

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. Contents lists available at ScienceDirect

Virus Research

journal homepage: www.elsevier.com/locate/virusres

Porcine sapoviruses: Pathogenesis, epidemiology, genetic diversity, and diagnosis

Makoto Nagai^a, Qiuhong Wang^{b,*}, Tomoichiro Oka^c, Linda J. Saif^b

^a Laboratory of Infectious Disease, School of Veterinary Medicine, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan

^b Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Department of

Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA ^c Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan

ARTICLE INFO

Keywords: Porcine Sapovirus Pathogenesis Epidemiology Genetic diversity Diagnosis

ABSTRACT

The first porcine Sapovirus (SaV) Cowden strain was discovered in 1980. To date, eight genogroups (GIII, V-IX) and three genogroups (GIII, GV, and GVI) of porcine SaVs have been detected from domestic pigs worldwide and wild boars in Japan, respectively based on the capsid sequences. Although GIII Cowden strain replicated in the villous epithelial cells and caused intestinal lesions in the proximal small intestines (mainly in duodenal and less in jejunum), leading to mild to severe diarrhea, in the orally inoculated neonatal gnotobiotic pigs, the significance of porcine SaVs in different ages of pigs with diarrhea in the field is still undetermined. This is due to two reasons: 1) similar prevalence of porcine SaVs was detected in diarrheic and non-diarrheic pigs; and 2) co-infection of porcine SaVs with other enteric pathogens is common in pigs. Diagnosis of porcine SaV infection is mainly based on the detection of viral nucleic acids using reverse transcription (RT)-PCR and sequencing. Much is unknown about these genetically diverse viruses to understand their role in pig health and to evaluate whether vaccines are needed to prevent SaV infection.

1. Introduction

The first porcine sapovirus (SaV), the Cowden strain was discovered by electron microscopy in the intestinal contents of a 27-day-old diarrheic nursing pig in the United State in 1980 (Saif et al., 1980). Later it was classified as a genogroup III (GIII) SaV based on the complete genomic sequence analysis (Guo et al., 1999). Sapoviruses belong to the Sapovirus genus within the family Caliciviridae. They are non-enveloped viruses that possess a single-stranded, positive-sense RNA genome. Sapovirus particles are small and round with a diameter of 30-40 nm, exhibiting a typical star-of-David structure and cup-shaped surface depressions by electron microscopy (EM) or immune EM (IEM) (Alhatlani et al., 2015; Oka et al., 2015; Saif et al., 1980). The genome length is 7-8,000 nucleotides (nt) excluding a 3'-end polyadenylated [poly(A)] tail. The 5'-end of the genome covalently links to a small virus-encoded protein (VPg). Sapovirus genomes have two overlapping open reading frames (ORFs): ORF1 and ORF2 (Oka et al., 2015). ORF1 encodes the nonstructural proteins NS1-NS2-NS3 (putative NTPase)-NS4-NS5 (VPg)-NS6 (protease)-NS7 (RNA-dependent RNA polymerase: RdRp) and the capsid protein, VP1. ORF2 encodes the minor structural protein, VP2. Sapoviruses are genetically highly diverse and have been classified into 19 genogroups based on the VP1 sequences (Farkas et al., 2004; Oka et al., 2016; Scheuer et al., 2013; Yinda et al., 2017). Among them, eight genogroups (GIII, GV, GVI, GVII, GVII, GIX, GX, and GXI) and 3 genogroups (GIII, GV, and GVI) of SaVs have been detected from pigs and wild boars, respectively. In this review, we will summarize current knowledge on the pathogenesis of GIII Cowden strain, the epidemiology and genetic diversity of porcine SaVs, and the diagnosis of SaV infection in pigs.

2. Pathogenesis

The pathogenesis of most genogroups of porcine SaVs is unknown, except for GIII Cowden strain. The original field sample for the discovery of Cowden strain contained not only SaV particles (33 nm in diameter), but also rotavirus (55 nm and 70 nm in diameter for singleand double-capsid particles, respectively) and 23-nm virus-like particles (Saif et al., 1980). Saif et al. successfully removed rotavirus from the sample using selective membrane ultrafiltration before serial passage in gnotobiotic pigs. The 23-nm virus-like particles failed to replicate in the experimentally inoculated gnotobiotic pigs. At the 12th and above passages, the intestinal contents of the inoculated pigs contained only

* Corresponding author.

E-mail address: wang.655@osu.edu (Q. Wang).

https://doi.org/10.1016/j.virusres.2020.198025 Received 31 January 2020; Received in revised form 7 May 2020; Accepted 13 May 2020 Available online 26 May 2020

0168-1702/ © 2020 Elsevier B.V. All rights reserved.

Table 1 Sapovirus detection from _F	pigs and wild boars						
Country	Animals (growing stage)	Detection method (region)	Diarrhea (Yes/No)	Detection rate (positive/total samples)	Genogroup	Co-detected viruses	References
Belgium	pig (young - adult)	RT-PCR (RdRp)	NA	11.6% (5/43)	GIII, GVII, G? (GVII)	NA	Mauroy et al., 2008.
Brazil	pig (≤ 28 days old)	RT-PCR (RdRp)	Yes No	20.8% (17/82) 35.5% (11/31)	GIII, GVIII?	NA	Barry et al., 2008.
Brazil	pis (nursing -	RT-PCR (RdRp, ORF2)	Yes	6.9% (2/29) 10.3% (24733)	GIII, GVII, G? (GXI)	NA	Cunha et al., 2010.
Brazil	pig (≤ 56 days	RT-PCR (RdRp)	Yes	14.7% (11/75)	GIII, GVII, GVIII	NA	das Merces
	(plo		No	10.6% (10/94)			Hernandez et al., 2014.
Brazil	pig (farrow to finish)	RT-PCR (RdRp)	No	23.7% (40/169)	GIII, GIX (?)	NA	Valente et al., 2016
Canada	pig (< 4 - over 12 weeks)	RT-PCR (RdRp)	NA	NA	GIII, GVI, GVII, G? (GVII), GVIII	NA	L'Homme et al., 2009.
Canada	pig (NA)	RT-PCR (RdRp, ORF2)	NA	NA 0.000 (0.000)	GIII, G? (GVII)	NA	L'Homme et al., 2010.
China	pig (\leq 1 to $>$ 3 months)	KI-PCK (KaKp)	NA	0.9% (8/904)	GIII	NA	Shen et al., 2009.
China	pig (piglet - sow)	RT-PCR (RdRp)	No	1.0% (2/209)	GIII	NA	Shen et al., 2011.
China	pig (weaning)	RT-PCR (RdRp-VP1)	Yes Vec	14.4% (22/153) 6 0% (7 /101)	GIII	NA NA	Liu et al., 2012a. Liu et al 2014b
China	pig (NA)	RT-PCR (complete genome)	Yes	NA	GIII	NA	Liu et al., 2014a.
China	nia (20-30 dave	RT-PCR (RdRn-VD1)	Vec	33 3 % (0/22)	NA	norcine hocavirus norcine stool-associated single-stranded	Zhanoretal 2014
CILIFIC	old)	NGS	0 1	(17/6) 02 0.00		porture occavitas, porture storeasociated single-suance DNA virus, picobimavitus, coronavitus, porcine astrovirus, porcine kobuvitus, enterovirus G, posavitus, sapelovirus, porcine torovirus, porcine epidemic diarrhea virus	4107 cm 2014.
			No	17.2 % (5/29)		porcine astrovirus, porcine kobuvirus, enterovirus G, posavirus, sapelovirus, porcine torovirus, porcine epidemic diarrhea virus	
China	pig (1 month old)	RT-PCR (RdRp)	Yes	3.4% (5/146) MA	GIII, GVI	NA NA	Jun et al., 2016.
Cnina a -	(DIO SYBD CL) BIG	KI-PCK (complete genome)	Ies	NA		NA 	Li et al., 2017
China	pig (42 and 75 days old)	NGS	Yes	NA	GIII, GVII	NA	Lı et al., 2018.
Czech Republic	pig (nursing - sow)	RT-PCR (ORF2)	No	10.2% (20/196)	GIII	NA	Dufkova et al., 2013.
Denmark, Finland, Hungary, Italy, Slovenia, Spain	pig (< 1 year)	RT-PCR (RdRp)	Yes and No (Denmark, Spain), No (Finland, Hungary, Italy, Slovenia)	11.1% (117/1050)	GIII, GVI, GVII, GVIII, GIX?, GX?	NA	Reuter et al., 2010.
Ethiopia	pig (nursing - sow)	RT-PCR (RdRp)	nursing (Yes)	NA	GIII	NA	Sisay et al., 2016.
Hungary	pig (1 - 12 days old)	RT-PCR (RdRp)	Yes	33.3% (2/6)	G? (GIII)	NA	Reuter et al., 2007.
	pig (4 days - 6 months old)		No	9.1% (1/11)	G? (GIII)		
Ireland	pig (4–5 to 8–9 weeks old)	RT-PCR (RdRp)	No	2.4% (7/292)	GIII, GVII	NA	Collins et al., 2009.
Italy	pig (1 - 3 months old)	RT-PCR (RdRp)	Yes	32.5% (68/209)	GIII, G? (GVII?, GVIII)	NA	Martella et al., 2008.
Italy*	pig (12 days & 1-3 months old)	RT-PCR (RdRp)	Yes	20.2% (18/89)	GIII, GVII, GVIII, GIX	NA	Di Bartolo et al., 2014
	pig (3-4 & 11-12 months old)		No	7.0% (14/201)			

Virus Research 286 (2020) 198025

(continued on next page)

Country	Animals (growing stage)	Detection method (region)	Diarrhea (Yes/No)	Detection rate (positive/total samples)	Genogroup	Co-detected viruses	References
Japan	pig (suckling -	RT-PCR (RdRp)	Yes	12.3% (33/269)	NA	Rotavirus, Escherichia coli, coccidia, Cryptosporidium parvum	Katsuda et al., 2006.
Japan	weaning) pig (less than 5 monthe)	RT-PCR (RdRp)	Yes	37.5% (6/16)	K7, K10 (GVII); K8, K11 K13 (G2)·	NA	Yin et al., 2006.
	(emiloin		No	50% (4/8)	K16, K15, K19, K24 (G?)		
Japan	pig (finisher)	RT-PCR (RdRp, ORF2)	No	23.3% (56/240)	GIII, GV, GVII, GVIII?, (GVII), G? (GVIII)	NA	Nakamura et al., 2010.
Japan	pig (2-120 days old)	NGS	No	NA	GIII, GV, GVI, GVII, GVIII, GX, GXI	rotavirus A, B, C, porcine astrovirus, porcine kobuvirus, enterovirus G, picobirnavirus, posavirus, sapelovirus, porcine micornavirus I anan reschovirus	Kuroda et al., 2017.
Japan	wild boar (4-7 months)	NGS	No	12.5% (6/48)	GIII, GV, GVI	porcine kobuvirus, porcine astrovirus 2, 4	Katsuta et al., 2019.
Korea	Pig (sucking - weaned)	RT-PCR (ORF2)	Yes	8.8% (9/102)	NA	NA	Kim et al., 2006.
Korea	pig (3 - 70 days old)	RT-PCR (RdRp, ORF2)	Yes	29.1% (69/237)	GIII	NA	Jeong et al., 2007.
Korea	pig (2-3 months old)	RT-PCR (RdRp)	NA	22.6% (12/53)	GIII	NA	Yu et al., 2008.
Korea	pig (nursing -	RT-PCR (ORF2)	Yes	10.9% (19/175)	GIII	NA	Keum et al., 2009.
;	nnisner)		NO	11.3% (41/302)		;	
Korea	pig (NA)	RT-PCR (RdRp) PT DCP (OPE2)	NA	6.5% (37/567) 1.0% (16 /160)	GIII, GVII?	NA NA	Song et al., 2011.
DIUVANIA	fattening)		No	8.4% (21/251)		VAT	2018.
Slovenia	pig (suckling - fattening)	RT-PCR (RdRp)	No	7.1% (29/406)	GIII, GVII, GVIII, GIX?	NA	Mijovski et al., 2010.
Spain	pig (neonatal)	NGS	Yes	21.3% (10/47)	GIII	rotavirus A, B, C, porcine kobuvirus, porcine astrovirus 3, 4, 5, porcine epidemic diarrhea virus	Cortey et al., 2019.
Taiwan	pig (suckling - fatteninø)	RT-PCR (RdRp)	No	25% (1/4) 0.57% (5/863)	GIII	porcine kobuvirus NA	Chao et al., 2012.
United States	pig (suckling -	RT-PCR (RdRp) pT PCP and microsuell	No or Yes	62.6% (389/621) 0.64% (4.621)	GIII CVI771681 1ibo	NA	Wang et al., 2006a.
	(MOC	hybridization		0.01% (1/021) 0.81% (5/621) 5.2% (32/621)	GVIII?/QW19-like GVII/LL26-like		
United State	pig (finisher)	RT-PCR (RdRp, ORF2)	No	5.1% (17/335)	GIII, GVII, GVIII, GIX?	NA	Scheuer et al., 2013.
United States	pig (NA)	NGS	Yes	13% (28/217)	GIII	porcine epidemic diarrhea virus	Chen et al., 2018.
United States	pig (10 days old - finishing)	NGS	Yes	NA	GIII, GVI	rotavirus A, C, porcine kobuvirus, porcine astrovirus, porcine epidemic diarrhea virus, enterovirus G, porcine deltacoronavirus	Wang et al., 2019.
Venezuela	pig (0-9 weeks of age)	RT-PCR (RdRp) **	Yes No	14.3% (9/63) 19.1% (27/141)	NA	NA	Martínez et al., 2006.
RdRp: RNA-dependent RN NA: not available.	A polymerase.						

*Although the prevalence between diarrheic and clinically healthy pigs differed significantly in this study, pig ages were also different. **The calicivirus universal primers (primers 289/290) were used for RT-PCR. Because this primer pair is not specific for porcine SaV and the PCR products of the 36 positive samples were not sequenced, these positive samples may include other porcine caliciviruses than porcine SaVs.

Table 1 (continued)

SaV particles by immune electron microscopy (IEM). Flynn et al. (Flynn et al., 1988) studied the pathogenesis of porcine SaV Cowden strain in 4-day-old gnotobiotic pigs. They inoculated orally (PO) 18 pigs with the 12th passage of the virus, monitored clinical signs for 14 days, and euthanized pigs at different days post-inoculation (dpi) to examine histopathological changes compared to mock-inoculated pigs at similar ages. They found that SaV Cowden strain caused diarrhea in all the pigs by 3 dpi and persisted for 3-7 days. Most pigs had mild diarrhea during the infection and two pigs (2/18) had severe diarrhea at 4-5 dpi. Porcine SaV replicated in the villous epithelial cells, but not crypt cells, mainly in duodenum, less in jejunum and the least in ileum, but not in the large intestines as determined by immunofluorescent assays (IFA) using pig hyperimmune antisera against porcine SaV Cowden strain. Histologically, porcine SaV-inoculated pigs showed mild to severe villous atrophy in the duodenum with short and flat villi with areas of denudation. Typical SaV particles were detected from the feces and large intestinal contents (LIC) of SaV-inoculated pigs at 1-7 dpi using IEM. Later Guo et al. (Guo et al., 2001) found that infectious porcine SaV entered the blood stream during the acute phase of infection of orally inoculated gnotobiotic pigs. Using more sensitive Taqman realtime RT-PCR assay for the detection of porcine SaV RNA, fecal viral RNA shedding in virus-inoculated pigs started at 1-3 dpi, reached the highest titers [10.8 ± 0.4 log10 genomic copy equivalent (GE)/mL] at 6-10 dpi and lasted for 30 \pm 4 days (Lu et al., 2016). These observations are similar to the pathogenesis of bovine nebovirus, an enteric calicivirus belonging to the Nebovirus genus, that replicated in the proximal portion of the small intestine of calves (Hall et al., 1984; Smiley et al., 2002).

