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Abstract 
The immune response to SARS-CoV-2 for patients with altered immunity such as hematologic 
malignancies and autoimmune disease may differ substantially from that in general population. These 
patients remain at high risk despite wide-spread adoption of vaccination. It is critical to examine the 
differences at the systems level between the general population and the patients with altered immunity 
in terms of immunologic and serological responses to COVID-19 infection and vaccination. Here, we 
developed a novel microfluidic chip for high-plex immuno-serological assay to simultaneously 
measure up to 50 plasma or serum samples for up to 50 soluble markers including 35 plasma proteins, 
11 anti-spike/RBD IgG antibodies spanning all major variants, and controls. Our assay demonstrated 
the quintuplicate test in a single run with high throughput, low sample volume input, high 
reproducibility and high accuracy. It was applied to the measurement of 1,012 blood samples including 
in-depth analysis of sera from 127 patients and 21 healthy donors over multiple time points, either 
with acute COVID infection or vaccination. The protein association matrix analysis revealed distinct 
immune mediator protein modules that exhibited a reduced degree of diversity in protein-protein 
cooperation in patients with hematologic malignancies and patients with autoimmune disorders 
receiving B cell depletion therapy. Serological analysis identified that COVID infected patients with 
hematologic malignancies display impaired anti-RBD antibody response despite high level of anti-
spike IgG, which could be associated with limited clonotype diversity and functional deficiency in B 
cells and was further confirmed by single-cell BCR and transcriptome sequencing. These findings 
underscore the importance to individualize immunization strategy for these high-risk patients and 
provide an informative tool to monitor their responses at the systems level.  
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Main 
Coronavirus disease-19 (COVID-19) has become a serious worldwide public health emergency and 
the ongoing evolution of the SARS-CoV-2 virus still poses enormous challenges for global pandemic 
control1. Compared to healthy subjects, patients with hematologic malignancies or autoimmune 
disease tend to suffer more severe and prolonged courses of COVID-19 infection and are at higher 
risk of developing severe acute respiratory syndrome, due largely to their altered immune fitness 
condition such as myelosuppression and lymphopenia2-4. Although vaccinations are highly effective 
against symptomatic disease and notably reduce fatality rates5, patients with hematologic 
malignancies such as chronic lymphocytic leukemia (CLL), multiple myeloma (MM), and autoimmune 
diseases under immunosuppressive treatments may not mount adequate neutralizing antibody 
responses after receiving vaccinations6,7. Thus, as COVID-19 variants continuously emerge, there is 
still an unmet need for new immuno-serological assays to systematically evaluate the effectiveness 
of immune protection against COVID-19 in these vulnerable populations. 
 
Microfluidic chips are a technological platform of choice for performing a rapid test of plasma protein 
biomarkers including SARS-CoV-2 specific serum antibodies in conjunction with the markers of 
immunocompetence in a high-throughput, high sensitivity and specificity, low blood sample 
consumption, and low-cost manner. Several new technologies have been developed and have 
demonstrated superior detection performances than traditional methods such as enzyme-linked 
immunosorbent assays8, chemiluminescent immunoassays9 and lateral flow assays10. For example, 
Swank and colleagues developed and validated a nanoimmunoassay device to detect the presence 
of anti-spike IgG antibodies with throughput of 512 to 1,024 samples in parallel11, and Rodriguez-
Moncayo et al. reported a 4-plex SARS-CoV-2 serology platform that can measure 50 serum samples 
per assay12. These platforms routinely show high detection sensitivity (>95%) and specificity (>90%) 
with ultralow-volume whole blood or plasma samples as input (less than 2 μL). However, due to the 
limitation of current microfluidic pattern design, the level of multiplexing in these devices remains low 
(less than 10) and most assays are limited to the detection of only antibody responses. As new SARS-
CoV-2 variants continue to emerge, there is a constant demand for assays that offer high-plex co-
profiling of antibody binding against all variants of concern. Moreover, considering the orchestrated 
immune responses induced by infection or vaccination, a device capable of simultaneously detecting 
antibodies and immune mediators would be highly desirable. 
 
Here we report a portable microdevice designed to perform highly multiplexed measurements of anti-
SAR-CoV-2 antibodies and immune mediator proteins (up to 50 in total) in microliters of human serum 
with high sample throughput of up to 50 samples per run per device. A “microfluidic patterning chip” 
was prepared in advance to perform microchannel-guided immobilization of capture antibodies or viral 
antigens, creating a 1D protein stripe barcode array on a glass slide13. When patient serum samples 
are ready to measure, a “microfluidic test chip” with a set of parallel microchannels allows for loading 
up to 50 serum samples over the microarray for simultaneous detection of serum proteins and SARS-
CoV-2 IgG antibodies. We successfully co-measured 48 human serum samples plus one labeling 
control to detect a panel of 35 soluble proteins and 11 anti-SARS-CoV-2 IgG proteins in a single assay. 
A total of 1,012 serum samples were successfully measured, demonstrating high robustness of our 
high-plex immuno-serology assay. In this work, we performed in-depth analysis using 366 samples 
covering 127 patients with hematologic or other types of cancers, autoimmune disorders either with 
SAR-CoV-2 infection or pre- or post-COVID vaccination, and 21 healthy donors pre- or post-
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vaccination. We observed substantial differences of anti-spike/RBD IgG binding antibody (bAb) 
responses and immune context between patients with hematologic malignancies or receiving 
treatments compromising immune status and Non-Heme Cancer patients and healthy controls in 
response to both COVID infection and vaccination. As expected, our assay revealed limited IgG bAb 
response in those with a weakened immune system as compared to healthy donors and provided a 
comprehensive assessment of multi-factorial immune responses. We also found an impaired RBD-
specific binding ability in hematologic malignancy patients with COVID infection that could be 
associated with a limited diversity of B cell clonotypes, which was confirmed by single-cell B cell 
repertoires (BCR) sequencing.  

Results 
Development and calibration of high-plex immuno-serology assay 

To develop high-plex immuno-serology assay with high versatility and low complexity, we utilized a 
single-layer microfluidic design strategy that employs a polydimethylsiloxane (PDMS) “microfluidic 
patterning chip” and a poly-L-lysine coated glass slide (PLL slide) for creating high-density protein 
barcode array and a “PDMS microfluidic test chip” for multiplexed measurement of protein targets 
from a large number of samples (Figure 1a). This microfluidic flow patterning method as described in 
our previous work13 was adapted to fabricate high-density barcode array chips. In total, 35 capture 
antibodies, including antibodies against cytokines/chemokines, angiogenesis markers, neutrophil 
activation markers, endotheliopathy markers, and 11 SARS-CoV-2 recombinant antigens were 
immobilized on the PLL slide by using the first PDMS chip, which contains 50 parallel microfluidic 
channels with 5-turn serpentine patterns in each channel (Figure 1b). After removing the first PDMS 
chip, the immobilized functional microarray slide can be stored in -80oC freezer until use. When serum 
samples are ready to measure, a second PDMS test chip with 50 microchannels perpendicular to 
those in the first PDMS chip was placed on the microarray slide. This unique design allows 
simultaneous measurement of 50 serum samples with 5 replicates for each sample, minimizing the 
detection error and/or bias caused by nonspecific antibody bindings or debris (Figure 1c). After flowing 
the serum samples over the surface of the microarray, the second microfluidic chip was removed and 
a cocktail mixture of biotinylated detection antibodies and fluorescent dye conjugated anti-human IgG 
antibodies was loaded onto the microarray slide. Finally, the fluorescent images were obtained by 
using a three-laser microarray scanner (Genepix 4200) and a software suite has been developed to 
quantify fluorescence intensities of the corresponding protein targets (Methods). 
 
