The
binodal curve data sets are used for the ANN modeling to
predict the accuracy of the observations.
3.2. Training Algorithm Optimization. ANN is a

proposed method for predicting the coexistence behavior of
seven different binary solutions of the PSOM block copolymer.
The system uses either five or six variables with between five
and six inputs and one target variable. A neural network is fed
these data to model the performance of LLE behavior. To

Figure 3. Cloud point profile of phase transition behavior of (a) PSOM−DE and (b) PSOM−CM systems.
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randomly divide the experimental data, the dividerand
algorithm was used. A total of 176 data points were used for
training, 38 for validation, and 38 for testing the ANN model.
Various authors have used a percentage of 70, 15, and 15 for
training, validation, and testing, respectively, across different

data sets and have found that it yields the best network and
more accurate training of the model.54,55 Similarly, training
data were used to train the neural network by assigning small
weights to connections between nodes in a random manner.
The weights were reinitiated by reverting input ranges until a

Figure 4. Cloud point profile of phase transition behavior of (a) PSOM−BTTM, (b) PSOM−DETM, and (c) PSOM−CTM systems.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c06212
ACS Omega 2024, 9, 40941−40955

40948

https://pubs.acs.org/doi/10.1021/acsomega.4c06212?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c06212?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c06212?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c06212?fig=fig4&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c06212?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


minimum MSE was achieved between the observed and
predicted values of the target cloud point pressure, which was
carried out in the validation process. The accuracy of the
predicted LLE data was then appraised using the test data set.
The copolymer PSOM−BT supercritical solvent system was

used as a sample data set to determine the best learning
algorithm among seven different binary polymer solution
systems. Fourteen BP learning algorithms were employed to
train the ANN model data set, including Trainbfg, Trainbr,
Traincgb, Traincgf, Traincgp, Traingd, Traingdm, Traingda,
Traingdx, Trainlm, Trainoss, Trainr, Trainrp, and Trainscg.
The algorithm with the minimum MSE and a higher
correlation coefficient was selected as the best. All of these
learning algorithms applied the three-layer feedforward BP
network with a transfer function of Tansig hidden neurons and
purelin target neurons. During the screening process, the
neuron number in the hidden layer was kept constant at 10
(NH) to avoid any noise. The BP training algorithm parameters
(Ec, η, μ, α, and error tolerance) were set to default values
(Table 2), with values fixed at 1000, 0.001, 0.005, 0.9, and
0.001, respectively. These parameter values were chosen based
on previous ANN modeling experience in the field of
biochemical engineering,50 and they all play a crucial role in
network convergence and attaining local minimum error. In
the copolymer PSOM−BT supercritical system, five neurons
were applied to the input layer and one to the target layer.
Table S2 displays a comparison of 14 different BP training

algorithms, using values of MSE, R2, and iteration numbers, for
predicting cloud point pressure. Figure 5 illustrates a
comparison profile based on the performance of MSE and R2
received from the algorithm selection process in the copolymer
PSOM-BT system. The Levenberg−Marquardt BP algorithm
achieved the minimum training error value of 0.0046 and a
maximum R2 value of 0.9996, making it the best BP learning
algorithm for the ANN modeling of copolymer PSOM-
different solvent systems. During optimization, the “trainlm”
training function was used to update the weights and bias
values, to ensure a close fit between the target of observed and

predicted values of the entire network and to minimize the
performance (MSE) function. However, the training was
stopped once the consecutive iterations and validation MSE
started to increase. While trainbr and traincg algorithms
approached minimum error (0.0657 and 0.0660) with
maximum R2 (0.9994 and 0.9974), the least error algorithm
was chosen for the proposed study. On the other hand,
trainbfg (0.9639 and 1.85), traingd (0.9013 and 0.488),
traingdm (0.9042 and 0.244), traingda (0.9753 and 1.77), and
traingdx (0.9741 and 1.54) BP algorithms had poor perform-
ance on the prediction of cloud point pressure. Other studies
have also found that the “trainlm” algorithm is the best and
fastest learning algorithm for different fields of data sets in
ANN modeling.56−58