The 13th passage of porcine SaV Cowden strain from the LIC of a gnotobiotic pig was successfully isolated in primary porcine kidney cells (Flynn and Saif, 1988). For decades, PoSaV had been the only culturable enteric calicivirus until the successful cultivation of human noroviruses in B cells in 2014 and in intestinal stem cell-derived human enteroids in 2016 (Ettayebi et al., 2016; Jones et al., 2014). Interestingly, initial adaptation of PoSaV in primary porcine kidney cells and the subsequent adaptation in LLC-PK, a continuous swine kidney epithelial cell line, required the supplementation of intestinal contents collected from mock-infected gnotobiotic pigs (Flynn and Saif, 1988; Parwani et al., 1991). Later, the essential components in the intestinal contents for PoSaV replication were identified as bile acids (Chang et al., 2004). Several human NoVs were grown in enteroids, which occurred exclusively when the culture medium was supplemented with bile or bile acids (Ettayebi et al., 2016). Bile acids are synthesized in the liver, released with bile into the duodenal lumen, and most of them are recycled back into the liver in the ileum. So, the concentration of bile acids is much higher in the proximal intestine than in other organs and this may be one of the restriction factors for PoSaV replication mainly in duodenum.

Using the LLC-PK cell culture system, a2,3- and a2,6-linked terminal sialic acids on O-linked glycoproteins have been identified as the binding receptor for porcine SaV Cowden strain (Kim et al., 2014). In the same study, it was also confirmed that these sialic acids are the binding receptor on piglet small intestinal tissues. Recently, the same group found that the tight junction (TJ) protein occludin is a functional receptor for porcine SaV in LLC-PK cells (Alfajaro et al., 2019). The binding of porcine SaV or virus-like particles or bile acids alone to LLC-PK cells caused the dissociation of TJs and exposed occludin for PoSaV binding. Then SaV and occludin form a complex and move to late endosomes via Rab5- and Rab7-dependent trafficking to start replication. The fact that more than one receptor is involved in SaV binding and entry is similar to findings for some other caliciviruses. Feline calicivirus (FCV) F9 strain uses a2,6-linked sialic acids on an N-linked glycoprotein as binding factors (Stuart and Brown, 2007) and junctional adhesion molecule 1 (JAM-1) for virus entry into cells (Makino et al., 2006). Some murine noroviruses use sialic acid linked to ganglioside (CW3 like strains) or protein (CR3 strain) (Taube et al., 2009) for

binding and protein receptors CD300lf and/or CD300ld for entry (Haga et al., 2016; Orchard et al., 2016).

Taken together, cellular receptors ($\alpha 2,3$ - and $\alpha 2,6$ -linked sialic acids on O-linked glycoproteins and occludin) and bile acids are some of the restriction factors of porcine SaV replication in the proximal small intestine. It may also explain why porcine SaV Cowden strain did not replicate in other organs when piglets were inoculated intravenously (IV) with the virus (Guo et al., 2001).

3. Epidemiology

To date, porcine SaVs have been detected in the fecal samples of domestic pigs with and without diarrhea worldwide and of wild boars without diarrhea in Japan (Table 1). Pigs in all growing stages can be infected with porcine SaVs; however, pigs are infected with SaVs early in life and post weaning pigs have higher SaV infection rates than other age groups (Barry et al., 2008; Jeong et al., 2007; Reuter et al., 2010; Valente et al., 2016; Wang, Q.H. et al., 2006a). This can be explained by lactogenic immunity in nursing pigs and environmental factors (Valente et al., 2016). Suckling piglets are protected passively by maternal antibodies against SaVs until weaning and post weaning pigs become susceptible to SaV infections when maternal antibodies decline (Alcalá et al., 2010; Barry et al., 2008; Martínez et al., 2006). On the other hand, nutritional, environmental and social changes during the postweaning period add significant stress on these animals (Valente et al., 2016). Although porcine SaVs induced diarrhea and intestinal lesions in experimentally inoculated gnotobiotic piglets (Guo et al., 2001; Flynn et al., 1988; Lu et al., 2016), there were no significant differences in the prevalence of SaVs between the same age groups of pigs with diarrhea and without diarrhea in the field (Table 1). Currently, GIII is the predominant genogroup of porcine SaVs (Table 1). As GVI-GXI genogroups have been proposed relatively recently, the prevalence of these genogroups have not yet been determined.

Another significant finding is that SaVs often co-infect pigs with other enteric pathogens. Groups A, B, and C rotaviruses, porcine kobuvirus, porcine astrovirus, porcine epidemic diarrhea virus, enterovirus G, porcine deltacoronavirus, picobirnavirus, posavirus, sapelovirus, porcine picornavirus Japan, teschovirus, porcine bocavirus, porcine stool-associated single-stranded DNA virus, porcine torovirus, *Escherichia coli*, coccidia, and *Cryptosporidium parvum* have been simultaneously detected from SaV-infected pigs or wild boars (Chen et al., 2018; Cortey et al., 2019; Katsuda et al., 2006; Katsuta et al., 2019; Kuroda et al., 2017; Wang et al., 2019; Zhang et al., 2014) (Table 1).

4. Classification

Sapoviruses have been identified from many species of mammals, including humans, pigs, mink, dogs, sea lions, bats, chimpanzees, and rats (Oka et al., 2016) (Table 2). They are not classified based on the host species but genetic heterogeneity. Previously, partial RdRp or partial VP1 regions were used for virus characterization and epidemiological surveillance of field isolates (Oka et al., 2015). However, several studies reported inconsistent genetic grouping between RdRp and VP1 region sequences due to the consequence of recombination events (Hansman et al., 2005; Kuroda et al., 2017; Wang et al., 2005). Therefore, a standard SaV classification scheme was desired. The VP1 region is more diverse than the RdRp region and different genetic groups based on VP1 sequences correlate with virus antigenicity (Hansman et al., 2007; Lauritsen et al., 2015). Similar to noroviruses, it is recommended to classify SaVs based on at least the VP1 region if the entire genomes are not available (Oka et al., 2012; Zheng et al., 2006). The International Calicivirus Conference Committee proposed that at least the entire VP1 sequence is required to designate novel genogroups or genotypes. At present, SaVs are classified into 19 genogroups (G) and at least 52 genotypes based on complete VP1 sequences using a

Length of

Table 2

Complete genome characterisation of sapoviruses. Table 2. Complete genome characterisation of sapoviruses