To quantitatively evaluate the detection ability of our device, we conducted titration tests using 
recombinant proteins, anti-SARS-CoV-2 Spike Abs, and the US SARS-CoV-2 serology standards. 
Serially (2-fold) diluted antigen or SARS-CoV-2 Ab solutions in 1X phosphate-buffered saline (PBS) 
were loaded in each inlet of the microfluidic test device and flowed onto the barcode array. The relative 
intensity against recombinant proteins or SARS-CoV-2 Spike Ab was adjusted by log2 normalization 
after subtracting the background threshold. We first utilized Human SARS-CoV-2 Serology Standard 
Spike IgG and Nucleocapsid IgG generated by the NCI Frederick National Laboratory for Cancer 
Research (FNLCR) to evaluate the ligand binding activity of our assay, demonstrating a detection 
range of 0.01~1000 Binding Antibody Units (BAU)/ml (Figure 1d). Then, commercially available 
SARS-CoV-2 Abs were used to estimate the concentrations of IgG Ab against spike or RBD antigens 
of SARS-CoV-2 wild type and other variants, including alpha (B.1.1.7), beta (B.1.351), gamma (P.1), 
and delta (B.1.617.2). We found that titration curves from all recombinant antigens merged together 
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with notably high Pearson’s R values (Figure 1e and Figure S1), indicating comparable binding 
affinities of commercial antibodies to the panel of antigens. There are no standard values available in 
these antibodies to convert the fluorescent intensities of theses variants to BAU/ml. However, we were 
able to choose the titration curve of wild type spike antigen as a reference and convert all the other 
scanning intensities to concentrations. A detection capacity ranging from 0.001μg/ml to 100μg/ml was 
achieved for these IgG bAbs (Figure 1e). Similarly, the titration curve for a 35-protein panel was 
generated and a dynamic range of 0.001~10 ng/ml was obtained (Figure 1f). Overall, these data 
indicate that our high-plex immuno-serology assay could quantify concentrations of both SARS-CoV-
2 antibodies and plasma protein markers with good sensitivity and dynamic range. 

Validation of assay performance 

We first demonstrate the throughput capacity of our high-plex assay with 48 serum samples obtained 
from patients. After fabricating a microarray by immobilizing SARS-CoV-2 recombinant antigens and 
capture antibodies against a panel of immune mediator proteins, 8-μl volumes of serum sample from 
each patient/donor were loaded onto the device and drawn from the inlets to the outlets through the 
barcode array for 1 hour using a controlled house vacuum system. To differentiate the location of the 
starting column and row in the raw fluorescent images, we introduced the fluorescein isothiocyanate 
(FITC)-conjugated bovine serum albumin (BSA) and FITC-conjugated anti-mouse IgG Ab to the first 
channel of two PDMS microfluidic chips, respectively. Allophycocyanin (APC, 635 nm emission) and 
phycoerythrin (PE, 532 nm emission) were employed to measure circulating plasma proteins and anti-
SARS-CoV-2 bAbs, respectively. In the scanned fluorescent image of the assay region (Figure 2a), 
each row represents one tested sample and each column is the signal of a specific protein or anti-
SARS-CoV-2 antibody. We observed high consistency of the florescence patterns between the 5 
replicates among all the 48 samples, indicating the robustness of our assay. For data quantification, 
we exported the fluorescence intensity and converted it to concentration or BAU/ml using the titration 
curves (Figure S2a,b). 
 
To confirm that there is no crosstalk or leakage between channels during the reagent flowing, we 
coated antibodies generated from other species (human, goat or rabbit) for PDGF-BB, IL-17A, IL-9, 
IL-32, Granzyme B and sCD40L, whereas the remaining 29 are mouse-derived capture antibodies. 
After applying FITC-conjugated anti-mouse IgG Ab to the first row of the second PDMS device, no 
signal was detected for the above-mentioned proteins as well as the SARS-CoV-2 spike or RBD 
antigens, suggesting minimum crosstalk (Figure 2b). To assess device-to-device reproducibility, we 
repeated the tests independently using 5 barcoded array chips fabricated at different times (Figure 
2c), and the results show tight correlation of average Pearson’s R=0.99 (p value <0.0001) (Figure 2d).  
 
To explore the accuracy and reliability of our device, we compared our high-plex serology assay with 
a commercially available assay from Quest Diagnostics. Our multiplex assay had a Pearson’s R of 
0.79 (p value <0.0001) when correlated with the commercial, semiquantitative assay for anti-SARS-
CoV-2 Spike IgG bAbs for 98 serum samples (Figure 2e). We then evaluated all the anti-spike and 
RBD antibodies in our serology panel using 101 blinded samples provided by NCI FNLCR including 
sera from patients with COVID infection and healthy controls (Figure S3a-c). Independent analysis by 
scientists at the NCI FNLCR revealed that overall average sensitivity and specificity of IgG reactivity 
are 87.3% and 86.4%, respectively (Figure 2f). Specifically, the detection sensitivity of IgG against 
spike antigens was higher than against the RBD (mean 96.6% vs. mean 77.8%), whereas the 
specificity of RBD detection was greater in comparison with that of spike antibodies (mean 92.2% vs. 
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mean 80.6%). The best overall performance was obtained by the detection of IgG against alpha 
(B.1.1.7) spike with 100% sensitivity and 95.9%, specificity. Moreover, for both anti-spike and RBD 
antibodies, we found that later-stage variants were generally detected at higher sensitivity and lower 
specificity than wild type. Nevertheless, concentration levels were not affected by differences in 
sensitivity/specificity (Figure 2g). Consistent with this observation, we found that the antibody binding 
affinities for the nucleocapsid protein were significantly lower than for wild type Spike antigen, 
suggesting sub-optimal performance of this assay in the current configuration to distinguish 
vaccination from natural infection (Figure S3d).  
 
We further conducted a comparative study to validate the detection performance of the immune 
mediator protein panel. Serum samples from four healthy controls, four intensive care unit (ICU)-
survived patients, and four deceased patients were obtained and evaluated using our high-plex device. 
Although few significant differences were observed due to the limited cohort size, our data showed a 
clear trend towards elevated concentrations of IL-8, GM-CSF, resistin, G-CSF, IFN-γ, IL-6, IL-17A, 
lipocalin-2, MIP-1β, and TNF-α in ICU-survived or ICU-deceased patients compared with controls 
(Figure S4a), which is highly consistent with the results from a third party commercial assay in a 
previously published study that profiled these proteins in the same patient populations (Figure S4b)14. 
Thus, all these fully validated our microfluidic immune-serology assay using the commercial serology 
test by Quest Diagnostics, the blind samples from NCI FNLCR, and the commercial multiplex protein 
assay in the same patient cohort. Our device can perform 46-plex detection of SARS-CoV-2 bAbs 
and functional proteins at a throughput of up to 50 serum samples in a single run, with low sample 
volume input, minimal crosstalk, high reproducibility and high accuracy. Notably, this high-plex assay 
has been used to measure 1,012 serum samples to monitor immune responses of natural infection 
or vaccination and this cohort is still expanding (Figure 2h). The highly consistent measurements from 
standard samples and the real world clinical serum samples have demonstrated the robustness of 
our microfluidic high-plex immune-serology assay (Figure S5). 

Association of immune mediator proteins in 148 patients and donors upon vaccination 

We conducted in-depth assessment in 148 patients or donors using our high-plex immuno-serology 
assay. Patients were divided into six groups based on their clinical demographics, immune status or 
baseline illness, and vaccination record (Figure S6a). Within our cohort, 38 patients were infected 
with acute COVID-19, 26 of them were patients with hematologic malignancies (Heme COVID+), and 
the remaining 12 were patients with non-hematologic cancers (Non-Heme Cancer COVID+). An 
additional 89 patients donated blood pre- and post-vaccination. Of these 23 had cancer and were 
known not to have had COVID infection prior to their blood draw (Non-Heme Cancer pre-Vax and 
Non-Heme Cancer post-Vax), and 66 patients had autoimmune diseases for which they received B 
cell depletion therapy (Autoimmune B cell depleted pre-Vax and Autoimmune B cell depleted post-
Vax). Additionally, we included 21 healthy donors pre- and post-vaccination (HD pre-Vax and HD post-
Vax) to establish baseline controls. Basic demographic information of these patients and donors is 
provided in Table S1. In regard to vaccine type, BNT162b2 (Pfizer-BioNTech, Germany), mRNA-1273 
vaccine (Moderna, USA), or Ad26.COV2.S (Johnson & Johnson, USA) were administrated to 
patients/donors. In total, 366 serum samples were collected and analyzed.  
 