3.3. ANN Topology and Execution. The architecture or
neuron topology optimization of an ANN plays a decisive role
in the training of the ANN model. The hidden layer neurons
are highly sensitive to the neural network, and the neuron
number in the hidden layer is an important factor in
determining the performance of the model. Insufficient
neurons lead to poor performance, while an excessive number
of neurons can create turbulence in the prediction. This study
used a trial-and-error approach to optimize the internal
network parameters (NH) for copolymer−different super-
critical solvent systems. The outperformed BP training
algorithm was screened immediately, and the NH value varied
from 2 to 80 during optimization, while other parameters were
kept constant for all seven PSOM-supercritical solvent systems
to predict the cloud point pressure. The training process was
halted once the minimum MSE was achieved. The weight and
bias values were generated using the “trainlm” training function
until the model output closely matched the target MSE. Two
tables (Tables S3 and S4) were used to show the optimization
of the ANN architecture via correlation coefficient, MSE, and
iteration numbers in five-variable and six-variable copolymer
binary solution systems, respectively.
The seven systems had five or six input neurons, including

PDI, copolymer composition, solvent composition, initiator

Figure 5. Comparison profile of different BP training algorithms based on the performance of R2 and MSE for the copolymer PSOM−BT system.
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composition, cosolvent composition, and cloud point temper-
ature, and one output parameter (cloud point pressure) was
used for the development of the ANN model. The best neuron
number, R2, MSE, and iteration number were highlighted for
all of the systems in Table S3 and S4. The optimum neuron
number was found to be 35, 20, 15, 30, 25, 25, and 35 with a
minimum MSE value of 1.74 × 10−28, 4.28 × 10−28, 5.68 ×
10−29, 1.90 × 10−27, 2.60 × 10−28, 9.66 × 10−29 and 1.25 ×

10−27 and a maximum R2 value of 0.9989, 0.9999, 0.9999,
0.9999, 0.9999, 0.9997, and 0.9834 for predicting the cloud
point pressure in the PSOM−BT, PSOM−PP, PSOM−DE,
PSOM−CM, PSOM−BTTM, PSOM−DETM and PSOM−
CTM systems, respectively.
Interestingly, the training was continued and stopped at very

few iterations (epochs) between 5 and 6 for all systems
(Figures S1 and S2). As a result, the optimized ANN

Figure 6. Effect of different neuron numbers on MSE and R2 values for copolymer−different supercritical solvent systems.

Figure 7. Comparison of performance error and regression correlation coefficient between each solvent’s data set using the ANN model.
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architecture/topology was found to be 5:35:1, 5:20:1, 5:15:1,
5:30:1, 6:25:1, 6:25:1 and 6:35:1 for the copolymer-different
solvent systems containing BT, PP, DE, CM, BTTM, DETM,
and CTM, respectively. Figure 6 depicts the effect of neuron
numbers on the performance of copolymer−solvent systems.
Increasing the neuron number after reaching consecutive NH
values improved the performance error, but the RMSE value
did not change significantly. On the other hand, the R2 value
showed a sharp decrease. Similar results were reported in other
studies.59,60 Ethier et al. achieved the minimum RMSE with 64
neurons in predicting cloud point temperature with 3263 data
sets.49 In this study, however, less than or equal to 35 neurons
were sufficient to obtain outstanding performance in various
solvent systems with a maximum of 252 data sets. Therefore,
the studied systems have a better ANN architecture.
Furthermore, Figure 7 provides a comparison profile of

RMSE and R2 values for each solvent system’s data set
performance using the ANN model. Among different super-
critical solvent data sets, the DE data set showed the least
RMSE (5.68 × 10−29) and the highest R2 (0.9999) with
copolymer PSOM. However, the CM solvent data set showed
a maximum error of 1.90 × 10−27 compared to other solvent
systems, even though it achieved a maximum R2 value like
other solvent data sets. Nevertheless, the regression correlation
coefficient reached ≥0.9990 for all solvent systems, whereas
the PSOM-carbon dioxide + tetramethyl orthosilicate system

attained a lower value of 0.98339. Table S5 displays the
optimum weights and biases of the ANN architecture related
to the “trainlm” algorithm for different phase behavior systems.
The weight matrix of w1 and w2 belongs to the input and
hidden layers, respectively, while b1 and b2 are for the input
and output layers. The weight magnitude determines the
connection strength between the input and hidden layer
neurons. The sign of the weight, either − or +, denotes the
nature of the correlation between input and hidden layer
neurons.61,62 To predict the experimental target of cloud point
pressure, eq 1 is used by reinitializing the w1, w2, b1, and b2 and
reverting input parameters between the network layers.
3.4. Phase Behavior Prediction Potency of ANN.