Genogroup	a			Genome	Law and the set	Low-sha of			ODED			Law attack
/Genotyne *	Strain name			denome **	Length of	Length of	First aa residues of	Last aa residues of	ORFZ	First aa residues of	Last aa residues of	Length of
/ denotype		Accession No.	Host	size (nt)	5'UTR (nt)	ORF1 (aa)	the ORF1	the ORF1	(aa)	the ORF2	the ORF2	3'UTR (nt)
GI.1	Manchester	X86560	Human	7431	12	2280	M V S K P F K P I V	N <mark>M G R A R R V F</mark> Q	165	MSWLVGALQT	I G H N P G S S S V	82
GL2	BR-DE01/BRA/2009	AB614356	Human	7476	12	2290	MVSKPYRPIS	NSGRARRIEO	163	M S W L V G A L O T	LNHOPGSSSA	103
01.2	DI DI 01/ DI 02/ DI 02/	100140007	Haman	7470	12	2200		NGORAKKLIQ	105	MOWLVORLOT		105
GI.3	OH08021/2008/JP	AB623037	Human	7442	12	2285	MASKPYKPIT	N S G R A R R L F Q	162	MSWLVGALQT	LNHTPGSSNV	/8
GI.4	Chiba/000496/2000	AJ606693	Human	7436	12	2280	MASKPFKPIV	N L G R A R R V F Q	165	MSWLVGALQT	LGPKPGSSSV	87
GI.5	Ehime643/March2000/JP	DQ366345	Human	7447	12	2286	MASKPYYPIT	N N G R A R R V F Q	165	M S W L V G A L Q T	I G H N P G S S Q A	80
GL6	Chiba/000764/2000	A1606694	Human	7443	12	2283	MASKDIKDIV	NSGRAPPVEO	165	MSWLVGALOT	LCHSDGSSNA	85
01.0	CIIIDa/ 0007 04/ 2000	40000004		7445	12	2205		N S O K A K K V I Q	105	MOWEVOREQI	LOHDIODDON	05
GI./	D1/14-B/2008/JPN	AB522390	Human	7452	13	2287	M A S K P F K P I Y	N S G R A R R L F Q	165	M S W L V G A L Q T	L G H N P G T S Q V	81
GII.1	Bristol/98/UK	AJ249939	Human	7490	13	2280	MASKPFYPIE	N A G R A V R F L E	164	MSWFTGAALA	V N T R P Q T P S D	140
GIL 2	Mc10	AY237420	Human	7458	13	2278	MASKPEYPIE	NSGRAVRELE	166	MSWETGASLA	LGPRPPSTNV	108
GII.2	612	AVC02425	lluman	7430	10	2201	M A O K D D V D I D		100	MOWETCALL	LOPDDDDTNU	110
GII.3	C12	AY603425	Human	7476	12	2281	MASKPFYPIE	NAGRAVRFLE	166	M S W F T G A A L A	LGFRPPSTNV	118
GII.4	PHL-TGO12-028	KP067444	Human	7460	13	2279	MASKPFYPIE	NAGRAVRFLE	166	MSWFTGAALA	L G F R P P S T N V	107
GIL 5	IP/2010/Kashiwa1	LC190463	Human	7448	13	2279	MASKPEYPIS	NSGRAVRELE	166	MSWENAALG	LGENPPSTNV	95
CII (Callana 15 /Thailand	AVCACOFF	Lluman	7450	12	2201		NICRINDELE	100	NOWERGALLA	LOVDDDOTNU	100
GII.6	Sakaeo-15/Thailand	A1040855	Human	7459	15	2281	MASKPFIPME	NAGKAVKFLE	100	MSWFIGAALA	LGIKPPSINV	100
GII.7	20072248/2008/JP	AB630067	Human	7462	13	2278	MASKPFYPIE	N N G R A V R F L E	166	MSWSQGLALA	LGYRPPTTNV	112
GII.8	Peru330/PNV010961	MF462288	Human	(7452)	NA***	2278	MASKPFYSIE	N N G R A V R F L E	166	M S W S O A L A M A	LGPRPPOTNV	NA
CIL O		KI0E0883	Bat	(1650)	NLA	NLA	NIA		NIA	MOWCONTANA	NIA	NIA
GII.9	RU-SaVZ/INTC-BZ	KJ950662	Ndl	(1050)	NA	NA	INA	NNGKAVKFLE	NA	MSWSVALAMA	INA	NA
GII.NA1	Siaya0506	MH922771	Human	(7453)	NA	2279	MASKPFYPIE	N S G R A V R F L E	166	MSWFTGAAMG	LGHNPPITNL	88
GIII	Cowden	AF182760	Pig	7320	9	2254	MANCRPLPIG	T S G R S I H S S R	164	MSWIAGAMOG	AGATTTHSKV	55
CIII	Capau/CH420/2012/CHN	VE204E70	Dig	7241	0	2254	NDNCDDIDIC	M T C D C L H C C D	171	MEWVICINOC	ACATTTICZY	EC
Gill	Galisu/CH450/2012/CHN	KF204370	Fig	/541	9	2234	MPNCKPLPIG	MIGKSLHSSK	1/1	MSWVAGAMQG	AGAITIHSKY	50
GIII	ah-1	JX678943	Pig	7342	9	2254	MANCRPLPIG	MTGRSLHSSR	171	M S W V A G A M Q G	AGATTTHSRV	56
GIII	SaV1	FJ387164	Pig	7541	9	2254	MANCRPLPIG	MTGRSLHSSR	171	M S W V A G A M O G	AGATTTHSRV	255
GIII	1114	KT0/5133	Pig	7320	9	2254	MANCEPTOLO	TECDELUCED	164	MEWIAGAMOG	AGATTTUSPY	55
Gill		K194J155	FIG	7320	3	2234	MANCKFLFIG	ISUKSINSSK	104	MSWIAUAMQU	AUAIIIISKY	55
GIII	p 2	KX688107	Pig	7387	9	2254	MANCRPLPIG	M T G R S L H S S R	171	M S W V A G A M Q G	A G A T T T H S K V	54
GIII	JJ259	KT922089	Pig	7347	9	2254	MANCRPLPIG	T T G R S I H S S R	173	M S W V A G A M O G	VGATTTHSRV	55
GIII	VICE	MK062240	Dia	7220	٥	2254	MANCERTER	TECDETHEED	164	MEWNACANOC	ACATTTUSEN	55
Gill	VC0	10110302340	1 16	7520	5	2234			104			
GIII	P284	MK962337	Pig	7320	9	2254	MANCRPLPIG	T S G R S L H S S R	164	M S W V A G A M Q G	A G A T T T H S K V	55
GIII	P361A-2	MK962339	Pig	7320	9	2254	MANCRPLPIG	T S G R S L H S S R	164	M S W V A G A M Q G	AGATTTHSKV	55
GIII	P/152	MK962338	Pig	7320	9	2254	MANCRPIPIC	TSGPSTHSSP	164	MSWVAGAMOG	AGATTTHSKV	55
GIII	Fhim = 1107/2002/UD	DO0E9930	Human	7427	12	2234	MARCKILIIO	CTCDCDCVVO	167	MCWLUCALOI	I CHN C C C C C A	08
GIV	Enime1107/2002/JP	DQ038829	Human	7427	13	2271	MASKPFIPIL	GTORGRSVIQ	107	MSWLVUALUL	LOUNDOOSSA	50
GIV	Angelholm/SW2/8/2004/SE	DQ125333	Human	/43/	13	2271	MASKPFYPIS	GIGRGRSVYQ	167	MSWLVGALQL	I G H N P G S S S A	108
GV.1	NongKhai-24/Thailand	AY646856	Human	7500	14	2301	MASKPLQVES	N T G R A Q I A W S	166	MSWLVGALQT	LGPRPPSTDL	83
GV 2	Nagova/NGY-1/2012/IPN	AB775659	Human	7521	14	2301	MASKPEOVES	NSGRAOIAWS	167	MSWLVGTLOS	LGPPPPSTNL	101
C) (2	TVA 4D-2220 /00 / ID	40521771	D:-	7404	1.4	2200		NEEDADINE	171	MOWENCHLON	LODDDDOTOU	77
GV.3	T 1101P0239/08/JP	AB521771	Pig	7494	14	2296	MASKPFQPNG	NIGKAKINWI	1/1	MSWFVGALQA	LGPKPPSIQV	//
GV.3	TYMPo31/08/JP	AB521772	Pig	7494	14	2296	MASKPFQPNG	N T G R A R I N W T	171	MSWFVGALQA	L G P R P P S T Q V	77
GV.4	CSL9775	JN420370	Sea lion	7497	14	2275	MASKPENPME	NGGRSRINWO	167	M S W L V G A L O A	LGPRPPVSNV	155
CVF	WC104D 1	KX000383	Dia	7400	14	2209			104	MOWINGALOT		04
GV.5	WG194D-1	KXUUU383	Pig	7496	14	2298	MASKPFRSNE	SEGRARIAWS	164	MSWIVGALQT	LGRPPGESRV	94
GV.5	Ishikawa 12	LC483440	Wild boar	7498	14	2298	MASKPFQGNE	SEGRARIA WS	164	MSWIVGALQT	LGHPQGESQA	96
GVI.1	OH-11674/2000/US	KJ508818	Pig	7198	10	2218	MAATCRHSAC	YNMVVPALWG	168	MSWESGALGT	LDHSVGESNA	28
C)/I 1		41074102	Dia	7109	10	2210	MINTODUCIO	VNNVVDALWC	100	MONFOCALOT	L DHOVODONA	20
GVI.1	0H-11681/2000/03	A1974192	PIB	/198	10	2210	MAAICKHSAC	INMVVPALWG	100	MSWFSGALGI	LDHSVGESNA	20
GVI.2	Ishi-Im9/2016	LC215888	Pig	(7055)	NA	NA	NA	T S G L A A W S R T	NA	MSWFSGALGT	NA	NA
GVI.3	Tovama 2	LC483441	Wild boar	7201	10	2217	MAATCRHSAC	T S G O A A W G R V	168	M S W F A G A L G T	LTHOPGESVV	34
GV/II 1	PV/0042	KX000384	Dia	7150	٥	2109	MAAVCDUSVC	NECDAESLLD	169	MEWTACNICC	LDUCDCOSDA	41
GVII.1	KV0042	KX000384	Fig	7150	5	2158	MAAYCANSYC	NOURAFOLLK	100	MSWINGYLOG		41
GVII.1	K7/JP	AB221130	Pig	7144	9	2198	M A A T C R H S V C	N S G R A F S M T R	168	M S W T A G V L G G	I G N N P G Q S V V	35
GVII.2	2014P2/Brazil	DQ359099	Pig	(1626)	NA	NA	NA	G S S R G Y R M A P	NA	NA	NA	NA
GV/II 3	M/GP247/2009/USA	KC309421	Pig	(6052)	NA	NA	NA	GTGDGDDMAD	NA	MENTAGALSC	IPUVDGPCVV	NA
011.5	WGF24772003703A	RC303421	r ig	(0052)	11/4		19/3	OTOKOFKMAF	11/4	MOWINUALOU		114
GVII.4	AB23/CAN	FJ498787	Pig	(2975)	NA	NA	NA	S N G R A F R M T Q	1/1	M S W T A G V L <u>G</u> G	LDHNPGASVV	54
GVII.5	SH1703/CHN/2017	MF766258	Pig	7184	9	2203	MAAMCRHKHC	GNSRGFRMAP	168	M S W T A G V L N G	L G H N P G E S O A	60
GVII 6	Ishi-Im3-1/2015	10215894	Pig	(7139)	NΔ	NΔ	NΔ	GNGRGERMAP	168	MSWTAAALTG	LGHNPGETNV	NΔ
011.0	Labi land 1/2015	10215004	D:-	(7440)	N/A	N/A	1473	NODADINAT	100	NOWINGHI		NA
GVIII.1	Isni-Im1-1/2015	LC215895	Pig	(7449)	NA	NA	NA	NSSRARRIYQ	168	M S W I V G A L Q G	LGPRPPESSV	NA
GVIII.2	WG214D/2009/Pig/USA	KC309419	Pig	7497	12	2294	MASRPFKAVS	N T V G S R R V O L	175	M S W M I G A L O T	LQGTSSSKV	76
GIX 1	F16-7/CAN	F1498788	Pig	(2949)	NΔ	NΔ	NΔ	GNGGPSPALP	NΔ	MSWEAGALGT	IDHNDGSSVV	38
CIV 2	N/C214C/2000/USA	KC200442	D:-	(2005)	NIA	NIA	NTA NTA	ON O O A D D D C	NIA	NOWPACHLOT	NTA	NIA
GIX.2	WG214C/2009/USA	KC309418	Pig	(3695)	NA	NA	INA	G N Q G A A K K L K	NA	MSWFAGALGI	NA	NA
GX.1	HgTa2/2016	LC215896	Pig	7142	9	2192	M M A T C H H S T C	GNTGPARALR	161	M S W F A G M L G A	HVERQGESVV	72
GX 2	HgTa3-2/2016	LC215897	Pig	7124	9	2192	MVASCHHSIC	GSTGPARSIR	168	MSWESGMIGT	I DENPGSSSV	33
CYL 1	205204/8	00250100	D:-	(1025)	NIA	NIA	NA NIA	NIA	ALCO NIA	MONTO DI DOT	NA	NIA
GXI.1	2053P4/Brazii	DG323100	Pig	(1032)	NA	NA	NA	INA	NA	INA	INA	NA
GXI.2	HgYa1-2/2016	LC215901	Pig	(4364)	NA	NA	NA	N A G R S Y R M R E	NA	MSWFNSVLGV	NA	NA
GXL3	Ishi-Im7-3/2016	LC215899	Pig	7170	9	2205	MAATCRHKHC	NTGGSYRMRE	168	MSWENNMLGV	IDHOPGESNA	40
CVI 2	11-1/- (2010	10400050	D:-	7170	c c	2205			100		L D II II D C D C C II	10
GXI.3	HgYa/2018	LC469052	Pig	/1/9	9	2205	MAATCRHKHC	NTGGSYRMRE	168	MSWFNNMLGV	LDHHPGBSSV	49
GXII	WD1237	KX000385	Mink	(5816)	NA	NA	NA	GNRTAFRSVF	NA	MAQYALVATE	NA	NA
GXIII	dog/AN210D/USA/2009	JN387134	Dog	7469	13	2269	MASKPLORES	NTGSRVRRNV	166	MGAALIGSAL	LGPRPPTENV	141
CVIV	TI CE9/Pat/UK	101000075	- ~5 D-+	7605		2200	MAALCDULLD	DACALCED	204	MCCWTOCHIC		275
VIXD	ILCOO/Ddl/TIN	114033012	Ddl	1095	э	2284	MAALSKVLAP	FAUAAGFKHG	204	MUSWIQUMIG	SAIWVPGSEA	225
GXV	Ro-SaV1/NYC-A19	KJ950878	Rat	(1653)	NA	NA	NA	NA	NA	NA	NA	NA
GXVI	BtRs-CalV-1/GX2012	KJ641701	Bat	(6883)	NA	NA	NA	GPVAAOGESH	207	MAGWAAGISA	OFTWVPGSSA	233
GV\/II 1	RtMm Call//IV2010	KI6/1702	Rot.	(6022)	NA	NIA	NIA	DEVDCAVE	251	MCSWTTCWLC	ACCELECE	114
GAVII.1	Buvini-Carv/JA2010	1041/03	Ddl -	(0032)	NA	NA	INA	F S V K U A I S A S	204	MUSWIIGVLG	AUGSLSSFKA	114
GXVII.2	M63/HUN/2013	KU712497	Bat	(3335)	NA	NA	NA	PASRGTFTAK	218	MGSWTTGVLG	WFQPHRAAFG	178
GXVIII.1	Lysoka36/CAM/2014	KX759619	Bat	(6177)	NA	NA	NA	OLLTSFLKAL	105	MLWKEEIRSD	FATAGGHALY	NA
GYV/III 2	Limbe900/CAN4/2014	KX750622	Rot.	(7/0/)	NA	NA	NIA.	EATPACHELY	212	MNELACAAA	LDWTNDDTCW	40
GAVIII.2	LINDESUU/CAIVI/2014	KA/39023	Ddl	(/+94)	NA	NA 	INA	TAIKAGHSLY	212	MUFLAGAAAG	LTWINKPISV	49
GXIX.1	Limbe25/CAM/2014	KX759618	Bat	(6727)	NA	NA	NA	L S G G G G H S Y Y	163	M G S W A T G A M M	L A A R W N E S H A	NA
GXIX.2	Limbe65/CAM/2014/Bat	KX759620	Bat	7457	9	2272	MAALSREARG	LASGGGHSEY	163	MGSWATGAMM	FARRWNESNA	78

pairwise distance cut-off value of ≤ 0.488 to distinguish different genogroups and ≤ 0.169 to distinguish different genotypes (Oka et al., 2015). Porcine and wild boar SaVs are classified into eight genogroups and 21 genotypes (GIII, GV.3, GV.5, GVI.1-3, GVII.1-6, GVIII.1-2, GIX.1-2, GX.1-2, GXI.1-3) (Li et al. 2018). By December 2019, 26

complete porcine SaV genomes (11 GIII, 4 GV, 3 GVI, 3 VII, 1 GVIII, 2 GX, and 2 GXI) were available in DDBJ/EMBL/GenBank databases. The complete genome of a GIX SaV has not been reported.

Genogroup and genotype analyses are important for epidemiological studies and an understanding of the evolution of porcine SaVs.

Fig. 1. Phylogenetic trees of sapoviruses (SaVs). The trees were constructed based on the nucleotide (nt) sequences of the complete genome (A) or the complete VP1 amino acid sequences (B) of porcine/wild boar SaVs and SaVs from humans and the other animals from the DDBJ/EMBL/GenBank database. The phylogenetic tree was constructed using the maximum likelihood method of MEGA 7 (Kumar et al., 2016), and bootstrap values (1000 replicates) above 70% are shown. The bar represents a corrected genetic distance. The red circles indicate porcine/wild boar SaV clade consisting of five genogroups of SaVs (GVI, GVI, GIX, GX, and GXI).

Porcine GV SaVs are genetically closely related to human GV SaVs; however, porcine GV strains branch into GV.3 and GV.5 genotypes apart from human GV.1-2. Zoonotic transmission of the same genotype of SaV between pigs and humans has not been reported. Porcine SaVs GVI, GVII, GX, and GXI share more common genomic features than other genogroups of SaVs: 1) Their genome lengths (7124-7201 nt) are shorter than those of the other genogroups of human and animal SaVs (7320-7695 nt), including GIII, GV, and GVIII porcine SaVs (7320-7498 nt); 2) Their ORF1 amino acid (aa) lengths (2198-2218 aa) are shorter than those of other SaVs (2254-2301 aa); and 3) They share a common amino acid motif at the beginning of ORF1 protein, MxAxCxHxxC. Furthermore, phylogenetic analyses using nucleotide sequences of complete genomes and VP1 sequences show that GVI, GVII, GIX, GX, and GXI strains form a unique clade consisting of only porcine and wild boar SaVs and they are distantly related to other porcine SaVs (GIII, GV, and GVIII) in both trees, suggesting that these porcine SaVs possess a common ancestor and are distantly related to other SaVs in the porcine population (Fig. 1). Although the end of VP2 of porcine SaVs as well as other SaVs is highly variable (Table 2), neither deletion nor insertion in the region, like that of the S INDEL strains of porcine epidemic diarrhea virus, is reported.

5. Diagnosis

The diagnosis of SaV infection depends on the laboratory detection of viral antigens, virus-specific antibodies and viral nucleic acids because no typical clinical signs are SaV-specific. Electron microscopy and IEM can be used to detect porcine SaV particles in the feces of pigs. IFA and antigen-ELISA with virus-specific hyperimmune antisera has been developed to detect GIII Cowden capsid proteins in experimentally infected pigs (Guo et al., 2001). Only GIII SaVs have been adapted to cell culture, so the attempts to isolate other SaVs in cell culture for diagnostic purposes are not practical. Antibodies against porcine SaVs could be detected in the SaV-infected pig serum samples using GIII SaV-specific VP1-ELISA (Jun et al., 2016; Liu et al., 2012b; Liu et al., 2014a) or recombinant porcine SaV viral-like particle ELISA (Alcalá et al., 2010; Lu et al., 2016). However, the sensitivity of the above assays is lower than the detection methods targeting viral nucleic acids (Oka et al., 2015).

Currently, conventional or real-time RT-PCR are the most widely used routine laboratory diagnostic assays for the detection of porcine SaVs from fecal samples, with the advantages of specificity, high sensitivity, broad reactivity, and convenience. Many primers used for the screening of porcine SaVs have been designed (Table 3). Almost all primers are designed targeting the partial RdRp region, which presents conserved motifs that are useful for molecular diagnosis of genetically highly diverse SaVs (Ding et al., 2019; Farkas et al., 2004; Guo et al., 2001; Jiang et al., 1999; Kim et al., 2006; Le Guyader et al., 1996; Shen et al., 2009; Sisay et al., 2013; Song et al., 2011; Vinjé et al., 2000; Wang et al., 2010eb, Wang et al., 2012). RdRp-capsid junction region (Liu et al., 2012a; Sisay et al., 2013) and partial capsid region (Jiang et al., 2019; Kim et al., 2006) are also employed for porcine SaV detection.