Among all 35 immune mediators, we observed higher concentrations of PDGF-AB, IL-10, IL-12p70, 
and IL-13 compared to other protein markers (Figure S6b). To gain insights into key differences in 
these immune function proteins between patients with and without COVID infection and pre- versus 
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post-vaccination, we compared the measurements of the 35 proteins across all groups and identified 
substantial differences in expression patterns. In contrast to minimal associations in healthy donors 
before vaccination (Figure S7a), we found several subsets of proteins whose expression levels are 
highly correlated in the patient groups. Specifically, in the Non-Heme Cancer Pre-Vax group, positive 
associations between T cell functional markers, including GM-CSF, TNF-α, IL-6, IL-16, IL7, and IL-15, 
dominated the correlation pattern (Figure 3a); patients with auto-immune diseases who received B-
cell depletion therapy showed concerted dysregulation in a larger number of proteins in our panel 
albeit with lower correlation coefficients (Figure 3b). This suggests that our device and our protein 
panel can capture highly relevant protein signatures and associations unique to the responses of 
these vulnerable patient populations. Interestingly, we found a negative correlation between Resistin 
(RETN) and other markers of neutrophil activation including G-CSF and Lipocalin-2, and similar 
anticorrelation was also present in two angiogenesis signatures (PDGF-AB and PDGF-BB), implying 
complex immune dysregulation in these immunocompromised patients. After COVID vaccination, a 
concerted immune response emerged in healthy donors (HD post-Vax group) (Figure S7b), indicating 
that our device can detect systemic modulation of the immune responses post-vaccination. In Non-
Heme Cancer patients, compared to HD, we found more modest changes in protein associations 
between pre- and post-vaccination samples (Figure 3c). Finally, as would be expected in 
immunocompromised patients, immunization did not induce coordinated immunological responses in 
Autoimmune (B cell depleted) patients as reflected in an unchanged correlation pattern in the post-
Vax compared to pre-Vax setting in this patient population (Figure 3d).  
 
We next sought to quantitively compare functional protein levels pre- and post-vaccination. As 
expected, in the healthy donor group, post-vaccination samples showed significantly higher 
concentrations of soluble proteins related to pro-inflammatory, T cell effector and endotheliopathy 
pathways, whereas proteins that regulate angiogenesis, neutrophil activation and macrophages 
remained mostly unchanged compared to pre-vaccination samples (Figure 3e). Non-Heme Cancer 
patients and patients with autoimmune disorders receiving B-cell depleting therapy had no significant 
changes post-vaccination (Figure 3f,g). It has been found that the markers of angiogenesis (VEGF-
A, PDGF-AA and PDGF-AB/BB) are elevated in hospitalized patients compared with non-critical 
COVID-19 infection15, the markers of neutrophil activation (RETN, LCN2, HGF, IL-8, G-CSF) are 
among the most potent discriminators of critical illness16, and uncontrolled activation of macrophages 
is responsible for acute respiratory distress syndrome (ARDS) in COVID-19 patients17. Our data 
indicate that vaccination elected detectable systemic immune modulation but does not induce a 
COVID-like illness in healthy individuals or even patients with cancer or autoimmune diseases on B-
cell depleting therapy.  
 
In our vaccination cohort, serum samples were collected at multiple timepoints, which are two weeks 
after the first dose of vaccination (Visit 1), 0~3 days before the second dose of vaccination (Visit 2), 
and one week after the second dose of vaccination (Visit 3). We longitudinally evaluated the protein 
levels at different timepoints in each group. At Visit 1, there was no significant elevation of either pro-
inflammatory or T cell effector markers in healthy donors (Figure 3h,i). The peak level of these proteins 
was observed at Visit 2, and TNF-α, IL-15, IFN-γ dominated the elevation (Figure S8a,b), which is in 
line with previous reports18. By contrast, endotheliopathy markers peaked at Visit 3 (Figure 3j and 
Figure S8c), representing a late-stage response to vaccination. Again, we did not find kinetic changes 
in the two patient groups, and the concentration of pro-inflammatory proteins post-vaccination in 
Autoimmune (B cell depleted) patients was even significantly reduced when compared with pre-
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vaccination level (Figure 3h). Taken together, these data suggest that SARS-CoV-2 vaccination has 
minimal effect on the immune mediator protein production in these immunosuppressed patients. 

Natural SARS-CoV-2 infection induces a higher magnitude of the pro-inflammatory signatures 
compared to vaccination 

Next, we asked what the protein profile difference is following natural COVID-19 infection from that 
induced by vaccination. To this end, we performed unsupervised clustering of 302 patient serum 
samples based on the concentration of the 35-protein panel, leading to the identification of five 
proteomically distinct subpopulations (Figure 4a). Notably, Uniform Manifold Approximation and 
Projection (UMAP) representation color coded by patient conditions showed that the cluster 2 subset 
contains mostly samples from COVID-19 infected patients (Figure 4b). The differentially expressed 
proteins defining each cluster indicated that samples in cluster 2 have upregulated levels of protein 
markers regulating inflammatory and effector T cell functions (Figure 4c). The average concentration 
of pro-inflammatory and T cell effector proteins was consistently higher in the two COVID+ patient 
groups as compared to baseline HD pre-Vax samples, whereas the significance level was reduced 
when comparing vaccinated groups to the baseline group (Figure 4d). 
 
We next examined if SARS-CoV-2 infection conferred a different functional protein response to 
hematologic or non-hematologic cancer patients by interrogating the protein correlations within these 
two infected groups. In Heme COVID+ patients, a group of cytokines regulating inflammatory 
response or T cell activation, including IL-9, IL-21, IL-22, IL-12 p70, RANTES, GM-CSF, TNF-α and 
IL-32, were positively correlated with each other (Figure 4e). These proteins were also significantly 
correlated with molecules involved in T cell cytotoxicity and macrophage activation, such as IFN-γ, 
MIP-1β and MCP-1. While several functional T-cell cytokines were also positively correlated for Non-
Heme Cancer COVID+ patients, the relationships were much weaker (Figure 4f). Prior work 
demonstrated that patients with severe COVID-19 had increased positive associations of proteins 
linked to cytokine release syndrome (CRS), which overlapped with the immune mediators identified 
above19. Thus, our data suggest that patients with hematologic cancers with COVID infection were 
more likely to exhibit higher disease severity than Non-Heme Cancer COVID+ patients. 
 