Figures S3 and S4 show the linear regression analysis between
the predicted and experimental cloud point pressures for
various phase behavior systems. The linear regression perform-
ance of the PSOM−BT, PSOM−PP, PSOM−DE, and
PSOM−CM systems are shown in Figure S3 while PSOM−
BTTM, PSOM−DETM and PSOM−CTM systems are shown
in Figure S4. These figures explain the linear regression
analysis between the experimental target (T) and the predicted
target (Y) values of the cloud point pressure. The binary
solution systems reached a maximum correlation coefficient of
≥0.98032. The parity plots in Figures 8 and 9 demonstrate the
linear regression performance and MSE values for all systems.
Figure 8 shows the parity plots for five-variable systems, and

Figure 8. Parity plots showing ANN predicted cloud point pressure plotted against the experimental cloud point pressure for (a) PSOM−BT, (b)
PSOM−PP, (c) PSOM−DE, and (d) PSOM−CM systems.
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Figure 9 shows those for six-variable systems. In both figures,
the solid line at 45° indicates an excellent match between the
predicted and observed phase liquid equilibrium curves.
Collectively, the linear regression performance of training,

validation, testing, and all with MSE value for all systems are
reported in the parity plots. The different systems of PSOM−
BT (Figure 8a), PSOM−PP (Figure 8b), PSOM−DE (Figure

8c), PSOM−CM (Figure 8d), PSOM−BTTM (Figure 9a),
PSOM−DETM (Figure 9b), and PSOM−CTM (Figure 9c)
achieved the training R2 value of 0.99915, 0.99986, 0.99984,
0.9999, 0.99986, 0.99953, and 0.98032; validation R2 value of
0.99933, 0.99995, 0.99999, 0.99991, 1, 0.99999, and 0.99991;
testing R2 value of 0.99949, 1, 0.99999, 0.99988, 0.9997,
99997, and 0.99981; overall R2 value of 0.99885, 0.99986,

Figure 9. Parity plots showing ANN predicted cloud point pressure plotted against the experimental cloud point pressure for (a) PSOM−BTTM,
(b) PSOM−DETM, and (c) PSOM−CTM systems.

Table 3. Statistical Analysis of the Different System Training, Validation, and Testing Data for the ANN Model Accuracy
Predictiona

five-variable system six-variable system

accuracy parameters BT PP DE CM BTTM DETM CTM

ME 0.0597 0.0051 0.0087 0.0181 0.0474 0.0428 0.0991
MSE 0.1327 0.0584 0.0130 0.0904 0.0817 0.0638 0.1630
RMSE 0.3643 0.2416 0.1140 0.3006 0.2859 0.2526 0.4038
SEP (%) 0.6673 0.2590 0.3140 0.2233 1.1528 1.4774 0.4159
AARD (%) 0.4745 0.1919 0.1725 0.1583 0.7439 1.7148 0.2383
bias factor, Bf 1.0016 0.9998 1.0000 1.0002 1.0028 0.9951 1.0013
accuracy factor, Af 1.0016 0.9998 1.0000 1.0002 1.0028 0.9951 1.0013
regression correlation coefficient, R2 0.9996 0.9997 0.9998 0.9998 0.9997 0.9993 0.9973
slope 1 1 1 1 1 1 0.93
Y-axis intercept −0.18 −0.4 −0.14 −0.14 0.12 0.023 6.5

aBT: 1-butene; PP: propylene; DE: dimethyl ether; CM: chlorodifluoromethane; BTTM: BT + tetramethyl orthosilicate; DETM: DE +
tetramethyl orthosilicate; CTM: carbon dioxide + tetramethyl orthosilicate.
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0.9999, 0.9999, 0.99985, 0.99968, and 0.98339, respectively.
For all the data sets, the value of R2 is within an acceptable
level and corroborates an upstanding agreement with the
experimental target data.
Hence, the ANN-predicted cloud point pressure data set was