The advances in the metagenomic field have permitted the detection of porcine SaV sequences in the fecal samples by deep sequencing or next generation sequencing (NGS) (Chen et al., 2018; Cortey et al., 2019; Katsuta et al., 2019; Li et al., 2018; Wang et al., 2019; Zhang et al., 2014). These technologies have facilitated the classification based

Table 3

Primer combinations used for screening of porcine sapoviruses.

physicGRT ATC TCA AG TGG GACT CAR ReversedReversed427-439 427-439GIIComeAF182700Jang et al. 1999.p290"GAT ACT CCA AG TGG GACT CAR CCA CAR CAR GAG GACT CAR PSWPReversed427-439 427-439GIICowellAF182700Jang et al. 1999.p290"GAT ACT CCA AG TGG GACT CAR PSWPReversed427-439 427-439GIICowellAF182700Jang et al. 1999.p290"GAT ACT CCA AG TGG GACT CAR PSWPReversed427-439 427-439GIICowellAF182700Vale et al. 2004.p290"GAT ACT CCA CAG TGG GACT CAR PSWPReversed426-443.GIICowellAF182700Vale et al. 2004.p290"GAT ACT CAC AG TGG CAGT CAR PSWPReversed432-4340GIICowellAF182700Goe et al. 2001.p201GAT TCA CAC AGA TGG CAGT CAR PSWPReversed437-4343GIICowellAF182700Goe et al. 2001.p202GAT ACT CAC AGA TGG CAGT CAR PSWPReversed437-4451GIICowellAF182700Goe et al. 2001.p203GAT ACT CAC AGA TGG CAGT CAR PSWPReversed437-4451GIICowellAF182700Kine et al. 2004.p204CAC CAC AGA TGG CAGT CAR PSWPReversed437-4512GIICowellAF182700Kine et al. 2004.p204CAT CAC AGA TGG CAGT CAR PSWPReversed437-4518GIICowellAF182700Kine et al. 2004.p204CAT CAC CAC AGA TGG CAGT CAR PSWPReversed437-4518GIICowellAF182700Kine et al. 2004.p204 <th>Primer Name</th> <th>Sequence (5' to 3')</th> <th>Function*</th> <th>Location in genome</th> <th>Strain</th> <th>Accession number</th> <th>Reference</th>	Primer Name	Sequence (5' to 3')	Function*	Location in genome	Strain	Accession number	Reference
p110* DA CAN IT CAN CACATA Reverse 4674-467 Le Guyade et al., 1996. p580*** GAT TAC TCC AGG TGG GAT CCATA Forward 4327-4349 GILCowde AF182760 Inage et al., 1999. p580*** GAT TAC TCC AGG TGG GAT CCATA Forward 4327-4349 GILCowde AF182760 Inage et al., 2004. p580*** GAT TAC TCC AGG TGG GAT CCATA Forward 4327-4349 GILCowde AF182760 Inage et al., 2004. p280**** GT TAC TCC AGG TGG GAT TCAA Forward 4327-4349 GILCowde AF182760 Inage et al., 2004. p280**** TCG GAT TAC CCA CCATA Forward 4324-4331 GILCowde AF182760 Gios et al., 2001. PEC46 TCG GAT TAC CCA CATA Forward 4327-4347 GILCowde AF182760 Gios et al., 2001. PEC46 TCG GAT TAC GCA TAC Forward 4327-4347 GILCowde AF182760 Gios et al., 2001. PEC46 TCG GAT TAC GCA TAC Forward 4327-4347 GILCowde AF182760 Gios et al., 2001. PEC46 TCG GAT CCA CCA CAT	p290**	GAT TAC TCC AAG TGG GAC TCC AC	Forward	4327-4349	GIII/Cowden	AF182760	Jiang et al., 1999.
p389:**GAT FAC FAG TGG GAT CAG CAG NTG AT ACT CAG CGG GAT CAG AC AG TT ACT CAG CG GG GAT CAG ACT AG TT AC CAG GT GG GAT CAG ACT AG TT AC CAG GT GG GAT CAG ACT AG TT AC CAG GT GG GAT CAG ACT AG TT AC CAG CG GAT CAG ACT AG TT AC CAG CG GAT CAG ACT AG TT AC CAG AT CAG CAG ACT AG AT CAG CAG CAG CAG ACT AG AT CAG CAG CAG CAG ACT AG AT CAG CAG CAG CT AG CAG CAG ACT AG CAG AT CAG CAG CAG CT AG CAG CAG ACT AG CAG CAG CAG CAG CAG CAG CAG ACT AG CAG CAG CAG CAG CAG CAG CAG CAG ACT AG CAG CAG CAG CAG CAG CAG CAG CAG ACT AG CAG CAG CAG CAG CAG CAG CAG CAG CAG	p110**	DAC DAT YTC ATC ATC ACC ATA	Reverse	4674-4654			Le Guyader et al., 1996.
p289***TAA CAA TOT AATL CAA CAATReverse4657-4586p2804***GAT TAA TOT CAAG TOG GAAT CAAFrewaad4327-4394GIL/CowdenAF182760Farkas et al. 2004.p2804***GAT TAA TOC CAG TOG CAAT CAAFrewaad4327-4394GIL/CowdenAF182760Farkas et al. 2004.p2804***GAT TAA TOC CAG CAT CAAFrewaad4327-4394GIL/CowdenAF182760Viejf et al. 2000.p2804***GAT CAC CAT CAC CAAFrewaad4327-4394GIL/CowdenAF182760Goo et al. 2001p2804***GT CA TAT CAC CAC CAAFrewaad4327-4397GIL/CowdenAF182760Goo et al. 2001p2804***GT CAT TAT CAC CAC AAFrewaad4327-4397GIL/CowdenAF182760Goo et al. 2001p2804***GT CAT TAT CAC CAC AAFrewaad4327-4397GIL/CowdenAF182760Goo et al. 2001p2804***GT CAT TAT CAC CAC AAFrewaad4327-4397GIL/CowdenAF182760Goo et al. 2001p2804***GAT CAC CAC CAC AAFrewaad4327-4397GIL/CowdenAF182760Goo et al. 2001p2804***GT CAT GAC GAC GAC AAFrewaad4327-4397GIL/CowdenAF182760Goo et al. 2001p2804***GT CAT GAC GAC GAC AAFrewaad4327-4397GIL/CowdenAF182760Goo et al. 2004p2804***GT CAT GAC GAC GAC AAFrewaad4327-4397GIL/CowdenAF182760Song et al. 2014p2804***GT CAT GAC GAC GAC TAT CAC CAC AAFrewaad4327-4397GIL/CowdenA	p290**	GAT TAC TCC AAG TGG GAC TCC AC	Forward	4327-4349	GIII/Cowden	AF182760	Jiang et al., 1999
p3997** p3997**Char TA CEC AGE TGG GA TECA A AC AD TA CE CO AGE TGG GA TECA A PARAMENA PARAMENA PARAM	p289**	TGA CAA TGT AAT CAT CAC CAT A	Reverse	4657-4636			
p3901** GAT TAC TCC AGD TGG GAT TAA C Porward Parsau 4327-4349 4327-4349 Porward Parsau 4327-4349 p3908*** GA TAC TCC AGD TGG GAT TCAA C Porward Parsau 4327-4349 4327-4349 Viral Counce Viral Counce p2908*** TGA GA TTT CAT CAC CAT A Reverse 4457-4536 Viral Counce Viral	p290h**	GAT TAC TCC AGG TGG GAC TCC AC	Forward	4327-4349	GIII/Cowden	AF182760	Farkas et al., 2004.
jp 2990*** p 2990**** D CAT TAC TCA CAG TGG GAT TCA W TAC TCA TGA TGG CAT TCA W CA COA TTT CAT CAC CAC COAForward 4227-4398 4227-4368 4257-43684327-4398 4257-4368Visit Cas and the CAC CAC COCForward 4287-43684327-4398 4257-4368Visit Cas and the CAC CAC COCVisit Cas and the CAC CAC COCVisit Cas and the CAC CAC COCVisit Cas and the CAC CAC CACVisit Cas and the CACVisit Cas and the CACVisit Cas and the CACVisit Cas and the CAC CACVisit Cas and the CAC </td <td>p290i**</td> <td>GAT TAC TCC AGG TGG GAC TCA AC</td> <td>Forward</td> <td>4327-4349</td> <td>din, domadi</td> <td>111102,00</td> <td></td>	p290i**	GAT TAC TCC AGG TGG GAC TCA AC	Forward	4327-4349	din, domadi	111102,00	
p2908.** CAT TAC TOC AGG TOG GAT TOC AG TGA COA TTT CAT CAT CAC CAT A Revense Personal 4557-4636 Status Personal 4557-4636 P2809.** TGA COA TTT CAT CAT CAC CAT A GC GAT TAT CAC CAT CAC CAT A CAT CAC CAT CAC CAT A CAT CAC CAT CAC CAT A GT GAN TTC CAT CAC CAT A GT GAN TTC CAT CAC CAT A GT GAN TAT CAC CAC AG TG GAT TAT CAC CTT GG GT CG GT AGC TA Revense 4330-4358 GII/,Cowden AF182760 Guo et al., 2001 PEC66 GT G CT CAT TGC CTG GAC TA Revense Revense 4327-4347 GII/,Cowden AF182760 Guo et al., 2001 PEC66 GAC TAC AGC AGA GT GG GAT TCG CAC TAT CAC CAC ATT CAC CCT R Revense 4327-4347 GII/,Cowden AF182760 Kim et al., 2006 PEC66 GAC TAC AGC AGA CAC CAC ATT CAC CAC AGT GG GT GT GG CT CAC ATT CAT CAC CAC ATT TT GAC CAC ATT TT GAC CAC AGC Revense 4327-4349 GII/,Cowden AF182760 Kim et al., 2006 Capadit/Pecv GAT TAC TAC CAC GT TT GG GT GAC CAC CAC TAT CAT CAC CAT TT GG GT GG CAC ACC ATT TC AT CAT CAC CAT A Revense 4327-4349 GII/,Cowden AF182760 Kim et al., 2009 SAV1 GAT TAC TAC CAC GT AF GG TG TG GC CAC ATT TC AT CAT CAC CAT A Revense 4327-4349 GII/,Cowden AF182760 Swing et al., 2019 SAV1 GAT CAC AT TT GAT CAT CAC CAT A Revense	p290j**	GAT TAC TCC AGG TGG GAT TCA AC	Forward	4327-4349			
p2898/**TGA CGA TTT CAT CAT CAC GAT A RevenceRevence4657-4636S880TGG GAT TCT ACA CAT ACC GCT A GCG TT TA AT CAT CAC CAT A RCT TA CAC AT AT CAT CAC CAT A Revence4339-4358GIL/CowdenAF182760Vinje et al., 2001JY33TGG GAT TCT ACA CAA AAC CC CTG TG TA TA CCC GT A RCT GG GG TTA GCC TTRevence4312-4331GIL/CowdenAF182760Guo et al., 2001PEC65ACA CAA CAC AAC TG GAT TC CTG GTG TA TCC CC TA RC CT AT TA CAC CAA ATT CCC CTA RevenceRevence4322-4347GIL/CowdenAF182760Guo et al., 2001nPCG GTA TGA CAC ACT GG GAT CCC RA CAC ACA CCC TT GC GTA TGA CCC RC TA CAC CAC ATT CCC CTA RevenceRevence4392-4411GIL/CowdenAF182760Kim et al., 2006.nPCTC GTA TGA CGT GTG GAC CAC RC GAT TCA CCC CTAT GG TG GG CAC ACC RevenceFreevance4392-4413GIL/CowdenAF182760Kim et al., 2006.Capsiding CapsidingCTC GTA TGA CGT TT GAA AC RevenceRevence4392-4413GIL/CowdenAF182760Kim et al., 2006.Capsiding CapsidingCTC GTA TGA CGT TT GAA AC RevenceRevence4457-4636GIL/CowdenAF182760Sone et al., 2011SaV1 SaV2 SaV2 SAV2 TGA CCA TTT AT CAT CAC CAT A RCA CAT TT CAT CAC CAT A REVENceRevence4457-4636GIL/CowdenAF182760Sone et al., 2012SaV1 SaV2 SaV2 SGA CAT TT CAT CAC CAT A RCA CAT TT CAT CAC CAT A RCA CAT TG CAT CAC CAT A RevenceRevence4557-4636GIL/CowdenAF182760Sone et al., 2012SaV1 SaV2	p290k**	GAT TAC TCC AGG TGG GAT TCC AC	Forward	4327-4349			
pash-1for Loc LG 111 Col LG LG LG LG AT COL AN AGC GTG GAT TG ACC AA AGC CG GTG GAT TG ACC AGA TG AC CG GG TG AT ATG CG CGforward Reverse4393-4385 4658-4636GIII/Cowden GIII/CowdenAF182760Guo et al., 2001PEC65GTG GTG TAT TGC GTG GG GT TG CG GTG GTG TG TG TG ACC TAT CGC GT ACC ACC ACG AT CG CG CG AT CG CG GG TT CG CG TG CG AT CCC CG AT CGC CG CG ACT ACC CCC AT CGC GG AT CGC Reverse4327-4331 4455-4636GIII/Cowden GIII/CowdenAF182760Guo et al., 2001PEC65GTG CT CAT GG GG GT CCC GT ACC ACC AT CT CCC CGTA CG TG TG TG TG GG GG AT CGC ReverseForward 4327-43715698-5717 5698-5717GIII/Cowden AF182760AF182760Kim et al., 2006CopidIP/FECC repaidI/FECC rep	p289h**	TGA CGA TTT CAT CAT CAC CAT A	Reverse	4657-4636			
SIRBO SIRBO CIG CAT TAT CAT CA CA A AACC CO TA NA TAT CAC CCFeverareSirBO 4939-4388 4658-4630GIU/CovidenAF182760Vinje et al., 2001PECA6 PECA6 CIC GT GT GG GG TA GC CT TAFeverare4332-4331 4883-8640GIU/CovidenAF182760Guo et al., 2001PECA6 DECA6 CIC GT GT GG GG TA GC CT TAFeverare4322-4347 4883-8640GIU/CovidenAF182760Guo et al., 2001aff CICCIC GTA TG CA GG A CAA CC CIC TG TG GG CT A GG A CAA CAC CAA GTA GTA GG TG GG CTFeverare4392-4411 4856-4637GIU/CovidenAF182760Kim et al., 2006.aff CIC GA TG CAC CAT GTG GG CAC ACC CIC GT GG CT A TG TA GG CT GAC CA CIC GT GG CG CT A TG TA GG TG GG CA CIC GT GG CG CAA CTA CIC GT GG CG CAT CT CA GG GG CAC ACC CIC GG TG CG CT GG CG CAC ACC CIC GG GG CA TT CAT CA CAC CAC ACG ST Second Reverse4392-4411 4559-5599GIU/CovidenAF182760Kim et al., 2006.SAV1 SAV2 SAV2 SAV2 SAV2 SAV2 SAV2 SAV2 SAV2 CIC CAC GG GG CA CT CAC CAC GG SA CIC CAT GG CT CAC GC GG CAC CAC CAC CAC CAC Second Second Reverse4392-4393 4559-5599GIU/CovidenAF182760Song et al., 2019SAV2 SAV2	p2891**	IGA CGA ITI CAT CAT CCC CGT A	Reverse	4657-4636			
JN3GTG TAN ATG CAR TCA TCA CCReverse4658-4639PEC46GTG GTT AT TGC CTG GAT CCAForward4312-4331GIL/CowdenAF182760Guo et al., 2001PEC66GAC TAC AGC AGA GTG GAT TCCForward4327-4371GIL/CowdenAF182760Guo et al., 2001PEC66GAC TAC AGC AGA TGG GAT CCCForward4327-4372GIL/CowdenAF182760Kin et al., 2006afGTG ATT CC TGA GTC CAA CGForward5598-5717GIL/CowdenAF182760Kin et al., 2006Cogold TA GC CT TT GA GAC CAForward5598-5717GIL/CowdenAF182760Kin et al., 2006Cogold TA GC CT AT GT GT GG CA YC MACForward5598-5717GIL/CowdenAF182760Kin et al., 2009SAV1GTG AT AC CC AGT GG AY TC MACForward4327-4349GIL/CowdenAF182760Song et al., 2017SAV2GTA CA CC AGT GG AY TC MACForward4327-4399GIL/CowdenAF182760Song et al., 2012SAV3GTA CA CC AGT GG AY TC MACForward4327-4399GIL/CowdenAF182760Song et al., 2012SAV3GTA CA CC AGT GG GA YC MACForward4327-439GIL/CowdenAF182760Song et al., 2012SAV4GTA GA TTA CA CA CAT ATForward1327-439GIL/CowdenAF182760Song et al., 2012SAV5GTA GC AGT GT GG GA TC MACForward1327-439GIL/CowdenAF182760Liu et al., 2012SAV5GTA GA TTA CA CA CAT AG TG GG GA TG GAForward1329-517Liu et al., 2012Liu et	SR80	TGG GAT TCT ACA CAA AAC CC	Forward	4339-4358	GIII/Cowden	AF182760	Vinjé et al., 2000.