The ability to predict which infected patients may become severely ill could facilitate hospital 
management and optimize care, which is particularly helpful for patients with cancer. Leveraging the 
protein data detected by our high-plex assay panel, we attempted a model to potentially predict the 
severity of COVID-19 infections. Patients were classified into three groups on the basis of their level-
of-care requirements: admission to an Intensive Care Unit (ICU), regular hospital admission (non-ICU 
hospitalization) or no hospitalization. The concentrations of eight pro-inflammatory proteins or ten 
proteins regulating T cell effector functions were integrated into a logistic regression model using 
level-of-care as the predictive variable. Stratified five-fold cross-validation was used to assess the 
discriminative power of this model. Overall, a sensitivity of ~72% to separate ICU from no 
hospitalization patients with a false-positive rate of <2% was achieved using the pro-inflammatory 
panel [receiver operator characteristic area under the curve (ROC AUC) =0.73 ± 0.23] (Figure 4g). 
The sensitivity was reduced to 55% in the classification of ICU vs. non-ICU hospitalization (Figure 
S9a) and further reduced in the separation of non-ICU hospitalization vs. no hospitalization (Figure 
S9b). By contrast, the T cell effector panel could provide an improved sensitivity (~59%) to 
discriminate patients with non-ICU hospitalization from those without hospitalization (Figure S9c). 
However, this panel could not predict ICU vs. no hospitalization (Figure S9d).  
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To identify specific molecules that could discriminate natural infection from vaccination, we evaluated 
each of the proteins in our panel and compared them across groups. Among all the comparisons 
(Figure S10), IL-16, IL-17A, and IL-21 were found to be significantly elevated in Heme COVID+ 
patients compared with vaccinated groups (Figure 4h). Furthermore, the Heme COVID+ group also 
had significantly higher levels of the neutrophil activation marker IL-8, and the angiogenesis marker 
TGF-β1 than the Non-Heme Cancer COVID+ group (Figure S10), implying elevated severity in these 
patients with hematologic cancers16,20. By contrast, the concentration of the immune mediator sCD40L 
and PDGF-AB, a potent inducer of CCL2 gene expression, were significantly higher in vaccinated 
groups (Figure 4i). Other literature has reported that these two proteins were inversely correlated with 
severity of COVID-1921,22, further suggesting increased severity signatures in infected patients. 
Additionally, the chemokine RANTES (CCL5) has been found to be significantly elevated from an 
early stage of the infection in patients with mild but not severe disease23. Our evaluation identified 
significantly higher concentration of RANTES in post-vaccination groups than infected groups, 
suggesting similar response characteristics between vaccination and mild infection (Figure 4i). 
Validation of previously identified cytokine signatures in COVID infected versus vaccinated patients 
further support the accuracy of our high-plex protein assay. In addition, the regression model based 
on above identified six proteins unambiguously separated Heme COVID+ patients from the other 
groups (Figure S11). Collectively, our data confirm upregulation of a group of pro-inflammatory 
proteins that mark higher severity of disease in patients with active COVID-19 infection, distinguish 
ICU admission from mild disease that does not require hospitalization, and support the observed 
clinical safety of vaccination compared to infection. 

A second dose vaccination boosts kinetic elevation of SARS-CoV-2 IgG bAb levels, but not in 
patients with B cell depletion therapy 

The measurement of circulating IgG antibody binding against five protein variants from each of the 
spike and RBD domains in the serum samples allows us to simultaneously evaluate the bAb 
reactivities against wild type and several SARS-CoV-2 variants of interest. We created a 
“concentration heatmap” of the anti-spike and anti-RBD antibodies in each patient/donor group, 
showing higher levels of bAbs in patients with COVID-19 infection or groups post vaccination, except 
for patients with autoimmunity treated with B cell depletion therapy (Figure S12a). Next, quantitative 
comparisons were conducted to examine dynamic bAb changes at different timepoints after receiving 
vaccination. As expected, the primary vaccination effectively induced antibody responses against wild 
type and all the other variants in healthy donors, whereas only spike IgG bAbs showed significant 
increases in Non-Heme Cancer patients (Figure S12b,c). The bAb levels were sustained two weeks 
after the first dose of vaccination (Visit 2) (Figure 5a,b). After the secondary dose vaccination, these 
responses were boosted significantly in both healthy donors and Non-Heme Cancer patients, 
indicating the beneficial effect of the second shot. No differences were observed between the types 
of vaccine in this study (Figure S13a,b). In both groups antibodies effectively bounds all variants at 
both Visit 1 and Visit 3 (Figure 5c,d). Interestingly, we found significantly increased RBD IgG binding 
against B.1.1.7, B.1.351 and P.1 variants compared with the wild type protein in healthy donors while 
anti-spike IgG binding was uniform across variants (Figure S14a). Variant recognition by anti-spike 
and anti-RBD antibodies showed no differences in Non-Heme Cancer patients (Figure S14b). By 
contrast, both primary and secondary vaccination failed to induce robust anti-spike or RBD antibody 
concentrations in autoimmune patients with B cell depletion therapy (Figure 5a,b and Figure S12b,c), 
attributable to the elimination of circulating B-cells in this patient population. Antibody correlations 
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were low across variants after the first dose of vaccination, especially for the RBD antibodies which 
improved at Visit 3 after second vaccination but not to the same levels as in the other two donor/patient 
groups (Figure 5e). 
 
At Visit 3, we observed that anti-spike IgG levels of all the healthy individuals were above 0.5ug/ml, 
whereas the concentrations of several Non-Heme Cancer patients remained nearly zero, suggesting 
the necessity of evaluating and comparing the response rate (proportion of individuals with 
concentration larger than the cut-off value) between patient groups and different timepoints. The cut-
off value (50 BAU/ml) of anti-spike IgG bAb provided by the World Health Organization (WHO)24 is 
equivalent to 0.3 μg/ml in our assay (Table S2), revealing protective antibody concentrations against 
nearly all variants in healthy donors at one week after the second dose (Visit 3) (Figure 5f). A lower 
response rate was noted in the Non-Heme Cancer patients at all three timepoints as compared to the 
healthy donor group, and the difference was further increased compared with B cell depleted patients 
(Figure 5g), especially for anti-RBD antibodies (Figure S15). The high-plex capacity of our device to 
simultaneously detect IgG antibodies and secreted proteins allowed us to examine the relationships 
between alterations in these functional proteins and the levels of IgG bAbs in the same serum or 
plasma samples. No significant correlations between protein responses and anti-spike/RBD IgG titers 
were detected (Figure S16). Together, these data point to a profound reduction of the second dose 
vaccination-induced IgG response in patients with non-hematologic cancer, and a nearly complete 
loss in immunocompromised patients with B cell depletion therapy. 

Hematologic malignancy patients with COVID infection exhibit impaired RBD-specific binding  

We next expanded our characterization to the humoral antibody response following natural COVID-
19 infection in patients with hematologic or non-hematologic cancers. As expected, the binding of 
SARS-CoV-2 nucleocapsid (N) protein, a RNA-binding protein critical for packaging of the viral 
genome25, was found to be substantially higher in the two infected groups as compared to vaccination 
groups (Figure 6a). The convalescent antibody level in Heme COVID+ patients was significantly lower 
than the vaccination induced antibody level in healthy donors, whereas negligible differences were 
found in the Non-Heme Cancer patients as compared to donors (Figure 6b). Consistently, the 
response rate showed a significant increase in the Non-hematologic cancer group (Figure 6c). These 
observations suggest that most patients with non-hematologic cancer could achieve certain levels of 
COVID IgG antibody seroconversion, whereas hematologic cancers and their treatment might notably 
impair the antibody response. No differences were observed in the comparisons between IgG titers 
against wild type and other variants, exclusive of enhanced binding to B.1.617.2 variant in Heme 
patients (Figure S17a,b). Additionally, we found significantly increased anti-RBD IgG levels in 
convalescent Non-Heme Cancer patients as compared to their non-infected counterparts after 
primary vaccination. However, the differences were no longer detectable at the later timepoints, 
further indicating major benefits of the second dose vaccination (Figure S18).  
 
Consistent with their reduced ability to elicit effective IgG responses, the correlations between spike 
and RBD binding were largely absent in COVID infected Heme patients (Figure 6d), similar to the 
pattern we observed in the B-cell depleted group (Figure 5e). By contrast, significantly positive 
associations were noted for Non-Heme Cancer patients. Again, no correlations were seen between 
circulating proteins and IgG antibodies in the two infected groups (Figure S19). We next longitudinally 
evaluated IgG bAb titers at two timepoints, in ICU or after recovery, from a hematologic cancer 
COVID+ (CLL) patient and a Non-Heme Cancer COVID+ patient. Similar anti-spike/RBD IgG bAb 
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titers were observed at two timepoints for the Non-Heme cancer patient (Figure 6e), whereas the 
hematologic cancer patient had significantly lower anti-spike/RBD IgG bAb titers during the ICU 
admission with improved antibody levels at time of recovery (Figure 6f). However, this hematologic 
cancer patient’s RBD antibody response either during the ICU stay or at time of recovery was nearly 
undetectable, suggesting a lower diversity of antibody repertoire and thereby compromised humoral 
immune protection against COVID-19 in some hematologic cancer patients despite the presence of 
anti-spike IgG antibody.  
 