taken and plotted with the function of cloud point temperature
for different systems for PSOM−BT (Figure 2a), PSOM−PP
(Figure 2b), PSOM−DE (Figure 3a), PSOM−CM (Figure
3b), PSOM−BTTM (Figure 4a), PSOM−DETM (Figure 4b),
and PSOM−CTM (Figure 4c). The solubility curves show that
the cloud point pressure observation for various systems
matches better the ANN predicted values. Among the UCS
types, the PSOM-CM system’s phase transition behavior has
achieved better agreement (R2 ≥ 0.9999) than other systems.
Similarly, among the LCS type, the PSOM−DE system’s phase
transition behavior has achieved better agreement (R2 ≥
0.9999) than other systems. However, the PSOM−CTM
system’s prediction performance (R2 ≥ 0.98339) was reduced
from other systems due to the type of solvent containing
minimal dipole moment compared to other solvents. There-
fore, the solubility of the system is much affected by the noise
of the data set. Nonetheless, the linear regressions of all UCS
and LCS cloud point pressures indicated that the ANN model
is reliable in predicting cloud point pressures, securing good
performance. Many studies have reported that R2 ≥ 0.98339 is
a better linear regression and had good agreement with the
predicted and experimental target data set.39

3.5. Statistical Analysis of the Model. Furthermore, the
accuracy of the ANN predictions and the degree of fitness were
computed by using equations from 4 to 11 and the results are
tabulated in Table 3. In this table, the accuracy parameters of
the five-variable system and six-variable system training,
validation, and testing data for the ANN model are laid out.
The ANN model accuracy was analyzed in the form of
statistical parameters such as ME, MSE, RMSE, SEP %, AARD
%, Bf, and Af for predicting cloud point pressures of different
copolymer binary solvent systems. The observed values of the
accuracy parameters of ME (0.0597, 0.0051, 0.0087, 0.0181,
0.0474, 0.0428 and 0.0991), MSE (0.1327, 0.0584, 0.0130,
0.0904, 0.0817, 0.0638 and 0.1630), RMSE (0.3643, 0.2416,
0.1140, 0.3006, 0.2859, 0.2526, 0.4038), SEP % (0.6673,
0.2590, 0.3140, 0.2233, 1.1528, 1.4774, 0.4159), and AARD %
(0.4745, 0.1919, 0.1725, 0.1583, 0.7439, 1.7148, 0.2383) for
the systems of PSOM−BT, PSOM−PP, PSOM−DE, PSOM−
CM, PSOM−BTTM, PSOM−DETM, and PSOM−CTM,
respectively. The parameters mentioned above have values
that are lower than those expected for all systems. This
suggests that the ANN model is accurate in predicting the
phase transition behavior of the block copolymer in super-
critical solvents. Additionally, the values of the Bf and Af factors
are close to unity, indicating that the modeled network is valid
for predicting the solubility space of PSOM in different polar
and nonpolar solvent solution systems.
During the linear regression analysis, the R2 value mentioned

in Table 3 is close to the values displayed in Figures 8 and 9.
Furthermore, the slope value is close to unity, and the y-
intercept is almost negligible for all phase transitional behavior
systems (Figures S2 and S3). Therefore, all computed values
are within reasonable limits and confirm that the experimental
target data fit well with the ANN-predicted data. Con-
sequently, ANN can accurately predict and model the cloud
point pressures and define the actual phase behavior with LCS
and UCS solubility curves of the block copolymer PSOM in

different supercritical solvent systems. Although the application
of ANN models in diverse fields of study has been reported
elsewhere,63−67 there are no reports on the phase transition
behavior of block copolymer-supercritical solution systems.
Therefore, this study is the first to predict the cloud point
pressures using ANN and can help nurture research in ANN
themes for assessing the performance of the solubility space of
polymer−solvent systems.