PEC46CTC TAT TGC CTG GAC TA CTG CGG CTA CGCReverse432-431GIIL/OwdenAF182760Gon et al., 2001PEG60AC TAA GAC AAG GG GAT TAC CAT CAC CAC ATA CAT CCC CGTAReverse3257-4357GIIL/OwdenAF182760Kon et al., 2001nFCC CTA TGC TG GG CAC AC CAG AT CAC CAC GTAReverse3792-4411GIIL/OwdenAF182760Kin et al., 2006.oppidI SpidIon PRCG ATC AAC GAT GTG TG GG CA CAT CAT AT GTT GTG GGBirt, Gravand Reverse5895-5893GIIL/OwdenAF182760Kin et al., 2006.SV12CG ATC CAC GTG GG CAT CAC CAT CAT CT CAC GTG GA TT ACT CAC GAT CAT CAT CAT CAT CAC GAT CAT CAT CAC CAT TA CAT CAC CAT CAC CAT TA ReverseA227-4349GIIL/OwdenAF182760Sene et al., 2009SV12SAT GAA TT CAT CAC GAT TA CAT CAC CAT CAC ATT CAT CAC CAT TA CAC ATT CAT CAC CAT TA ReverseA227-4349GIIL/OwdenAF182760Sene et al., 2019SV12SAT GAA TT CAT CAC GAT TA GAT GT GA CAT CAC ATT CAT CAC CAT TA ReverseReverseA227-4349GIIL/OwdenAF182760Sene et al., 2012SV12SAT GAA TT CAT CAC CAC GAT ReverseReverseA227-4349GIIL/OwdenAF182760Sene et al., 2019SV12SAT GAA TT CAT CAC CAC GAT ReverseReverseA527-4354GIIL/OwdenAF182760Sene et al., 2019SV14SAT GAA TT CAT CAC CAC GAT ReverseReverseSig2 Sig11SillSig12 Sig10Sig et al., 2019 <td< td=""><td>JV33</td><td>GTG TAN ATG CAR TCA TCA CC</td><td>Reverse</td><td>4658-4639</td><td></td><td></td><td></td></td<>	JV33	GTG TAN ATG CAR TCA TCA CC	Reverse	4658-4639			
PEGA TCT GTG GCG GTA GCG TA Reverse 4883-4864 PEGGS GACA AGC GA GA GT GG AT TCC ATA CAC CA AT CT CC CCG TA CAC CAC AT CT CC CCG TA Reverse 4322-4417 4721 - 4732 GIL/Cowden AF182760 Guo et al., 2001 nF GC GT AT GC TA GG CAC AC CAC GT CAT GG TA GG CAC AC CC GT CAT AT GT GT GT GG CC GC AT AT GT GT GT GG CC GT CAT AT GT CAC GT GG CC GT CAT AT GT CAC CAT CC GT CAT AT GT CAC CAT CC GT CAT AT CC CAT GG GA TT CAT CT CC GAT TT CAT CAT CAC CAT CC GT TT CAT CAT CAC CAT CC CAT CT CAT CAT CAC CAT CC CAT CAT CAT CAC CAT CAT CC CAT CAT CAC CAT CAT CAC CAT CC CAT CAC CAT CAC CAT CAC CAT CC CAT CAC CAT CAC CAT CAC CAT CC CAT CAC CAT CAC CAT CAC CAT CC CAT CAC CAT CAT CAC CAT CAC CAT CC CAC CAT CAC CAT CAC CAT CAC CAT CC CAC CAT CAC CAT CAC CAT CAC CAT CC CAC CAC CAT CAC CAT CAC CAT CAC CAC C	PEC46	GTG CTC TAT TGC CTG GAC TA	Forward	4312-4331	GIII/Cowden	AF182760	Guo et al., 2001
PEGG6 PEGG6GAT TAC AGC AAG TGG GAT TCC ATA CAC A ATA CAT CAC CGG TAGForward Reverse4327-4347 4655-4635GII/CowdenAF182760Gu et al., 2001nF CG GG TA TG TG TG GG GA CA GC GG TG TG TG TG TG GC CA A TG CG GT GA TG TT TG TG GC Capaid/PECVersefirst, forward Reverse5698-5717 5890-5909 first als second, forward reverseGII/CowdenAF182760Kim et al., 2006SaV1 SaV2 SaV2 SaV2 SaV2GAT TAC TC AG GT GG GA YTCM AC CTC GT GA TA TT TT TG AG CC GT AT GT TG TG GG ACA CAC TAT TT TT TG AG Reversefirst, forward de574636GII/CowdenAF182760Kim et al., 2009SaV1 SaV2 SaV2 SaV2 SaV2GAT TAC TC AG GG GA YTCM AC CG GA TT CAT CAC CAT TG CAT CAC CAT CG GG AT TG AT CAT CAC CAT Reversefirst, forward de574636GII/CowdenAF182760Shen et al., 2009SaV2 SaV2 SaV2 SaV2 SaV2 SaV2 SaV2GAT TAC TC AG GG AT TG TG CAC CAT TC CAT CAC CAT TG CAT CT CAC CAT TG GA TT CAT CAC CAT TG Reversefirst, forward de574636GII/CowdenAF182760Im et al., 2019SaV2 SaV2 SaV3GAT CAC ACT GG GA TG TG TG CAC CA CAT TG CAC CAT TG GG TG AT TG CAC CAT TG CAC CAT TG GG TG AT TG CAC Reversefirst, first, firs	PEC45	TCT GTG GTG CGG TTA GCC TT	Reverse	4883-4864	- ,		
PECOSCRUCE NOLARY INCOMENTICEProvade Reverse452-4537CHUCUMENTPE22700CHUCE AL, 2001nF CRCTC GTA TGC TGA GGA CAAC GAG TGC TG TTG GGT CAA TGProvade Reverse4392-4411 4771 - 4752GIII/CowdenAF182760Kim et al., 2006.Capaid Capaid/PRCV CAGA TGC TGT TTG GGT CAA TGForward Reverse5698-5717 8600-5099 6454-6435GIII/CowdenAF182760Kim et al., 2006Capaid/PRCV Capaid/PRCVGTG ATC ACA CGT TT GAA AC CGC GTA TG AGG TGT GG AY TCM AC TGA CAG TGT TGT TAG GGForward Reverse4327-4349 4657-4636GIII/CowdenAF182760Shen et al., 2009SaV1 SaV23GAT TAC TCC AGG TGG GAY TCM AC TGA CAG TTT CAT CAT CAC CAT A TGA CAG TTT CAT CAT CAC CAT AF TGA CAG TTT CAT CAT CAC CAT AF Reverse4657-4636GIII/CowdenAF182760Shen et al., 2009SaV12 SaVR3GAT TAC TCC AGT GGA YTCM AC 	DEC66		Forward	4997 4947	CIII /Courdon	AE100760	Cup et al. 2001
IntermIntermIntermIntermIntermnRGGG GTG TGG GG GA CA ATGReverse4392-4411 4771 - 4752GII/CowdenAF182760Kim et al., 2006.Capadif Capadify Capadify CapadifyGTG ATG CA AC GCT ITT GA AC CG CG CA TGG GG GG ATG TGT TG TG GG GG GG GG TGT GG TGG GA COM CAR TC GC CA TA GGG TGG GA COM CAR A Reverse5698-5709 6454-6435GII/CowdenAF182760Kim et al., 2006SN1 SN2 SN2 SN2GTA TAC TCO AGG TGG GA TGT ACM CC TG CA GA TGT ATG TAT CAT CAC CAT A CAC ATT CAT CAT CAC CAT A Reverse6457-4636GII/CowdenAF182760Shen et al., 2009SN2 SN2 SN2 SN2 SN2 SN2 SN2 SN2 SN2GAT TAC TCO CAG TGG GAY TGAM C RAT CAT CAC CAT A CAC CAT CT GG GA TT CAT CAC CAT A ReverseReverse 4657-4636GII/CowdenAF182760Song et al., 2011SN2 	PEC65	ATA CAC ACA ATC ATC CCC GTA	Reverse	4327-4347 4656-4636	GIII/Cowden	AF182/00	Guo et al., 2001
nF nRCITC GTA TGC TGA GGA CAC ACC GGA TTC ATT GG CAC ACT GR ReverseProvard 							
nRGAG TGT CTG TTG GCT TGA ACReverse47/1 - 4/32Capaid Capaid/R/PECVGTG ATC AAC CCT TTT GAG AC CTG GTC AT AGT GTG GCrisst, forward first and second5698-5717 6455-6435GIII/CowdenAF182760Kim et al., 2006SaV1 SaV2GAT TAC TCC AGG TGG GAY TCM AC FGA CAG TTT CAT CAT CAC CAT A TGA CAG TTT CAT CAT CAC CAT A Reverse4327-4349 4657-4636GIII/CowdenAF182760Shen et al., 2009SaV1 SaV2 SaVR3GAT TAC TCC AGG TGG GAY TCM AC FGA CAG TTT CAT CAT CAC CAT A TCAT CAT CAC CACT A Reverse4327-4349 4657-4636GIII/CowdenAF182760Shen et al., 2009SaVR3 SaVR3GAT TAC TCC AGG TGG CAT TA TGM CAT A FGA CAG TTT CAT CAT CAC CAT A Reverse4327-4349 4657-4636GIII/CowdenAF182760Song et al., 2011No name CAC CTA CT GG GAT TCAT CAC CAT A ReverseReverse4557-4636GIII/CowdenAF182760Liu et al., 2012SaVR3ACT CCA AGT GG AGA TTC AT CAC CAT A ReverseReverse6157-4636GIII/CowdenAF182760Liu et al., 2011SaVR9ACA CCT ACT GG GA TAT ATT GT GT GA GA GA CCT CAT CA CAC AT GA GA GA CAC CAT AT GT GT TGReverse513-5132GIII/CowdenAF182760Liu et al., 2019SaVF9ACA CAC AGA GG GA CAC GA GA GA CTG GA AT AGT TT CAC AGT GG GA CT TGReverse555-5871GIII/CowdenAF182760Jing et al., 2019SaVF9ACA CAC AGA GG GG AT TG GT GT CAC GG GG AT TG GT GG GAForward530-6341GIII/CowdenAF182760Jing et al., 2019SaVF9ACA CAC GA GG GG AT	nF	CTC GTA TGC TGA GGA CAC AC	Forward	4392-4411	GIII/Cowden	AF182760	Kim et al., 2006.
Gapaid Pack of Cor ATC AGC CGT TT GAA AC CapaidAC VRA GAA TGA TGT TGT GAA AC CapaidAC VRA GAA TGA TGT TGT GAA AC CA TGA TGT TGT TGA AC CA AGA TGT AGT CGA CGA TGT CGA CGA TTT CAT CAC CACA A CA CGA TTT CAT CACA CACA A CACA TGT AGT CGA CGA TTG AGT CGA CGA TGT CGA CGA TTT CAT CACA CGA CGA CA CGA TTT CAT CACA CGA CGA CA CGA TTT CAT CACA CGA CGA CACA TGT AGT CGA CGA TTG CGA CGA CT CACA CGA TTT CAT CACA CGA CGA CACA CGA CGA CGA CGA CGA CGA CACACA CGA CGA CGA CGA CGA CGA CACACACA CGA CGA CGA CGA CGA CACACACACACACACACACACACACACACACACACACA	nR	GAG TGT CTG TTG GCT CAA TG	Reverse	4/71 - 4752			
PECCequidididi CapsidA/FCGCTC ATA GTA GTG GC GA strand as econd reverseSecond, forward reverseSecond chets4435SaV1 SaV2 SaV2 SaV2 GA GA TTA ATC CAG GG GA TTG ATC GA CG ATT CAT CAT CAC CATA A Reverse GA GA TTT CAT CAT CAC CATA A Reverse Reverse 4657-4636 4657-4636GIII/Cowden 457-4636AF182760Solen et al., 2009SaVR1 SaVR2 SaVR3GA TTA CTC CAG GA TTC MAC GA GA TTT CAT CAT CAC CATA A Reverse Reverse Reverse A657-4636GIII/CowdenAF182760Song et al., 2011No name No nameGA CT ATC GG GA TTC MAC GA GA TTC CAT CAT CAC CATA Reverse CG A GA TTC CAT CAT CAT CAT CATC CATA Reverse A657-4636GIII/CowdenAF182760Liu et al., 2012a; Liu et al., 2012b;SaVR3CAT CAT GG GG TG TG TG TG TG GA GA TTC AT CAT CAC CATA Reverse CG A GT TTC TC CACCReverse ReverseGIII/CowdenAF182760Liu et al., 2012a; Liu et al., 2012b;SaVR4CAT GA GA GG GA GA GA CAT GG GG GT TTC TC CACCReverse ReverseF392-5171Liu et al., 2012a;Liu et al., 2012b;No name No name No nameCAA GA GA GA GA GA GA CAT GG GA TT CT CACCReverse ReverseF313-5132GIII/CowdenAF182760Ding et al., 2019SaVF4TAG GA GA TG GA TG GA TT CA CA GA GT GG CAC TA ReverseForward ReverseF326-5571GIII/CowdenAF182760Ding et al., 2019SaVF4TAG GA CAT GTG GA TG GA TG ReverseForward ReverseF326-5571GIII/CowdenAF182760Ding et al., 2019SaVF4TAG GA CAT CTG GG TAG TTT CA CA CA CA	CapsidF	GTG ATC AAC CCT TTT GAA AC	first, forward	5698-5717	GIII/Cowden	AF182760	Kim et al., 2006
CapaidIV,PECV capaidIXAA CCA TGA TGT TGT TAG CC reversefirst and second reverse6454-6435SaV1 SaV2 SaVR3GAT TAC TCC AGG TGG GAY TCM AC TGA CAA TGT AAT CAT CAC CAT A TGA CGA TTT CAT CAT CAC CAT A Reverse4657-4636 4657-4636GIII/CowdenAF182760Shen et al., 2009SaVR3GAT TAC TCC AGT GG AY TCM AC TGA CGA TTT CAT CAT CAC CAT A ReverseReverse 4657-4636GIII/CowdenAF182760Song et al., 2011No nameGAT TAC TCC AGT GG AY TCM AC TGA CGA TTT CAT CAT CAC CAT A GA TTT CAT CAT CAC CAT A ReverseReverse4657-4636GIII/CowdenAF182760Song et al., 2011SaVR3GAT TAC TCC AGT GG AY TCM AC GA GTT CAT CAT CAC CAT A GA GTT CAT CAT CAC CAT A GForward4327-4349GIII/CowdenAF182760Song et al., 2012SaVF9ACA CCT ACT GG TGA TGA TTG TG GA GTG CC CT CT GG TTG CT G G GA GTT CAT CAT CAC CAT A ReverseForward6131-5132GIII/CowdenAF182760Zhang et al. 2014No nameGAA GAG CAAG TGG CAT GA GT GA CAC GG ATTForward Reverse513-5132GIII/CowdenAF182760Zhang et al., 2019SaV-F SaV-RTAC AGC AAG TGG GAC CA CAT CTG GT ACT CAG CA CAT CTG GT ACT Reverse5855-5871GIII/CowdenAF182760Jiang et al., 2019SaV-F SaV-RTAC GG GGA ATA GGT TT CAG GC CA TAT GT GTG CA CAC CAT CTG GGT GForward Reverse5855-5871GIII/CowdenAF182760Jiang et al., 2019SaV-F SaV-RTAC GG GGA ATA GGT TT CAG GC CA CAT TT TG GC TA CAG GCA CA CAT TTT GG GT ReverseForwa	PECVcapsidF	CTC GTC ATA GTA GGT GTG GC	second, forward	5890-5909			