Single-cell BCR and transcriptome sequencing identifies a limited clonotype diversity and 
functional deficiencies in B cells from Heme COVID+ patient 

The observed differences of RBD binding between COVID infected patients with hematologic or other 
types of cancer prompted us to further investigate the underlying immune response mechanisms. By 
combining single-cell RNA sequencing (scRNA-seq) and co-measurement of B cell receptor (BCR) 
repertoires, we characterized the heterogeneity of circulating B cells from the above evaluated 
hematological cancer patient and Non-Heme Cancer patient (in ICU and after recovery) (Figure 6e,f). 
In total, we profiled the transcriptome and BCR clonotype of 5,856 single cells from the three samples. 
Due to the clonal expansion and accumulation of malignant long-lived B cells in CLL patient26, a 
majority of cells (~78%; 4,526 cells) were derived from the Heme patient (Figure S20b). Integrating 
and clustering all the scRNA-seq data points identified 7 subpopulations and no major batch effect 
was observed (Figure S20a,b). High CD5 expression has been recognized as one of the signatures 
in leukemic B cells in CLL27. Consistently, we observed a notably higher expression of the encoding 
gene CD5 in cells from the Heme cancer patient compared to cells from the Non-Heme cancer patient 
(Figure S20c). On the basis of CD5 and FCER2 (encoding CD23) expression, used for differential 
diagnosis of CLL27, we classified all the Heme B cells into Leukemic or Non-Malignant B cell groups 
(Figure S20d,e). After filtering out leukemic-B cells, 1,803 non-malignant B cells from the Heme 
cancer patient were included in the downstream analysis to compare with the another patient.  
 
Consistent with our hypothesis, we found a much lower diversity of the immune repertoire in remaining 
non-malignant B cells from the Heme cancer patient indicating inability to develop antibody response 
to diverse antigens (Figure 7a). By contrast, high clonal diversity was observed in Non-Heme Cancer 
patient during the time both in the ICU and after recovery. The frequency of the most common 
clonotype was only ~0.3-0.5%, and no difference existed for the top 5 clonotypes. To further explore 
the association between sample source and B cell states, UMAP clustering of all the filtered B cells 
was performed and 5 new clusters were identified (Figure 7b and Figure S20f). A previous report 
identified an expansion of late-stage B cells in patients with severe symptoms as compared to the 
healthy controls and patients with mild symptoms28. We checked the same marker gene expression 
and found that cells in cluster 3 exhibited elevated levels of plasma cell markers (CD27 and CD38)29, 
whereas cells in cluster 1 were highly enriched for IGHD expression, marker for naïve B-cells (Figure 
7c). The cell proportion of Heme sample in cluster 1 was found to be notably lower than that of Non-
Heme samples while the proportion in cluster 3 was higher (Figure 7d), suggesting more severe 
COVID infection signature in Heme patient. Furthermore, considering the expression levels in the 
three cell groups, a significantly decreased IGHD and increased CD27/CD38 expression in Heme 
cells were also observed (Figure 7e). 
 
To identify the unique transcriptomic signatures of each sample, we performed differentially expressed 
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genes (DEGs) analysis among the three samples. Comparing B cells between Heme and Non-Heme 
(ICU) leads to the identification of top upregulated genes such as HBB, HLA-B, NOSIP, and top 
downregulated genes such as LTB, MS4A1, CD69 (Table S3). Ingenuity Pathway Analysis (IPA)30 
was performed to explore the biological pathways associated with the DEGs of each comparison. We 
found that Coronavirus pathogenesis pathway was significantly activated in B cells from Heme as 
compared to Non-Heme (ICU) (Figure 7f), which further confirmed that SARS-CoV-2 could induce 
higher severity level in immunocompromised patient. The top symbolic molecules regulating this 
pathway include BCL2, DDIT3, EEF1A1, EIF2A, FAU, and FOS (full gene list provided in Table S4). 
By contrast, a group of pathways that regulate B cell survival, proliferation, differentiation, and 
plasticity, including mTOR signaling, IL-15 signaling, PI3K signaling, and Signaling by Rho Family 
GTPases, were collectively inhibited in Heme cancer B-cells (Figure 7f). Additionally, the oxidative 
phosphorylation that provides metabolic support for cell activities was also found to be downregulated 
in Heme cancer B-cells. Similar results were obtained when comparing Heme with Non-Heme 
(recovery) cells (Figure S21a). Furthermore, we investigated the underlying mechanistic pathways in 
Non-Heme cells at ICU stage or after recovery. As expected, B cell activities and functions at ICU 
stage were highly upregulated in comparison with the recovery timepoint (Figure S21b). Thus, these 
single-cell sequencing data confirmed a markedly reduced clonotype diversity and functional 
deficiency in B cells from Heme COVID+ patient, which might have contributed to the observed lack 
of anti-RBD-specific response and likely compromised immune protection. 

Discussion 

The COVID-19 outbreak has highlighted the need for easily accessible and adaptable assays to guide 
intervention plans, especially in high-risk groups. SARS-CoV-2 infection has particularly poor 
outcomes in patients with hematologic cancers and in patients with compromised B-cell immunity31,32. 
We therefore designed a portable high throughput multiplexed immune-serological assay to co-profile 
antibody response signature and immune mediators induced by natural infection or vaccination 
specifically in patients with hematologic malignancies or immunosuppressed conditions compared to 
patients with non-hematologic cancer or healthy donors. Our microchip assay combines high sample 
throughput up to 50 patient sera per chip and high degree of multiplexing for simultaneous analysis 
of up to a total of 50 soluble proteins and IgG antibodies. Our assay is low-cost (PDMS chips on PLL 
slide), fault-tolerant (5 replicates/sample), reproducible (average Pearson’s R=0.99 using 5 
independent assays/devices) and characterized by high sensitivity and specificity (around 87%) using 
low sample volumes (8 μL) as input. It has been validated with 1,012 serum samples from patients 
with altered immunity and donors collected over the past two years of the pandemic.  
 
To investigate response to infection and vaccination in immunocompromised patients versus general 
population and in different groups of immunocompromised patients, we analyzed 366 serum samples 
comprising six study cohorts: patients infected with SARS-CoV-2 with or without hematologic cancer, 
non-hematologic cancer patients pre- and post-vaccination, autoimmune disease patients under B 
cell depletion treatment pre- and post-vaccination, and healthy donors pre- and post-vaccination. For 
each serum sample, we simultaneously measured 35 plasma/serum proteins (divided into 6 functional 
categories) and SARS-CoV-2 IgG antibody against 11 different viral antigens (anti-nucleocapsid and 
anti-spike/RBD of wild-type virus and of other four variants). First, as expected, we noticed that the 
first two doses of vaccination did not induce an adequate immunological response in patients with a 
weakened immune system, supporting the need for additional strategies including booster doses for 
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these patients. Specifically, we observed that immunization induced an increase in the levels and in 
the correlative expression of immune proteins in healthy donors, but the impact was significantly lower 
in non-hematologic and autoimmune patients, which is consistent with other reported studies33. 
 