4. CONCLUSIONS AND OUTLOOK
An ANN model has been developed to predict the phase
transition curve of block copolymer accurately and quickly in
different polar and nonpolar supercritical solvents. This model
can handle 3 six-variable and 4 five-variable systems to predict
the UCS and LCS behavior. The ANN architecture was
optimized using the best training algorithm (trainlm), and the
optimum topology was determined by the coexistence curves
with minimum RMSE maximum R2. For the seven studied
systems (PSOM−BT, PSOM−PP, PSOM−DE, PSOM−CM,
PSOM−BTTM, PSOM−DETM, and PSOM−CTM), the
optimized ANN architecture was found to be 5:35:1, 5:20:1,
5:15:1, 5:30:1, 6:25:1, 6:25:1, and 6:35:1, respectively. The
ANN model’s accuracy was evaluated using statistical
parameters ME, MSE, RMSE, SEP %, AARD %, Bf, Af, and
R2. The linear regression R2 values for training, validation,
testing, and overall were all within an acceptable range,
confirming that the ANN model’s predicted cloud point
pressures are in good agreement with the experimental cloud
point pressures and are valid for the study. This model can
predict smoother polymer solubility curves, and its accuracy
and benefits for active ML have been demonstrated. The
model’s competence to capture regions of miscibility
accurately for polymers will license the well-planned polymer
material processing. Additionally, this study emphasizes the
importance of exploring the proficiency of training models to
compute the phase behavior of other macromolecular
architectures.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.4c06212.

Physical properties of supercritical solvents; comparison
of different BP algorithm prediction results; optimization
results of PSOM−BT, PSOM−PP, PSOM−DE, and
PSOM−CM; optimization results of PSOM−BTTM,
PSOM−DETM, and PSOM−CTM; weights and biases
of the optimized ANN models for all systems; effect of
training state results of PSOM−BT, PSOM−PP,
PSOM−DE, and PSOM−CM; effect of training state
results of PSOM−BTTM, PSOM−DETM, and PSOM−
CTM; linear regression results of PSOM−BT, PSOM−
PP, PSOM−DE, and PSOM−CM; and linear regression
results of PSOM−BTTM, PSOM−DETM, and PSOM−
CTM (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Hun-Soo Byun − Department of Chemical and Biomolecular
Engineering, Chonnam National University, Yeosu, Jeonnam
59626, S. Korea; orcid.org/0000-0003-2356-8515;

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c06212
ACS Omega 2024, 9, 40941−40955

40953

https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c06212/suppl_file/ao4c06212_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c06212?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c06212/suppl_file/ao4c06212_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hun-Soo+Byun"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-2356-8515
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c06212?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Phone: +82-61-659-7296; Email: hsbyun@jnu.ac.kr;
Fax: +82-61-659-7299

Authors
Divya Baskaran − Department of Chemical and Biomolecular

Engineering, Chonnam National University, Yeosu, Jeonnam
59626, S. Korea

Uma Sankar Behera − Department of Chemical and
Biomolecular Engineering, Chonnam National University,
Yeosu, Jeonnam 59626, S. Korea; orcid.org/0000-0002-
1388-0401

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.4c06212

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korean
government (MSIT) (no. 2021R1A2C2006888).