CapitalreverseSaV1GAT TAC TCC AGG GG GAY TCM AG TCA CAT TCAT CAT CAC CAT A ReverseForward 4657-4636GIII/CowdenAF182760Shen et al., 2009SaVR3GAT TAC TCA CAG GG GAY TCM AG TCA CAG TTT CAT CAT CAC CAT A ReverseForward 4657-4636GIII/CowdenAF182760Song et al., 2011No nameGAT TAC TCCA CGT GGA YTCMAC TCA CGA TTT CAT CAT CAC CAT A ReverseForward 4657-4636GIII/CowdenAF182760Song et al., 2011SaVR3CTA CTA CTA CGG GTGA TGA TTG TG CAC ATTT CAT CAT CAC CRT A ReverseForward 4657-4636GIII/CowdenAF182760Liu et al., 2012a; Liu et al., 2012b.SaVFPCAC CTA CTG GG TGA TGA TTG TG G RO nameForward ReverseForward 4657-4636GIII/CowdenAF182760Liu et al., 2012a; Liu et al., 2012b.No nameGAT GG CCC TCT GG TGA TGA TGG TG RCForward ReverseForward 4657-4636GIII/CowdenAF182760Liu et al., 2012a; Liu et al., 2012b.No nameGAG GA GAG GA GAG GA GAT GA GG CCA GA GT RCForward ReverseForward 4530-4534GIII/CowdenAF182760Liu et al., 2019SaVFPTAC AGC AGA GG GG GAC CCA CG GG GA ATA GGT TT CG CA CG GG GA CCA GA GT ReverseForward 4530-4534GIII/CowdenAF182760Ding et al., 2019SaV-FTAC GG GG CA TA GGT TT CG CG CA CAT TT TG GG TG ReverseForward Reverse4530-4534GIII/CowdenAF182760Liu et al., 2019SaV-FTAC GAC GAG GG GACT CAC GC GG GA ATA GGT TT CG CA CG GG GA CT CAT TT GG CG Reverse<	CapsidR/PECV	AAA GCA TGA TGT TGT TAG GC	first and second	6454-6435			
SaV1 SaV2 SaV2 SaVRGAT TAC TCC AGG TGG GAY TCMAC CCA TT CAT CAT CAC CAT A ReverseForward 4657-4636 4657-4636 4657-4636GIII/CowdenAF182760She et al., 2009No name SaVRGAT TAC TCC AGT GG AY TCMAC CGA TTT CAT CAT CAC CAT A ReverseForward 4657-4636GIII/CowdenAF182760Song et al., 2011SaVRGAT TAC TCC AGT GG AY TCMAC TCA CGA TTT CAT CAT CAC CAT A ReverseForward 4657-4636GIII/CowdenAF182760Song et al., 2011SaVRGAT TAC TCC AGT GG ATG ATTG TGT CGA TTT CAT CAT CAC CAT A ReverseForward Reverse629-4653GIII/CowdenAF182760Liu et al., 2012; Liu et al., 2012b.SaVRAGA CCT ACT GG GG AG TTG CCT CGA TG CCC TTG GG TG GT GForward Reverse619-25171GIII/CowdenAF182760Liu et al., 2012; Liu et al., 2012b.No name SaVRGAA GAA GAA GAC CA GAA GT ReverseForward Reverse519-25171GIII/CowdenAF182760Ding et al., 2014No name CA GT GA CA GT GG GA GA TT GCT TG CAC ReverseForward Reverse519-25171GIII/CowdenAF182760Ding et al., 2019SaVRTAC AGC AAG TG GG GAC ATT GA CA CT GG GG GA TT CAC CAC ReverseForward513-5132GIII/CowdenAF182760Ding et al., 2019SaVFTAC AGC GG GG ATT GCT T ReverseForwardf581-5624GIII/CowdenAF182760Ding et al., 2019SaV-FTAC GG GG GA TA GGT TT ReverseForwardf581-5624GIII/CowdenAF182760Ding et al., 2019SaV-FTAC GG GG	capsidR		reverse				
SaV2 SaVR1 SaVR2TCA CCA TTT CAT CAC CMC CRT A TCA CA TT CAT CAT CAC CAT A ReverseReverse 4657-4636 4657-4636Reverse 4657-4636SaVR3TCA CCA TTT CAT CAT CAC CAT A ReverseReverse 4657-4636GIII/CowdenAF182760Song et al., 2011No nameTCA CCA TAC CAC TA CA CAT A ReverseReverse4657-4636Iiu et al., 2012a; Liu et al., 2012b.Song et al., 2011SaVR1ACA CT ACT GG GTA TG TGT G SaVRpForward4629-4653GIII/CowdenAF182760Liu et al., 2012a; Liu et al., 2012b.SaVRpACA CT ACT GG GTA TG TGT G G CA GT GT CC CT TG GG TG GT GForward513-5132 S641-5624GIII/CowdenAF182760Zhang et al. 2014No nameGAA GAT GAA GAG CCA GAA GT ReverseReverse4330-4344 4526-4507GIII/CowdenAF182760Jing et al., 2019SaV-F SaV-FTAA GCA AGT GG GAC ACA GCT G GT AAT GT TG TG TG ReverseForward Reverse4352-4507GIII/CowdenAF182760Jing et al., 2019SaV-FTAA GCA AGT GG GA CA GC AT AT G ACA CT G GT AATForward Reverse855-5871 6100-6080GIII/CowdenAF182760Jing et al., 2019SaV-FTAA GGA GGA GA GG GT AT AT G ACA CT G GT G AT CA GC GA CA CT G GT G ATForward Reverse4560-4280 6111-4989GIII/CowdenAF182760Jing et al., 2013SaV-FCG GG GA ATA GGT TT GG GT CA GC GG CA CA TA TT TT TG G GTG SaV XR***Forward AGE GA CC CA CA GA GTG TT TG GA TG Reverse4587-4608 6111-4989GVI/OH-JJ674KJ508818Sisay et al., 20	SaV1	GAT TAC TCC AGG TGG GAY TCM AC	Forward	4327-4349	GIII/Cowden	AF182760	Shen et al., 2009
SaVR1 SaVR2 SaVR3TGA CAA TGT AAT CAT CAC CAT A TGA CGA TTT CAT CAT CAC CAT A ReverseReverse4657-4636No name No nameGAT TAC TCC AGT GGA YTC MAC TGA CGA TTT CAT CAT CAC CAT A ReverseForward 4657-4636GIII/CowdenAF182760Song et al., 2011SaVR2 SaVR9CAC CT ACT GGG TGA TGA TTG TGT TGA CGA TTT CAT CAT CAC CAT A ReverseForward 4629-4653GIII/CowdenAF182760Liu et al., 2012a; Liu et al., 2012b.SaVRpCAA CT ACT GGG TGA TGA TTG TGT G GForward Reverse5192-5171GIII/CowdenAF182760Zhang et al. 2014No nameGAA GAT GAA GAG CCA GAA GT ReverseForward Reverse5113-5132GIII/CowdenAF182760Zhang et al. 2014No nameGAA GAT GAA GGG CAT GG GAC AG GT TTC TC CA CCForward Reverse5303-4344GIII/CowdenAF182760Jiang et al. 2019SaV-FTAC AGC AAG GTG GAC GAC AG GT GA CA GG GA TT ReverseForward 4504-4507GIII/CowdenAF182760Jiang et al., 2019SaV-FTAC GG GG AAA TG GT TT CAC CA CA TC TG GGT AGT ReverseForward 4504-4507GIII/CowdenAF182760Jiang et al., 2019SaV-RTAC GG GG GA AAG GTG GA CAC ReverseReverse6100-6033GIII/CowdenAF182760Jiang et al., 2019SaV-RCGC CAT AA ATT TAT TGG GTG ReverseForward 4504-4466GVI/OH-JJ674KJ508818Wang et al., 2013SaV XF***ATA GA GAG GG CTT TG GAA TG ACA TG GG CC CT CA TG ACA TA CAC TG GG ACA CA ReverseForward 4507-4636GVI/OH-JJ674<	SaV2	TGA CGA TTT CAT CAT CMC CRT A	Reverse	4657-4636			
SAV2 SaVR3IGA GGA ITT CAT CAT CAT CAT CAT CAT CAT CAT CAT C	SaVR1	TGA CAA TGT AAT CAT CAC CAT A	Reverse	4657-4636			
SAY STOR COR ITT CAT CAT CCC OT ARevise4037-4030No nameGAT TAC TCC AGT GGA YTC MAC TGA CGA TTT CAT CAT CMC CRT AForward4327-4349 4657-4636GIII/CowdenAF182760Song et al., 2011SaVFpACA CCT ACT GGG TGA TGA TTG TG GForward4629-4653 5192-5171GIII/CowdenAF182760Liu et al., 2012a; Liu et al., 2012b.No nameGAA GAT GAA GAG CCA GAA GT R GC CC TCT GGG TTG CTC GReverse5192-5171CCNo nameGAA GAT GAA GAG CCA GAA GT R GC CC TCG GG TTG CTC GForward Reverse5113-5132 5641-5624GIII/CowdenAF182760Zhang et al. 2014PSaV-FTAC AGC AAG TGG GAC AT GA CA CTG GT GA AC GGC AT R GC CA TCG GT GA AC GGC AT ReverseForward Reverse5130-5132 5641-5624GIII/CowdenAF182760Ding et al., 2019SaV-FTAC AGC GA GT GG GAC AT GA CA CT G GT GA AC GGC AT RC CC CA TC G GT AAT GT T ReverseForward Reverse5855-5871 6100-6083GIII/CowdenAF182760Jiang et al., 2019SaV-FTAC GGG GA ATA GGT TT CAG CC CA CAT CTG GT AGT RC CC CA CAT TT TT TG GT G ReverseForward Reverse5855-5871 6100-6083GIII/CowdenAF182760Jiang et al., 2019SaV-FTAC GG GG ATA AGT TT TA TG TG GG T RC CA CA CA TG GG TA AGT TT TT GG GT GA ReverseForward Reverse4260-4280 5011-4989GVI/OH-JJ674KJ508818Sisay et al., 2013PEC67ATA TG AT GA GG CTT TTG GCA T RC CC CT CA TG AC ATA CAC TA CAC CC CT CA TG AC ATA CAC TA CAC TA CAC Reverse4207-4230 4437-4414 <t< td=""><td>SaVR2</td><td>TGA CGA TTT CAT CAT CAC CAT A</td><td>Reverse</td><td>4657-4636</td><td></td><td></td><td></td></t<>	SaVR2	TGA CGA TTT CAT CAT CAC CAT A	Reverse	4657-4636			
No name No nameGAT TAC TCC AGT GGA YTC MAC TGA CGA TTT CAT CAT CMC CRT A Reverseforward Reverse4327-4349 4657-4636GIII/CowdenAF182760Song et al., 2011SaVFp SaVRpCA CA CT ACT GG TG ATG ATTG TGT G GTG CC TCT GG TTG CT GForward Reverse4629-4653 5192-5171GIII/CowdenAF182760Liu et al., 2012a; Liu et al., 2012b.No name No nameGAA GAT GAA GAG CCA GAA GT CCA TGG AGT TTC TCC ACCForward Reverse5113-5132 5641-5624GIII/CowdenAF182760Zhang et al. 2014SaV-F SaV-FTAC AGC AAG TGG GAC AC GG CA CTG GTG AAC GGC ATForward Reverse4330-4344 4526-4507GIII/CowdenAF182760Ding et al., 2019SaV-F SaV-FTAC GGG GG AAT A GGT TT CA GC CA CAT CTG GGT AGTForward Reverse5855-5871 6100-6083GIII/CowdenAF182760Jiang et al., 2019SaV-F SaV-RTAC GGG GG AT TG GCT AGT CAG GCA CC CAT ATT TTT GG CAG GCA CC CAT ATT TTT GG GTG ReverseForward 4260-4280 4484-4465GVI/OH-JJG74KJ508818Siasy et al., 2013PEC68 SaV XF***CCC CT CAT GA CATA CAT TG GAT forward ACG GG AC CC CAT ATT TTT GG GTG ReverseForward 4587-4608GVI/OH-JJG74KJ508818Siasy et al., 2016SaV XF*** SaV XF***CAC CCA GAG GTG ATT CAA CAC CCA CT GA CAT CA CAT GG GA CAC CAA ReverseForward 4397-4414GVI/OH-JJG74KJ000384Wang et al., 2006SaV YF*** SV14MCAC CCA GAG GG ATC WCA CCA CAC CAA CAT GG GA CCA CAA CAT GForward Reverse4207-4220GVI/RV0042KX000384Wa	Savits		Reverse	4037-4030			
No nameTGA CGA TTT CAT CAT CM CC RT AReverse4657-4636SaVFpACA CCT ACT GGG TGA TGA TTG TGT GForward4629-4653GIII/CowdenAF182760Liu et al., 2012a; Liu et al., 2012b.SaVRpGA GTG CCC TCT GGG TTG CTC GReverse5192-5171GIII/CowdenAF182760Zhang et al. 2014No nameGAA GAT GAA GAG CCA GAA GT CCA TCG AGT TTC TCC ACCForwardS641-5624GIII/CowdenAF182760Ding et al., 2019PSaV-FATG ACA CTG GTG GAC ACG CG GG ATA GGT TT CAC CCG GGA ATA GGT TT CAG CCA CTT G GGT AGTForward ReverseS855-5871GIII/CowdenAF182760Ding et al., 2019SaV-FTAC GGG GGA ATA GGT TT CAG CCA CAT CTG GGT AGTForward ReverseS855-5871GIII/CowdenAF182760Jiang et al., 2019SaV-FTAC GGG GGA ATA GGT TT CAG CCA CAT ATT TTT TG GGT AGTForward ReverseS855-5871GIII/CowdenAF182760Jiang et al., 2019SaV-FTAC GG GGA CCA CAT ATT TTT GG GGT AGT ReverseForward ReverseS855-6871GII/CowdenAF182760Jiang et al., 2019SaV-FTAC GG GG GG ATA GGT TT CAG CCA CAT ATT TTT TG GGT GGG GGForward ReverseS850-6883GII/CowdenAF182760Jiang et al., 2006SaV XF***ATA TGA TGA GGG GTT TTG GGA T CCC CT CAT GA ATA CAC TGA GGA T CCC CT CAT GA ATA CAC TG GGA ATA CAC TG ReverseS870-4863GVI/OH-JJ674KJ508818Sisay et al., 2006SaV XF***ATA TGA TGA GGG GTT TTG ACA CCC CT CAT GA ATA CAC TG GAG CACACA CCC CT CAT GA ATA CAC TG GAG CACACA Reverse<	No name	GAT TAC TCC AGT GGA YTC MAC	Forward	4327-4349	GIII/Cowden	AF182760	Song et al., 2011
SaVFp SaVRpACA CCT ACT GGG TGA TGA TTG TG C CA GT GCC TCT GGG TTG CCC G RC GC ACA CAG GT GCC TCT GGG TTG CCC G RC ACG CAG AGT GA GAG CCA GAA GT ReverseForward S192-5171GIII/Cowden S192-5171AF182760Liu et al., 2012a; Liu et al., 2012b.No name No nameGAA GAT GAA GAG CCA GAA GT CCA TCG AGT TTC TCC ACCForward ReverseS113-5132 ReverseGIII/CowdenAF182760Zhang et al. 2014SaV-F SaV-FTAC AGC AAG TGG GAC AC GCG GG AATA GGT TT CAC CCC CAT ATCT GGT AC RC CG CGA TA GGT TT ReverseForward Reverse330-4344 ReverseGIII/CowdenAF182760Ding et al., 2019SaV-F SaV-FTAC GGG GGA ATA GGT TT CAC CCA CAT CTG GGT AGTForward ReverseS855-5871 ReverseGIII/CowdenAF182760Jiang et al., 2019SaV-F SaV-RTAC GGG GGA ATA GGT TT CAC CCA CAT CTG GGT AGTForward ReverseS264-4507GVI/OH-JJ674KJ50818Wang et al., 2009SaV-F SaV-R***ACA CGC GGA CCC CAT ATT TTT GG GT ReverseForward ReverseS557-4603GVI/OH-JJ674KJ50818Sisay et al., 2013SaV TF***ACA CCA GAG GTG ATT TCA CAA CCC TC CAT GAC ATA CAC TGG CC CTC AT GAC ATA CAC TG GG GC ATT CAA CAA ReverseForward Reverse4207-4230GVI/RV042KX00384Wang et al., 2013SV11MGAC CCR GAG GGG ATT WCAA CAC CCA GAG GGG ATT WCAA SY14MForward Reverse4207-4230GVI/RV042KX00384Sisay et al., 2013SV11MGAC CCR GAG GG GG ATT WCAA CAC W TSV AGC ACA CAA CAG GGForward Reverse4207-4230G	No name	TGA CGA TTT CAT CAT CMC CRT A	Reverse	4657-4636			