Then we expanded our analysis to COVID+ samples. We confirmed that natural SARS-CoV-2 
infection leads to a significantly stronger pro-inflammatory signature than SARS-CoV-2 vaccination, 
and we demonstrated that the expression of pro-inflammatory proteins can successfully distinguish 
ICU admission vs no-hospitalization. Of note, hematologic cancer patients were unambiguously 
characterized by elevated levels of pro-inflammatory cytokines IL-16 and IL-17A, and of T cell effector 
cytokine IL-21. As previously reported19, high levels of these cytokines are associated with severe 
disease. In contrast, the concentration of sCD40L, PDGF-AB and RANTES was significantly reduced 
in hematologic cancer patients, further implying a higher risk of COVID-19 severity in these 
patients21,22. The evaluation of these six markers may therefore develop a multi-variant model to 
predict clinical outcome and to tailor treatment strategies34. 
 
The analysis of anti-spike and RBD IgG bAbs supported the accuracy of our device by detecting 
enhanced humoral response in healthy donors one week after the second dose of COVID-19 
vaccination. In contrast, as observed also for circulating immune proteins, vaccination triggered a 
blunted immune response in immunocompromised patients, in particular in autoimmune patients 
undergoing B cell depletion treatment. These data highlight the need to establish effective therapeutic 
strategies in autoimmune patients by balancing the benefit of booster doses, the side effect given the 
already dysregulated immune condition, and the administration of B cell targeting drugs35. 
 
The impairment in the immune response was even more striking in COVID+ hematologic cancer 
patients with significantly lower levels of anti-nucleocapsid and anti-spike Abs at the time of active 
SARS-CoV-2 infection. Moreover, for the first time we observed that the levels of anti-RBD Abs were 
significantly lower in Heme COVID+ patients suggesting a limited diversity of BCR repertoire and 
potentially compromised immune protection even if anti-spike bAb levels were adequate. We 
therefore performed single-cell BCR sequencing comparing Heme vs Non-Heme Cancer COVID+ 
samples that confirmed this finding. We also observed several functional deficiencies in the immune 
system of these patients. Specifically, regarding non-malignant B cells in the Heme sample, we 
reported: i) low clonotype diversity; ii) expansion of late-stage B cells associated with severe 
symptoms29,36; and iii) enrichment in COVID-19 pathogenesis pathway and down-regulation of B cell 
activation pathways. Interestingly, we observed a high level of circulating IL-21 in COVID+ 
hematologic cancer patients, which is the signature cytokine produced by T follicular helper (Tfh) cells 
that promote B cell response and maintain germinal center formation and maturation in secondary 
lymphoid organs37. It seems that despite the effort to elicit Tfh response upon SARS-CoV-2 infection38 
as characterized by elevated IL-21 level, these patients could not develop adequate B cell immunity 
presumably due to defective germinal center reaction, especially considering pre-existing disease-
related GC dysregulation39.  
 
We recognize that the current serology panel in our device does not include the latest emerging 
Omicron (B1.1.529) variants although these could be easily integrated in our microchip. More studies 
are required to define the immune response in hematologic cancer patients not only during infection 
but also the response to vaccination to help protect this highly vulnerable group of patients. The 
patient cohort needs to be enlarged to evaluate the effect of other clinical variables. Finally, we still 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 2, 2022. ; https://doi.org/10.1101/2022.08.31.506117doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.31.506117
http://creativecommons.org/licenses/by-nc-nd/4.0/


need to examine T cell response to disentangle the complex mechanisms implicated in COVID-19 
severity and immunity. Nevertheless, our newly developed high-plex assay allowed to simultaneously 
profile COVID-19 related plasma/serum proteins and antibodies, leading to the identification of unique 
signatures in immunocompromised patients, in particular hematologic cancer patients, that may be 
used for predicting COVID-19 prognosis and adjusting therapies for these vulnerable populations. 
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Material and Methods 
Fabrication of PDMS device for high-plex immuno-serology assay 

Conventional soft lithography was applied to obtain polydimethylsiloxane (PDMS) microfluidic device. 
A negative photoresist of SU-8 (SU-8 2025 and SU-8 2050, MicroChem) and the chrome photomasks 
(Range Photomasks, Lake Havasu City, AZ) was used for the molds of 25-μm-wide and 50-μm-wide 
microfluidic channel device. ~25 μm-thick and ~50 μm-thick SU-8 film was spin-coated on a 4-inch 
silicon wafer, and the molds were then fabricated following the manufacturer’s recommendations. 
After stir mixing GE RTV PDMS part A and part B at a 10:1 ratio, the PDMS precursor was poured 
onto the mold and fabricated following the degassing and curing process. The solidified PDMS slab 
was peeled off, and inlet and outlet holes were punched with 2 mm in diameter biopsy puncher, which 
can hold up to 13 μl of solution.40  

Sample collection 

Peripheral blood was collected in red top tubes containing no anti-coagulant, allowed to clot, then 
centrifuged at 1500 g for 10min at 4°C within 2hrs of being drawn, the supernatant was then collected 
as serum. Peripheral blood samples collected in lavender Ethylenediaminetetraacetic acid (EDTA) 
coated tubes were layered over Ficoll and centrifuged at 1800 rpm for 20 minutes with the brake off. 
Plasma samples were collected from the top layer after centrifugation; peripheral blood mononuclear 
cells (PBMNCs) were collected from the layer below the plasma, washed with phosphate-buffered 
saline (PBS) counted, and then cryopreserved in dimethyl sulfoxide (DMSO) with 10% fetal bovine 
serum (FBS). Plasma and serum samples were stored until analysis at -80°C, and PBMNCs were 
stored in liquid nitrogen. 

Workflow of multiplex immuno-serology assay 

A pair of PDMS device containing 50 parallel microfluidic channels was placed on the same poly-L-
lysine coated slide. The first PDMS device was used for preparing the high-density barcoded array 
chips adapted by flow patterning method, and the second microfluidic device was employed to flow 
serum samples on the barcoded arrays. The channel width of the first and second PDMS microfluidic 
device was 25 μm and 50 μm, respectively. A 5-turn serpentine patterns was designed at the center 
of the first microfluidic device, and the second PDMS device had orthogonally aligned 50 parallel 
microfluidic channels, which can flow the loaded serum samples through the 5 replicate barcoded 
arrays. 
 
For generating barcoded arrays, the first microfluidic device was placed on a clean poly-L-lysine 
coated slide (PLL slide, Electron Microscopy Science) and baked for 2 hours at 75°C oven to 
strengthen the bonding. Afterward, 4 μL of capture Ab (~4 μg/ml) or SARS-CoV-2 recombinant antigen 
(~0.2 mg/ml) in 1x PBS (Gibco) was loaded in each channel, and then withdrawn in using a house 
vacuum system for ~3 minutes. To differentiate the location of barcoded arrays in the fluorescent 
image, fluorescein isothiocyanate (FITC, 488 nm emission) conjugated bovine serum albumin (BSA, 
1 mg/ml, Thermo Fisher Scientific) in 1x PBS was introduced to the first microfluidic channel. 
Following 4 hours incubation at room temperature, the capture antibodies or SARS-CoV-2 
recombinant antigens were immobilized on the PLL slide. Then PLL slide with PDMS chip was soaked 
into the 1% BSA in 1x PBS (BSA solution) and PDMS chip was detached form the PLL slide. After 
removing excess capture antibodies or SARS-CoV-2 recombinant antigens with 3 times pipetting 
using BSA solution, the PLL slide was blocked for 1 hours at room temperature using 1 ml of BSA 
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solution on the surface. Finally, the PLL slide was sequentially dipped into 1x PBS, 1:1 ratio of 1x PBS 
and deionized water (DI water), and DI water to rinse off remaining salts, and then dried using nitrogen 
gas. Functionalized barcoded array chips were stored in the -80 °C freezer until use (within 1 week). 
 