■ REFERENCES
(1) Baeza, G. P. Recent advances on the structure−properties
relationship of multiblock copolymers. J. Polym. Sci. 2021, 59, 2405−
2433.
(2) Steube, M.; Johann, T.; Barent, R. D.; Müller, A. H.; Frey, H.
Rational design of tapered multiblock copolymers for thermoplastic
elastomers. Prog. Polym. Sci. 2022, 124 (No), 101488.
(3) Kim, H. J.; Jeong, C.; Oh, A.; Seo, Y. S.; Jeon, H.; Eom, Y.
Elevated volatile organic compound emissions from coated thermo-
plastic polyester elastomer in automotive interior parts: Importance of
plastic swelling. J. Hazard. Mater. 2024, 461 (No), 132614.
(4) Choudhury, S.; Ray, S. K. Sorption thermodynamics and
coupling effect for pervaporative dehydration of acetone through
nanoclay and iron nanoparticle-filled copolymer membranes. Korean J.
Chem. Eng. 2022, 39, 529−547.
(5) Huang, C.; Zhu, Y.; Man, X. Block copolymer thin films. Phys.
Rep. 2021, 932, 1−36.
(6) Asteasuain, M.; Pintos, E.; Fortunatti, C.; Brandolin, A.;
Sarmoria, C. Modeling of the activators regenerated by electron
transfer copolymerization of styrene-acrylonitrile with prediction of
the bivariate molecular weight distribution-copolymer composition
distribution using parallel computing and probability generating
functions. Ind. Eng. Chem. Res. 2023, 62, 145−157.
(7) Zhao, C.; Chen, X.; Chen, X. A morphological study of
dynamically vulcanized styrene-ethylene-butylene-styrene/styrene-
butylene-styrene/methylvinylsilicon rubber thermoplastic elastomer.
Polymers 2022, 14 (9), 1654.
(8) Rashed, K.; Kafi, A.; Simons, R.; Bateman, S. Fused filament
fabrication of nylon 6/66 copolymer: Parametric study comparing full
factorial and Taguchi design of experiments. Rapid Prototyp. J. 2022,
28, 1111−1128.
(9) Zhang, X.; Chen, F.; Su, Z.; Xie, T. Effect of radiation-induced
cross-linking on thermal aging properties of ethylene-tetrafluoro-
ethylene for aircraft cable materials. Materials 2021, 14 (2), 257.
(10) Rabbani, F. A.; Yasin, S.; Iqbal, T.; Farooq, U. Experimental
study of mechanical properties of polypropylene random copolymer
and rice-husk-based biocomposite by using nanoindentation.
Materials 2022, 15 (5), 1956.
(11) Xia, X.; Gao, T.; Li, F.; Suzuki, R.; Isono, T.; Satoh, T.
Multidimensional control of repeating unit/sequence/topology for
one-step synthesis of block polymers from monomer mixtures. J. Am.
Chem. Soc. 2022, 144, 17905−17915.
(12) Xu, Z.; Li, W. Control the self-assembly of block copolymers by
tailoring the packing frustration. Chin. J. Chem. 2022, 40, 1083−1090.