G SaVRpG TGA GTG CCC TCT GGG TTG CTC GReverse5192-51712012b.No name No nameGAA GAT GAA GAG CCA GAA GT CCA TCG AGT TTC TCC ACCForward Reverse5113-5132 5641-5624GIII/CowdenAF182760Zhang et al. 2014PSaV-F PSaV-FTAC AGC AAG TGG GAC ATG ACA CTG GTG AAC GGC ATForward Reverse4330-4344 4526-4507GIII/CowdenAF182760Ding et al., 2019SaV-F SaV-FTAC AGC GG GGA ATA GGT TT CAG CCA CAT CTG GGT AGTForward Reverse5855-5871 6100-6083GIII/CowdenAF182760Jiang et al., 2019SaV-F SaV-FTAC GGG GGA ATA GGT TT CAG CCA CAT CTG GGT AGTForward Reverse5855-5871 6100-6083GII/CowdenAF182760Jiang et al., 2019SaV-F SaV-FTAC GGG GGA ATA GGT TT CAG CCA CAT TT TTT TG CAG CCA CAT TT TTT GGForward Reverse4260-4280 4484-4465GVI/OH-JJ674KJ508818Wang et al., 2006SaV XF*** SaV XR***ATA TGA TGA GGG CTT TTG GCA T ReverseForward Reverse4207-4230 4437-4414GVI/OH-JJ674KJ508818Sisay et al., 2006PSV11 PSV14CAC CCA GAG GTG ATT TCA ACA CCA CAA CAT G GAG CAC ACA CAG CAA CAA CAT G Reverse4207-4230 4437-4414GVI/RV0042KX000384Wang et al., 2013PSV11M PSV14MCAC CCR GAG GGA TC WCA TAA CAV TSV AGC ACA CAA CAT GForward Reverse4207-4224 4430-4409GVI/RV042KX000384Sisay et al., 2013	SaVFn	ACA CCT ACT GGG TGA TGA TTG TGT	Forward	4629-4653	GIII/Cowden	AF182760	Liu et al., 2012a: Liu et al.,
SaVRpTGA GTG CCC TCT GG GTTG CTC GReverse5192-5171No nameGAA GAT GAA GAG CAA GAT CCA TCG AGT TTC TCC ACCForward Reverse5113-5132 S641-5624GIII/CowdenAF182760Zhang et al. 2014PSaV-FTAC AGC AAG TGG GAC AC GTG GTG AAC GGC ATForward Reverse4330-4344 4526-4507GIII/CowdenAF182760Ding et al., 2019SaV-FTAC GGG GGA ATA GGT TT CAG CCA CAT CTG GGT AGTForward Reverse5855-5871 6100-6083GIII/CowdenAF182760Jiang et al., 2019SaV-FCG CG TA TAA ATT TAT TGG GTG CAG CCA CAT CTG GGT AGTForward Reverse4260-4280 4484-4465GVI/OH-JJ674KJ508818Wang et al., 2006SaV XF*** SaV XR***ATT AGA TGA GG GC TT TTG GCA T CCC CT CAT GAC ATA CAT TAC TA CCC CT CAT GAC ATA CAT TAC TA CCC CT CAT GAC ATA CAT TAC TA CCC TT CA CA TA CAT TA CAT CCC CT CAT GAC ATA CAT TAC TA Reverse587-4608 S011-4989GVI/OH-JJ674KJ508818Sisay et al., 2013PSV11CAC CCA GAG GTG ATT TCA ACA CCA CCA CA CA CA CA CA CA CA CAC GCG GGA ATC CGA ATA CAT TA GA ReverseForward 4207-4230GVI/RV0042KX000384Wang et al., 2006PSV11ACAC CCC GAG GGG ATC WCA TC TG CG TA ACA CTG GAG CAC CAA CAC ACA CAA CAG GGForward Reverse4207-4230GVI/RV0042KX000384Wang et al., 2013PSV11MCAC CCC GAG GGG ATC WCA TA CAV TSV AGC ACA CAA CAT GForward Reverse4207-4230GVI/RV0042KX000384Sisay et al., 2013PSV11MCAC CCC GAG GGG ATC WCA TA CAV TSV AGC ACA CAA CAT GForward Re	F	G			,		2012b.
No nameGAA GAT GAA GAG CCA GAA GT CCA TCG AGT TTC TCC ACCForward ReverseS113-5132 S641-5624GIII/CowdenAF182760Zhang et al. 2014PSaV-FTAC AGC AAG TGG GAC AC CTG GTG AAC GGC ATForward Reverse330-4344 4526-4507GIII/CowdenAF182760Ding et al., 2019SaV-FTAC GGG GG AATA GGT TT CAG CCA CAT CTG GGT AGTForward Reverse5855-5871 6100-6083GIII/CowdenAF182760Jiang et al., 2019SaV-FCG GCTA TAA ATT TAT TGG GTG AGG GCA CCA CAT CTG GGT AGTForward Reverse2860-4280 4484-4465GVI/OH-JJ674KJ508818Wang et al., 2006SaV XF***CG GCA CAT ATT TTT GG GTG AGC GGA CCC AT ATT TTT GGForward Reverse4587-4608 5011-4989GVI/OH-JJ674KJ508818Sisay et al., 2013SaV XF***ATA TGA TGA GGG CTT TTG GCA T ACC CAC GAG GTG ATT CCA ACA CC CT CC AT GAC ATA CAC TAC GA ForwardForward Reverse4207-4230 4437-4414GVII/RV0042KX000384Wang et al., 2006PSV11MCAC CCR GAG GGG ATC WCA FORWARDForward Reverse4207-4224 4430-4409GVII/RV0042KX000384Sisay et al., 2013	SaVRp	TGA GTG CCC TCT GGG TTG CTC G	Reverse	5192-5171			
No nameCCA TCG AGT TTC TCC ACCReverse5641-5624Hill Funder and the function and the funct	No name	GAA GAT GAA GAG CCA GAA GT	Forward	5113-5132	GIII/Cowden	AF182760	Zhang et al. 2014
PSaV-F PSaV-RTAC AGC AAG TGG GAC ACA CTG GTG AAC GGC ATForward Reverse4330-4344 4526-4507GIII/CowdenAF182760Ding et al., 2019SaV-F SaV-RTAC GGG GGA ATA GGT TT CAG CCA CAT CTG GGT AGTForward Reverse5855-5871 6100-6083GIII/CowdenAF182760Jiang et al., 2019PEC68 PEC67CCG CTA TAA ATT TAT TGG GTG ACG GGA CCC CAT ATT TTT GGForward Reverse4260-4280 4484-4465GVI/OH-JJ674KJ508818Wang et al., 2006SaV XF*** SaV XR***ATA TGA TGA GGG CTT TTG GCA T CCC CTC CAT GAC ATA CACT ACTForward Reverse4587-4608 5011-4989GVI/OH-JJ674KJ508818Sisay et al., 2013FSV11 PSV14CAC CCA GAG GTG ATT TCA ACA CCA TA CACT G GAG CACA ACAForward Reverse4207-4230 4437-4414GVII/RV0042KX000384Wang et al., 2006FSV11M PSV14MCAC CCR GAG GGG ATC WCA ACA VTSV AGC ACA CAA CAGForward Reverse4207-4230 4330-4409GVII/RV0042KX000384Sisay et al., 2013	No name	CCA TCG AGT TTC TCC ACC	Reverse	5641-5624	,		
PSaV-F PSaV-RTAC ACC AAG TGG GAC ATG ACA CTG GTG AAC GGC ATPorward Reverse4330-4344 4526-4507GII/Cowden GII/CowdenAF182760Ding et al., 2019SaV-RTAC GGG GGA ATA GGT TT CAG CCA CAT CTG GGT AGTForward Reverse5855-5871 6100-6083GII/CowdenAF182760Jiang et al., 2019PEC68 PEC67CCG CTA TAA ATT TAT TGG GTG ACG GGA CCC CAT ATT TTT GGForward Reverse4260-4280 4484-4465GVI/OH-JJ674KJ508818Wang et al., 2006SaV XF*** SaV XR***ATA TGA TGA GGG CTT TTG GCA T CCC CTC CAT GAC ATA CAC TAC TG GCA ATA CAC TAC TG GCAForward Reverse4587-4608 5011-4989GVI/OH-JJ674KJ508818Sisay et al., 2013PSV11CAC CCA GAG GTG ATT TCA ACA GCAForward Reverse4207-4230GVII/RV0042KX000384Wang et al., 2006PSV14TTC TGC GTA ACA CTG GAG CAC ACA ReverseForward 4430-44094207-4224GVII/RV0042KX000384Sisay et al., 2013			To serve al	4000 4044	CIII (Caralan	15100760	Direct e1 0010
Sav RTAC GGG GGA ATA GGT TT CAG CCA CAT CTG GGT AGTForward Reverse5855-5871 6100-6083GIII/CowdenAF182760Jiang et al., 2019PEC68 PEC67CCG CTA TAA ATT TAT TGG GTG ACG GGA CCC CAT ATT TTT GGForward Reverse4260-4280 4484-4465GVI/OH-JJ674KJ508818Wang et al., 2006SaV XF*** SaV XR***ATA TGA TGA GGG CTT TTG GCA T CCC CTC CAT GAC ATA CAC TAC TGForward Reverse4587-4608 5011-4989GVI/OH-JJ674KJ508818Sisay et al., 2013PSV11CAC CCA GAG GTG ATT TCA ACA GCA Forward ACA CTG GAG CAC ACAForward Reverse4207-4230GVI/RV0042KX000384Wang et al., 2006PSV14TTC TGC GTA ACA CTG GAG CAC ACA FAC ACA CTG GAG CAC ACA PSV14CAC CCR GAG GGG ATC WCA TAA CAV TSV AGC ACA CAA CAT GForward Reverse4207-4224 4430-4409GVII/RV0042KX000384Sisay et al., 2013	PSaV-F PSaV-R	ATG ACA CTG GTG AAC GGC AT	Forward Reverse	4330-4344 4526-4507	GIII/Cowden	AF182760	Ding et al., 2019
SaV-F SaV-RTAC GGG GGA ATA GGT TT CAG CCA CAT CTG GGT AGTForward Reverse5855-5871 6100-6083GIII/CowdenAF182760Jiang et al., 2019PEC68 PEC67CCG CTA TAA ATT TAT TGG GTG ACG GGA CCC CAT ATT TTT GGForward Reverse4260-4280 4484-4465GVI/OH-JJ674KJ508818Wang et al., 2006SaV XF*** SaV XR***ATA TGA TGA GGG CTT TTG GCA T 	i buv it			1020 1007			
SaV-RCAG CCA CAT CTG GGT AGTReverse6100-6083PEC68 PEC67CCG CTA TAA ATT TAT TGG GTG ACG GGA CCC CAT ATT TTT GGForward Reverse4260-4280 4484-4465GVI/OH-JJ674KJ508818Wang et al., 2006SaV XF*** SaV XR***ATA TGA TGA GGG CTT TTG GCA T CCC CTC CAT GAC ATA CAC TAC TGForward Reverse4587-4608 5011-4989GVI/OH-JJ674KJ508818Sisay et al., 2013PSV11 PSV14CAC CCA GAG GTG ATT TCA ACA CCC GTA ACA CTG GAG CAC ACAForward Reverse4207-4230 4437-4414GVII/RV0042KX000384Wang et al., 2006PSV14CAC CCR GAG GGG ATC WCA TAA CAV TSV AGC ACA CAA CAT GForward Reverse4207-4224 4430-4409GVII/RV0042KX000384Sisay et al., 2013	SaV-F	TAC GGG GGA ATA GGT TT	Forward	5855-5871	GIII/Cowden	AF182760	Jiang et al., 2019
PEC68 PEC67CCG CTA TAA ATT TAT TGG GTG ACG GGA CCC CAT ATT TTT GGForward Reverse4260-4280 4484-4465GVI/OH-JJ674KJ508818Wang et al., 2006SaV XF*** SaV XR***ATA TGA TGA GGG CTT TTG GCA T CCC CTC CAT GAC ATA CAC TACForward Reverse4587-4608 5011-4989GVI/OH-JJ674KJ508818Sisay et al., 2013PSV11 PSV14CAC CCA GAG GTG ATT TCA ACA CCAForward Reverse4207-4230 4437-4414GVI/RV0042KX000384Wang et al., 2006PSV14CAC CCR GAG GGG ATC WCA TCA GCA TAC ACA CAA CAA GAForward Reverse4207-4224 4430-4409GVI/RV0042KX000384Sisay et al., 2013	SaV-R	CAG CCA CAT CTG GGT AGT	Reverse	6100-6083			
PEC67ACG GGA CCC CAT ATT TTT GGReverse4484-4465SaV XF***ATA TGA TGA GGG CTT TTG GCA T CCC CTC CAT GAC ATA CAC TAC TGForward Reverse4587-4608 S011-4989GVI/OH-JJ674KJ508818Sisay et al., 2013PSV11CAC CCA GAG GTG ATT TCA ACA GCA PSV14Forward TTC TGC GTA ACA CTG GAG CAC ACAForward Reverse4207-4230 4437-4414GVII/RV0042KX000384Wang et al., 2006PSV11CAC CCR GAG GGG ATC WCA TAA CAV TSV AGC ACA CAA CAT GForward Reverse4207-4224 4430-4409GVII/RV0042KX000384Sisay et al., 2013	PEC68	CCG CTA TAA ATT TAT TGG GTG	Forward	4260-4280	GVI/OH-JJ674	KJ508818	Wang et al., 2006
SaV XF*** SaV XR***ATA TGA TGA GGG CTT TTG GCA T CCC CTC CAT GAC ATA CAC TAGForward Reverse4587-4608 S011-4989GVI/OH-JJ674KJ508818Sisay et al., 2013PSV11 PSV14CAC CCA GAG GTG ATT TCA ACA CCA PSV14Forward Reverse4207-4230 4437-4414GVII/RV0042KX000384Wang et al., 2006PSV14CAC CCR GAG GGG ATC WCA TAA CAV TSV AGC ACA CAA GAGForward Reverse4207-4224 4430-4409GVII/RV0042KX000384Sisay et al., 2013	PEC67	ACG GGA CCC CAT ATT TTT GG	Reverse	4484-4465			
Sav XF***ATA TGA TGA GGG CTT TTG GCA T Sav XR***Forward CCC CTC CAT GAC ATA CAC TAC TG ReverseForward Reverse4357-4608 5011-4989GVI/OH-33674 KX000384Sisay et al., 2013PSV11CAC CCA GAG GTG ATT TCA ACA GCAForward Reverse4207-4230 4437-4414GVII/RV0042 KX000384Wang et al., 2006PSV14TTC TGC GTA ACA CTG GAG CAC ACA RCAReverse4437-4414Forward 4437-4414Sisay et al., 2013PSV11MCAC CCR GAG GGG ATC WCA TAA CAV TSV AGC ACA CAA CAT GForward Reverse4207-4224 4430-4409GVII/RV0042 GVII/RV0042Sisay et al., 2013	CaV VE***		Formand	4507 4600		K IE00010	Sizer et al. 2012
PSV11 CAC CCR GAG GTG ATT TCA ACA Forward 4207-4230 GVII/RV0042 KX000384 Wang et al., 2006 PSV14 TTC TGC GTA ACA CTG GAG CAC ACA Reverse 4437-4414 Sisay et al., 2013 PSV11M CAC CCR GAG GGG ATC WCA Forward 4207-4224 GVII/RV0042 KX000384 Sisay et al., 2013	SaV XF*** SaV XR***		Reverse	4387-4008	GVI/OH-JJ0/4	KJ508818	Sisay et al., 2013
PSV11 CAC CCA GAG GTG ATT TCA ACA Forward 4207-4230 GVII/RV0042 KX000384 Wang et al., 2006 PSV14 TTC TGC GTA ACA CTG GAG CAC ACA Reverse 4437-4414 PSV11M CAC CCR GAG GGG ATC WCA Forward 4207-4224 GVII/RV0042 KX000384 Sisay et al., 2013 PSV11M CAC CCR GAG GGG ATC WCA Forward 4207-4224 GVII/RV0042 KX000384 Sisay et al., 2013	buv Ait		lieverse	5011 1909			
GCA FSV14 TTC TGC GTA ACA CTG GAG CACA Reverse 4437-4414 PSV11M CAC CCR GAG GGG ATC WCA Forward 4207-4224 GVII/RV0042 KX000384 Sisay et al., 2013 PSV14M TAA CAV TSV AGC ACA CAA CAT G Reverse 4430-4409 Sisay et al., 2013	PSV11	CAC CCA GAG GTG ATT TCA ACA	Forward	4207-4230	GVII/RV0042	KX000384	Wang et al., 2006
PSV11M CAC CCR GAG GGG ATC WCA Forward 4207-4224 GVII/RV0042 KX000384 Sisay et al., 2013 PSV14M TAA CAV TSV AGC ACA CAA CAT G Reverse 4430-4409 4430-4409 4430-4409	PSV14	GCA TTC TGC GTA ACA CTG GAG CAC ACA	Reverse	4437-4414			
PSV11MCAC CCR GAG GGG ATC WCAForward4207-4224GVII/RV0042KX000384Sisay et al., 2013PSV14MTAA CAV TSV AGC ACA CAA CAT GReverse4430-44094430-4409	10117		10000100	107-117			
PSV14M TAA CAV TSV AGC ACA CAA CAT G Reverse 4430-4409	PSV11M	CAC CCR GAG GGG ATC WCA	Forward	4207-4224	GVII/RV0042	KX000384	Sisay et al., 2013
	PSV14M	TAA CAV TSV AGC ACA CAA CAT G	Reverse	4430-4409			