To evaluate circulating proteins or SARS-CoV-2 IgG bAb in serum, the second microfluidic device 
was carefully aligned and attached to the first barcoded array chip. Thermal bonding was not applied 
to avoid degradation of immobilized panel by high temperature. A total of 8 μL serum sample from 
patient/donor was loaded in each channel. As similar, FITC conjugated anti-mouse IgG antibody (2 
μg/ml, Cell Signaling Technology) was loaded in the first microfluidic channel to differentiate the 
location of loaded samples in fluorescent image as well as recognize the presence of mouse derived 
antibodies on PLL slide. The serum samples were withdrawn in for 20 minutes using the house 
vacuum system, and the flow direction was exchanged three times every 20 minutes. The circulating 
proteins or SARS-CoV-2 IgG Abs can be captured by the barcoded PLL slide. Afterward, the second 
microfluidic chip was removed from the PLL slide after soaking into BSA solution, and a cocktail of 
biotinylated detection antibody (~1 ng/ml per each protein panel) and phycoerythrin (PE, 532 nm 
emission) conjugated anti-human IgG antibody (10 ng/ml, Abcam) was loaded onto the barcoded 
array slide after removing excess serum using BSA solution. Following 45 minutes incubations at 
room temperature, allophycocyanin (APC, 635 nm emission) conjugated streptavidin (4 ng/ml, 
Thermo Fisher Scientific) and 1 ml of BSA solution was applied for 20 minutes and 30 min at room 
temperature sequentially. Finally, the fluorescent image was obtained using Genepix 4200A scanner 
(Molecular Devices) in 5-μm resolution after desalination and drying steps described above. 

Scanned fluorescence signal analysis 

Three channels, 488 nm (FITC), 532 nm (PE) and 635 nm (APC) laser, were used to collect 
fluorescence signals, and each image scanning was conducted under the same power and gain 
values. Fluorescence intensities were evaluated with image analysis tool in Genepix Pro 6.1 software 
(Molecular Devices), and the mean photon counts were extracted by aligning a 20 x 20 μm2 square 
array template from not only intersection of panel and serum but also a region without microfluidic 
channel for serum sample. 5 square arrays from a region without second microfluidic channel was 
used as on-chip control to provide threshold for each panel in each replicate, and the threshold of 
each panel was defined as the mean value of the 5 square plus 3 times standard deviation. Only the 
values higher than threshold were log2 transformed after subtracting threshold, whereas values below 
the threshold were set as 0. If more than 2 out of 5 replicates were lower than the threshold, the data 
point was considered as low quality and also set as 0. Afterward, fluorescence intensity data was 
converted to concentration or BAU/ml unit using the titration curve shown in Figure 1d-f. 
 
For quantitative evaluation, titration test was conducted using serial 2-fold dilution of recombinant 
antigens or SARS-CoV-2 Abs for the 46-plex panel, and each curve was fitted by applying hyperbola 
equation in a non-linear regression model using Prism 9 (GraphPad). The value of Kd and Bmax for 
each protein or antibody was calculated by the equation below.  

𝑌 = 	
𝐵𝑚𝑎𝑥	 × 	𝑋
𝐾𝑑	 + 	𝑋

 

Where Bmax is the maximum number of binding sites, Kd is the ligand concentration that binds to 
half the receptor sites at equilibrium, respectively. Bmax and Kd values of each protein or antibody 
were listed in Table S5. 
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Single-cell RNA sequencing and BCR sequencing 

Cryopreserved PBMCs were thawed and the dead cell removal kit (Myltenyi Biotec) was applied to 
sort out dead cells. To enrich B cells, PBMCs were stained with anti-CD19 MicroBeads (Miltenyi Biotec) 
and loaded on a MACS Column that is placed in the magnetic field as per the manufacturer’s 
instructions. B cells from each sample were then labeled with hashtag multiplexing antibodies 
(BioLegend) according to the manufacture’s protocol and pooled together. Chromium Next GEM 
Single Cell 5' Reagent Kits v2 (10x Genomics) were employed to perform the multi-omics profiling of 
enriched B cells. Briefly, stained cells were loaded onto the Chromium Next GEM Chip K, Gel Beads-
in-emulsion (GEMs) were generated, and cells were lysed followed by the capture of poly-adenylated 
mRNA onto beads. The transcripts were reverse transcribed inside each GEM, and the barcoded full-
length cDNA was PCR-amplified. Then, the amplified cDNA from mRNA and from cell surface 
hashtags were separated by size selection for generating V(D)J, 5ʹ gene expression libraries and 
hashtag libraries, respectively. Finally, the constructed libraries were sequenced on the paired-end 
150bp Novaseq platform (Illumina).  

Single-cell RNA-seq data processing 

The sequenced data was aligned and quantified using the CellRanger multi pipeline (version 7.0.0, 
10x Genomics) against the GRCh38 human reference genome. Cells from each demultiplexed 
sample were first filtered based on two metrics: 1) the number of detected genes per cell must be 
between 200 to 5000; 2) the proportion of mitochondrial gene counts (UMIs from mitochondrial genes 
/ total UMIs) must be less than 10%. Then, the gene expression data was normalized using Seurat 
sctransform.41 To perform batch effect correction, the Seurat v4 anchor-based integration workflow 
was used with the default parameter setup.42 Finally, the “integrated” data assay was reduced to two 
dimensions using UMAP for visualization, with 30 computed PCs as input. The unique cell barcodes 
of filtered cells were used to match and identify the BCR V(D)J gene sequences from the annotated 
contig files. 

Ingenuity Pathway Analysis 

Ingenuity Pathway Analysis (IPA, QIAGEN) was used to understand the underlying signaling 
pathways.30 Here, DEGs distinguishing each sample, the corresponding fold change value, p value, 
and adjusted p value of each gene were loaded into the dataset. Ingenuity knowledge base (genes 
only) was used as reference set to perform Core Expression Analysis. B cell related signaling were 
selected from identified top canonical pathways to represent major functional profiles of each sample. 
The z-score was used to determine activation or inhibition level of specific pathways. 

Statistics 

All the statistical analyses were performed with Prism 9 (GraphPad). Mann Whitney test was used to 
compare the specific observations between two groups. A P value<0.05 was considered statistically 
significant. 
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Figures and captions 

 
 