(13) Schmid, F. Understanding and modeling polymers: The
challenge of multiple scales. ACS Polym. Au 2023, 3, 28−58.
(14) Chapman, W. G.; Fouad, W. A. Beyond Flory-Huggins: Activity
coefficients from Perturbation theory for polar, polarizable, and
associating solvents to polymers. Ind. Eng. Chem. Res. 2022, 61,
17644−17664.
(15) Ghoderao, P. N.; Lee, C. W.; Byun, H. S. Phase behavior
investigation of the vinyl toluene and poly (vinyl toluene)+ co-
solvents in supercritical CO2. J. Ind. Eng. Chem. 2023, 121, 92−99.
(16) Dhamodharan, D.; Lee, C. W.; Byun, H. S. High-pressure phase
equilibrium of the binary systems CO2+ 355-TMHA and CO2+ 335-
TMCHMA. New J. Chem. 2023, 47, 4043−4051.
(17) Kontogeorgis, G. M.; Saraiva, A.; Fredenslund, A.; Tassios, D.
P. Prediction of liquid-liquid equilibrium for binary polymer solutions
with simple activity coefficient models. Ind. Eng. Chem. Res. 1995, 34,
1823−1834.
(18) Wu, Y. T.; Zhu, Z. Q.; Lin, D. Q.; Mei, L. H. A modified NRTL
equation for the calculation of phase equilibrium of polymer solutions.
Fluid Phase Equilib. 1996, 121, 125−139.
(19) Kuo, Y. C.; Hsu, C. C.; Lin, S. T. Prediction of phase behaviors
of polymer−solvent mixtures from the COSMO-SAC activity
coefficient model. Ind. Eng. Chem. Res. 2013, 52, 13505−13515.
(20) Amamoto, Y. Data-driven approaches for structure-property
relationships in polymer science for prediction and understanding.
Polym. J. 2022, 54, 957−967.
(21) Park, J.; Staiger, A.; Mecking, S.; Winey, K. I. Structure−
Property Relationships in Single-Ion Conducting Multiblock Copoly-
mers: A Phase Diagram and Ionic Conductivities. Macromolecules
2021, 54, 4269−4279.
(22) Behera, U. S.; Baskaran, D.; Byun, H. S. Phase behavior of the
mixtures of 2-and 3-components for poly (styrene-co-octafluoropentyl
methacrylate) by dispersion polymerization under co2. ACS Omega
2024, 9, 11910−11924.
(23) Baskaran, D.; Chinnappan, K.; Manivasagan, R.; Selvaraj, R.
Liquid-liquid equilibrium of polymer-inorganic salt aqueous two-
phase systems: experimental determination and correlation. J. Chem.
Eng. Data 2017, 62, 738−743.
(24) Rao, W.; Wang, Y.; Han, J.; Wang, L.; Chen, T.; Liu, Y.; Ni, L.
Cloud point and liquid−liquid equilibrium behavior of thermosensi-
tive polymer L61 and salt aqueous two-phase system. J. Phys. Chem. B
2015, 119, 8201−8208.
(25) Li, W.; Zhu, Z. Q.; Li, M. Measurement and calculation of
liquid-liquid equilibria of binary aqueous polymer solutions. J. Chem.
Eng. 2000, 78, 179−185.
(26) Baskaran, D.; Park, C. W.; Behera, U. S.; Byun, H. S. Phase
equilibria of binary mixtures of 3-chloro-2-hydroxypropyl methacry-
late and 2-n-morpholinoethyl methacrylate in supercritical carbon
dioxide. Korean J. Chem. Eng. 2024, 41, 2675−2689.
(27) Behera, U. S.; Prasad, S. K.; Byun, H. S. Experimental validation
on the phase separation for the 2-(Diisopropylamino) ethyl
methacrylate and Poly [2-(diisopropylamino) ethyl methacrylate] in
supercritical CO2. J. Mol. Liq. 2024, 393, 123553.
(28) Ghoderao, P. N.; Dhamodharan, D.; Mubarak, S.; Byun, H. S.
Phase behavioral study of binary systems for the vinyl benzoate, vinyl
pivalate and vinyl octanoate with carbon dioxide at high-pressure. J.
Mol. Liq. 2022, 358, 119131.
(29) Park, M. S.; Baskaran, D.; Byun, H. S. Equilibrium curves and
modeling of binary systems for the carbon di-oxide+ benzyl
acetoacetate and carbon di-oxide+ benzyl acetate mixtures under
high pressure. Thermochim. Acta 2024, 740, 179832.
(30) Kuperkar, K.; Patel, D.; Atanase, L. I.; Bahadur, P. Amphiphilic
block copolymers: their structures, and self-assembly to polymeric
micelles and polymersomes as drug delivery vehicles. Polymers 2022,
14, 4702.
(31) Ethier, J. G.; Casukhela, R. K.; Latimer, J. J.; Jacobsen, M. D.;
Rasin, B.; Gupta, M. K.; Baldwin, L. A.; Vaia, R. A. Predicting phase
behavior of linear polymers in solution using machine learning.
Macromolecules 2022, 55, 2691−2702.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c06212
ACS Omega 2024, 9, 40941−40955