Figure 1. High-plex immuno-serology assay design and titration test. (a) Schematic workflow. The first 
PDMS “microfluidic patterning chip” with 50 parallel microchannels was placed on the poly-l-lysine coated glass 
slide (PLL slide), then purified antibodies or SARS-CoV-2 recombinant antigens were flowed into the 
microchannels. After removing the first PDMS, the second “microfluidic test chip” was placed on the same PLL 
slide. Then, serum samples were added, and the captured proteins or SARS-Cov-2 binding antibodies were 
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detected via a surface-bound immune-sandwich assay. Finally, scanning fluorescent images were obtained and 
analyzed. (b) Photographic image of the first PDMS microchip. (c) Integrated device design after overlaying the 
first and second PDMS. The protein and SARS-CoV-2 serology panels evaluated in this work are listed on the 
right side. (d) The titration curves of US SARS-CoV-2 serology standard (Frederick National Laboratory). (e) 
The titration curves of SARS-CoV-2 anti-spike/RBD antibodies. (f)  The titration curves of protein panels. Each 
titration curve was plotted with hyperbola equation in nonlinear regression. The data presented is the mean 
value of 5 replicates from a single assay. Scatter plots show means ± SEM. PDMS, polydimethylsiloxane; Ab, 
antibody; BSA, bovine serum albumin; FITC, fluorescein isothiocyanate; APC, allophycocyanin; PE, 
phycoerythrin; BAU, Binding Antibody Units.  
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Figure 2. Validation of assay performance. (a) Representative fluorescent image of high-plex immune-
serology assay in the measurement of 48 serum samples in a single run. Red and yellow signal represent the 
plasma protein and SARS-CoV-2 IgG Ab, respectively. Enlarged image shows a fluorescence signal from 5 
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serum samples. FITC conjugated BSA was introduced to differentiate first column. (b) The evaluation of potential 
channel cross-talk. Antibodies generated from other species were coated for the indicated proteins, and the 
remaining 29 are mouse-derived capture antibodies. FITC-conjugated anti-mouse IgG Ab was introduced to the 
first row. (c) Device-to-device reproducibility evaluation using 5 barcoded array chips prepared at different time 
points. (d) The Pearson correlations across all the 5 chips. (e) The correlation plot between our high-plex assay 
and commercialized Quest diagnosis in the measurement of 98 serum samples. (f) The sensitivity and specificity 
of each evaluated anti-spike/RBD antibody. 101 preliminary blinded samples from NCI-Frederick National 
Laboratory for Cancer Research were used. (g) The concentration comparisons between anti-spike or anti-RBD 
antibodies. (h) The sensitivity and specificity of nucleocapsid in the test of 101 preliminary blinded samples. (i) 
Unsupervised clustering of all the 1012 samples measured using our assay (only for visualization). The 
concentrations of the 35 proteins and 10 anti-spike/RBD antibodies were used to perform the clustering. Each 
point represents one measured sample. P values were calculated with two-tailed Mann-Whitney test. (* P < 
0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001). Scatter plots show means ± SEM. Ab, antibody; BSA, bovine 
serum albumin; FITC, fluorescein isothiocyanate. 
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Figure 3. Vaccination-induced immunological functional protein response in each patient and donor 
group. (a-d) Correlation matrices of the 35 proteins evaluated in our high-plex immuno-serology assay panel 
for Non-Heme cancer patients pre-vaccination (a) and post-vaccination (c); autoimmune patients with B cell 
depletion therapy pre-vaccination (b) a n d  post-vaccination (d). Only significant correlations (<0.05) are 
represented as dots. Pearson’s correlation coefficients from comparisons of protein concentrations across all 
the patients in a specific group are visualized by color intensity. Proteins were ordered by hierarchical clustering. 
(e-g) Comparisons of the average concentration of each functional protein category between pre- and post-
vaccination in healthy donors (e); Non-Heme cancer patients (f); and autoimmune (B cell depleted) patients (g). 
(h-j) Comparisons of the average concentration of proteins regulating pro-inflammatory pathways (h); effector 
T cells (i); and endotheliopathy (j) between pre-vaccination and different timepoints post-vaccination. Visit 1, 
two weeks after the first vaccine dose; Visit 2, 0~3 days before the second vaccine dose; Visit 3, two weeks 
after the second vaccine dose. P values were calculated with two-tailed Mann-Whitney test. (* P < 0.05, ** P < 
0.01, *** P < 0.001, **** P < 0.0001). ns, not significant. 
 
 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 2, 2022. ; https://doi.org/10.1101/2022.08.31.506117doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.31.506117
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Figure 4. SARS-CoV-2 natural infection and vaccination induce different magnitude of pro-inflammatory 
signature, correlating to the level-of-care for patients. (a) Unsupervised clustering of 302 patient serum 
samples based on the concentrations of the 35-protein panel. UMAP is used to visualize the data. (b) UMAP 
representation split by patient conditions. Samples from COVID-19 infected patients are localized in cluster 2. 
(c) Differentially expressed proteins that define each cluster. (d) Comparisons of the average concentration of 
proteins regulating pro-inflammatory and T cell effector pathways between different patient/donor groups. (e-f) 
Correlation matrices of the 35-protein panel for Heme COVID+ patients (e) and Non-Heme cancer COVID+ 
patients (f). Only significant correlations (<0.05) are represented as dots. Pearson’s correlation coefficients from 
comparisons of protein concentrations across all the patients in specific groups are visualized by color intensity. 
Proteins were ordered by hierarchical clustering. (g) ROC curve for level-of-care prediction based on the pro-
inflammatory protein concentrations of COVID-19 infected patients. A binomial logistic regression was used to 
fit the model, and a stratified fivefold cross-validation was implemented to compute the ROC and AUC. (h-i) 
Comparisons of the concentration level of specific proteins between COVID-19 infected groups and vaccinated 
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groups. P values were calculated with two-tailed Mann-Whitney test. (* P < 0.05, ** P < 0.01, *** P < 0.001, **** 
P < 0.0001). ICU, Intensive Care Unit; ROC, receiver operator characteristic; AUC, area under the curve. UMAP, 
Uniform Manifold Approximation and Projection. 
 

 
 
Figure 5. Vaccination induced circulating IgG antibody response in each patient and donor group. (a-b) 
Comparisons of the concentration of anti-spike (a) and anti-RBD (b) IgG binding against wild type or other 
variants between different timepoints post-vaccination. (c-e) Correlation matrices of the 10 SARS-CoV-2 
serology panels at Visit 1 and Visit 3 in healthy donors (c); Non-Heme cancer patients (d); and autoimmune (B 
cell depleted) patients (e). Only significant correlations (<0.05) are represented as dots. Pearson’s correlation 
coefficients from comparisons of IgG antibody concentrations across all the patients in specific group are 
visualized by color intensity. Antibodies are listed in order of the variants’ appearance. (f) Comparisons of the 
IgG antibody response rates between different timepoints post-vaccination in each group. (g) Comparisons of 
the IgG antibody response rates between patient/donor groups at each timepoint post-vaccination. Visit 1, two 
weeks after the first vaccine dose; Visit 2, 0~3 days before the second vaccine dose; Visit 3, two weeks after 
the second vaccine dose. P values were calculated with two-tailed Mann-Whitney test. (* P < 0.05, ** P < 0.01, 
*** P < 0.001, **** P < 0.0001). 
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Figure 6 COVID-19 infected hematologic malignancy patients exhibit limited RBD-specific binding. (a) 
Comparison of the SARS-CoV-2 nucleocapsid (N) protein binding between COVID infected and post-vaccinated 
groups. (b) Comparisons of the concentration of anti-spike and anti-RBD binding against wild type and 
subsequent variants between COVID infected and post-vaccination groups. (c) Comparison of the IgG antibody 
response rates between COVID infected patients with hematological cancer or other types of cancer. (d) 
Correlation matrices of the 10 SARS-CoV-2 serology panels in COVID infected Heme patients and Non-Heme 
cancer patients. Only significant correlations (<0.05) are represented as dots. Pearson’s correlation coefficients 
from comparisons of IgG antibody concentrations across all the patients in specific groups are visualized by 
color intensity. Antibodies are listed in order of the variants’ appearance. (e-f) SARS-CoV-2 IgG binding antibody 
titers in ICU or after recovery from one Heme COVID+ (e) and one Non-Heme cancer COVID+ patient (f). P 
values were calculated with two-tailed Mann-Whitney test. (* P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001). 
BAU, Binding Antibody Units; ICU, Intensive Care Unit. 
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Figure 7. Single-cell RNA and BCR sequencing identifies low clonotype diversity and functional 
deficiency in B cells from the patient with hematologic cancer. (a) The percentage of top 5 clonotypes in 
each sample. (b) UMAP clustering of B cells from COVID infected Heme patient and Non-Heme cancer patient 
(two timepoints, in ICU and after recovery) identified 7 distinct subpopulations. (c) Dotplot of selected B cell 
marker gene expression in each cluster. The size of each circle represents proportion of single cells expressing 
the gene, and the color shade indicates normalized expression levels. (d) Cell proportion of each sample in 
each identified cluster. (e) Comparison of expression levels of marker genes in each sample. (f) Corresponding 
canonical pathways regulated by the highly differentially expressed genes between Heme patient vs. Non-Heme 
cancer patient (ICU). Pathway terms are ranked by –log 10 (P value). The side listed gene names represent top 
6 symbolic molecular markers related to the pathway. A statistical quantity, called 𝑧	score, is computed and 
used to characterize the activation level. 	𝑧 score reflects the predicted activation level (𝑧 < 0, downregulated; 
𝑧 > 0, upregulated; 𝑧 ≥ 2 or 𝑧 ≤ −2 can be considered significant). P values were calculated with two-tailed 
Mann-Whitney test. (* P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001). BCR, B cell repertoires; ICU, 
Intensive Care Unit. UMAP, Uniform Manifold Approximation and Projection. 
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