40954

mailto:hsbyun@jnu.ac.kr
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Divya+Baskaran"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Uma+Sankar+Behera"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-1388-0401
https://orcid.org/0000-0002-1388-0401
https://pubs.acs.org/doi/10.1021/acsomega.4c06212?ref=pdf
https://doi.org/10.1002/pol.20210406
https://doi.org/10.1002/pol.20210406
https://doi.org/10.1016/j.progpolymsci.2021.101488
https://doi.org/10.1016/j.progpolymsci.2021.101488
https://doi.org/10.1016/j.jhazmat.2023.132614
https://doi.org/10.1016/j.jhazmat.2023.132614
https://doi.org/10.1016/j.jhazmat.2023.132614
https://doi.org/10.1007/s11814-021-0907-0
https://doi.org/10.1007/s11814-021-0907-0
https://doi.org/10.1007/s11814-021-0907-0
https://doi.org/10.1016/j.physrep.2021.07.005
https://doi.org/10.1021/acs.iecr.2c03332?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.2c03332?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.2c03332?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.2c03332?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.2c03332?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.3390/polym14091654
https://doi.org/10.3390/polym14091654
https://doi.org/10.3390/polym14091654
https://doi.org/10.1108/RPJ-06-2021-0139
https://doi.org/10.1108/RPJ-06-2021-0139
https://doi.org/10.1108/RPJ-06-2021-0139
https://doi.org/10.3390/ma14020257
https://doi.org/10.3390/ma14020257
https://doi.org/10.3390/ma14020257
https://doi.org/10.3390/ma15051956
https://doi.org/10.3390/ma15051956
https://doi.org/10.3390/ma15051956
https://doi.org/10.1021/jacs.2c06860?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.2c06860?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/cjoc.202100780
https://doi.org/10.1002/cjoc.202100780
https://doi.org/10.1021/acspolymersau.2c00049?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acspolymersau.2c00049?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.2c02896?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.2c02896?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.2c02896?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.jiec.2023.01.010
https://doi.org/10.1016/j.jiec.2023.01.010
https://doi.org/10.1016/j.jiec.2023.01.010
https://doi.org/10.1039/D2NJ05825A
https://doi.org/10.1039/D2NJ05825A
https://doi.org/10.1039/D2NJ05825A
https://doi.org/10.1021/ie00044a033?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie00044a033?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/0378-3812(96)03015-4
https://doi.org/10.1016/0378-3812(96)03015-4
https://doi.org/10.1021/ie402175k?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie402175k?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie402175k?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41428-022-00648-6
https://doi.org/10.1038/s41428-022-00648-6
https://doi.org/10.1021/acs.macromol.1c00493?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.macromol.1c00493?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.macromol.1c00493?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.3c09665?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.3c09665?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.3c09665?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jced.6b00805?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jced.6b00805?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.5b03201?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.5b03201?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/S1385-8947(00)00137-6
https://doi.org/10.1016/S1385-8947(00)00137-6
https://doi.org/10.1007/s11814-024-00219-w
https://doi.org/10.1007/s11814-024-00219-w
https://doi.org/10.1007/s11814-024-00219-w
https://doi.org/10.1007/s11814-024-00219-w
https://doi.org/10.1016/j.molliq.2023.123553
https://doi.org/10.1016/j.molliq.2023.123553
https://doi.org/10.1016/j.molliq.2023.123553
https://doi.org/10.1016/j.molliq.2023.123553
https://doi.org/10.1016/j.molliq.2022.119131
https://doi.org/10.1016/j.molliq.2022.119131
https://doi.org/10.1016/j.tca.2024.179832
https://doi.org/10.1016/j.tca.2024.179832
https://doi.org/10.1016/j.tca.2024.179832
https://doi.org/10.1016/j.tca.2024.179832
https://doi.org/10.3390/polym14214702
https://doi.org/10.3390/polym14214702
https://doi.org/10.3390/polym14214702
https://doi.org/10.1021/acs.macromol.2c00245?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.macromol.2c00245?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c06212?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(32) Ajitha, A. R.; Thomas, S. Introduction: Polymer blends,
thermodynamics, miscibility, phase separation, and compatibilization.
Compatibilization of Polymer Blends; Academic Press: Elsevier, 2020,
pp 1−29.
(33) Byun, H. S. Phase separation of two-and three-component
solution for the poly (pentyl acrylate-co-methyl methacrylate) +
compressed solvents and copolymer preparation by supercritical
dispersion polymerization. J. Ind. Eng. Chem. 2021, 99, 158−171.
(34) Lee, B. S. Miscibility of poly (lactide-co-glycolide) in
supercritical fluids. J. Mol. Liq. 2023, 369, 120853.
(35) Gangapurwala, G.; Vollrath, A.; De San Luis, A.; Schubert, U. S.
PLA/PLGA-based drug delivery systems produced with supercritical
CO2-A green future for particle formulation? Pharmaceutics 2020, 12,
1118.
(36) Alballa, N.; Al-Turaiki, I. Machine learning approaches in
COVID-19 diagnosis, mortality, and severity risk prediction: A review.
Inform. Med. Unlocked 2021, 24, 100564.
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