*Primers used for semi-nested RT-PCR are indicated as first and second.

**These primers are universal primers for calicivirus, but not PoSaV-specific. So, their RT-PCR products should be sequenced for confirmation.

***These primers Also detected porcine kobuvirus.

on entire genomes and the discovery of new genotypes of SaVs (Katsuta et al., 2019; Kuroda et al., 2017). These approaches may be adopted for routine laboratory diagnosis when the cost of those assays is comparable to those of conventional or real-time RT-PCR assays. However, deep sequencing cannot discover complete novel viral sequences

because it needs a template to assemble the short sequence fragments. On the other hand, Sanger-sequencing of RT-PCR products amplified using calicivirus universal primers targeting the most conserved regions, such as RdRp, has the advantage of identifying new calicivirus sequences (Wang et a., 2005; Yin et al., 2006; Martella et al., 2008;

L'Homme et al., 2009; Song et al., 2011; Scheuer et al., 2013; Oka et al., 2016; Kuroda et al., 2017).

6. Conclusions

Porcine SaVs are a group of genetically diverse viruses detected from pigs and wild boars worldwide. Although the first porcine SaV was detected four decades ago, their role in causing pig diarrhea in the field remains undetermined. To date, only the pathogenesis of GIII porcine SaV Cowden strain was studied in gnotobiotic pigs. The clinical outcome of co-infection with porcine SaV and other common enteric viruses and the pathogenesis studies of other genogroups of porcine SaVs need to be performed to evaluate whether vaccine development is necessary. There are still no cell culture systems for most porcine SaVs, except for GIII Cowden strain. Other questions include whether genogroups/genotypes correlate with serotypes and whether cross-reactivities exist among genogroups/genotypes.

CRediT authorship contribution statement

Makoto Nagai: Writing - original draft, Visualization. Qiuhong Wang: Conceptualization, Writing - original draft, Writing - review & editing. Tomoichiro Oka: Writing- review & editing. Linda J. Saif: Writing - review & editing.

Acknowledgements

Salaries and research support for QW and LJS were provided by state and federal funds appropriated to The Ohio Agricultural Research and Development Center, College of Food, Agricultural, and Environmental Sciences, The Ohio State University.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.virusres.2020.198025.

References

- Alcalá, A.C., Rodríguez-Díaz, J., de Rolo, M., Vizzi, E., Buesa, J., Liprandi, F., Ludert, J.E., 2010. Seroepidemiology of porcine enteric sapovirus in pig farms in Venezuela. Vet. Immuno. Immunopathol. 137, 269–274.
- Alfajaro, M.M., Cho, E.H., Kim, D.S., Kim, J.Y., Park, J.G., Soliman, M., Baek, Y.B., Park, C.H., Kang, M.I., Park, S.I., Cho, K.O., 2019. Early porcine Sapovirus infection disrupts tight junctions and uses occludin as a Coreceptor. J. Virol. 5 93 (4).
- Alhatlani, B., Vashist, S., Goodfellow, I., 2015. Functions of the 5' and 3' ends of calicivirus genomes. Virus Res. 206, 134–143.
- Barry, A.F., Alfieri, A.F., Alfieri, A.A., 2008. High genetic diversity in RdRp gene of Brazilian porcine sapovirus strains. Vet. Microbiol. 131, 185–191.
- Chang, K.O., Sosnovtsev, S.V., Belliot, G., Kim, Y., Saif, L.J., Green, K.Y., 2004. Bile acids are essential for porcine enteric calicivirus replication in association with downregulation of signal transducer and activator of transcription 1. Proc Natl. Acad. Sci. USA 101, 8733–8738.
- Chao, D.Y., Wei, J.Y., Chang, W.F., Wang, J., Wang, L.C., 2012. Detection of multiple genotypes of calicivirus infection in asymptomatic swine in Taiwan. Zoonoses Public Health. 59, 434–444.
- Chen, Q., Wang, L., Zheng, Y., Zhang, J., Guo, B., Yoon, K.J., Gauger, P.C., Harmon, K.M., Main, R.G., Li, G., 2018. Metagenomic analysis of the RNA fraction of the fecal virome indicates high diversity in pigs infected by porcine endemic diarrhea virus in the United States. Virol J. 25 15 (1), 95.
- Collins, P.J., Martella, V., Buonavoglia, C., O'Shea, H., 2009. Detection and characterization of porcine sapoviruses from asymptomatic animals in Irish farms. Vet Microbiol. 139, 176–182.
- Cortey, M., Díaz, I., Vidal, A., Martín-Valls, G., Franzo, G., Gómez de Nova, P.J., Darwich, L., Puente, H., Carvajal, A., Martín, M., Mateu, E., 2019. High levels of unreported intraspecific diversity among RNA viruses in faeces of neonatal piglets with diarrhoea. BMC Vet. Res. 5 15 (1), 441.
- Cunha, J.B., de Mendonça, M.C., Miagostovich, M.P., Leite, J.P., 2010. Genetic diversity of porcine enteric caliciviruses in pigs raised in Rio de Janeiro State, Brazil. Arch. Virol. 155, 1301–1305.
- das Merces Hernandez, J., Stangarlin, D.C., Siqueira, J.A., de Souza Oliveira, D., Portal, T.M., Barry, A.F., Dias, F.A., de Matos, J.C., Mascarenhas, J.D., Gabbay, Y.B., 2014. Genetic diversity of porcine sapoviruses in pigs from the Amazon region of Brazil. Arch. Virol. 159, 927–933.

- Di Bartolo, I., Tofani, S., Angeloni, G., Ponterio, E., Ostanello, F., Ruggeri, F.M., 2014. Detection and characterization of porcine caliciviruses in Italy. Arch. Virol. 159, 2479–2484.
- Ding, G., Fu, Y., Li, B., Chen, J., Wang, J., Yin, B., Sha, W., Liu, G., 2019. Development of a multiplex RT-PCR for the detection of major diarrhoeal viruses in pig herds in China. Transbound Emerg. Dis. 2019 (Oct 9).
- Dufkova, L., Scigalkova, I., Moutelikova, R., Malenovska, H., Prodelalova, J., 2013. Genetic diversity of porcine sapoviruses, kobuviruses, and astroviruses in asymptomatic pigs: an emerging new sapovirus GIII genotype. Arch. Virol. 158, 549–558.
- Ettayebi, K., Crawford, S.E., Murakami, K., Broughman, J.R., Karandikar, U., Tenge, V.R., Neill, F.H., Blutt, S.E., Zeng, X.L., Qu, L., Kou, B., Opekun, A.R., Burrin, D., Graham, D.Y., Ramani, S., Atmar, R.L., Estes, M.K., 2016. Replication of human noroviruses in stem cell-derived human enteroids. Science 353, 1387–1393.
- Farkas, T., Zhong, W.M., Jing, Y., Huang, P.W., Espinosa, S.M., Martinez, N., Morrow, A.L., Ruiz-Palacios, G.M., Pickering, L.K., Jiang, X., 2004. Genetic diversity among sapoviruses. Arch. Virol. 149, 1309–1323.
- Flynn, W.T., Saif, L.J., 1988. Serial propagation of porcine enteric calicivirus-like virus in primary porcine kidney cell cultures. J. Clin. Microbiol. 26, 206–212.
- Flynn, W.T., Saif, L.J., Moorhead, P.D., 1988. Pathogenesis of porcine enteric caliciviruslike virus in four-day-old gnotobiotic pigs. Am. J. Vet. Res. 49, 819–825.
- Guo, M., Chang, K.O., Hardy, M.E., Zhang, Q., Parwani, A.V., Saif, L.J., 1999. Molecular characterization of a porcine enteric calicivirus genetically related to Sapporo-like human caliciviruses. J. Virol. 73, 9625–9631.
- Guo, M., Hayes, J., Cho, K.O., Parwani, A.V., Lucas, L.M., Saif, L.J., 2001. Comparative pathogenesis of tissue cultureadapted and wild-type Cowden porcine enteric calicivirus (PEC) in gnotobiotic pigs and induction of diarrhea by intravenous inoculation of wild-type PEC. J. Virol 75, 9239–9251.
- Haga, K., Fujimoto, A., Takai-Todaka, R., Miki, M., Doan, Y.H., Murakami, K., Yokoyama, M., Murata, K., Nakanishi, A., Katayama, K., 2016. Functional receptor molecules CD300lf and CD300ld within the CD300 family enable murine noroviruses to infect cells. Proc. Natl. Acad. Sci. USA. 113, E6248–E6255.
- Hall, G.A., Bridger, J.C., Brooker, B.E., Parsons, K.R., Ormerod, E., 1984. Lesions of gnotobiotic calves experimentally infected with a calicivirus-like (Newbury) agent. Vet. Pathol. 21, 208–215.
- Hansman, G.S., Takeda, N., Oka, T., Oseto, M., Hedlund, K.O., Katayama, K., 2005. Intergenogroup recombination in sapoviruses. Emerg. Infect. Dis. 11, 1916–1920.
- Hansman, G.S., Oka, T., Sakon, N., Takeda, N., 2007. Antigenic diversity of human sapoviruses. Emerg. Infect. Dis. 13, 1519–1525.
- Jeong, C., Park, S.I., Park, S.H., Kim, H.H., Park, S.J., Jeong, J.H., Choy, H.E., Saif, L.J., Kim, S.K., Kang, M.I., Hyun, B.H., Cho, K.O., 2007. Genetic diversity of porcine sapoviruses. Vet. Microbiol. 122, 246–257.
- Jiang, X., Huang, P.W., Zhong, W.M., Farkas, T., Cubitt, D.W., Matson, D.O., 1999. Design and evaluation of a primer pair that detects both Norwalk- and Sapporo-like caliciviruses by RT-PCR. J. Virol. Methods. 83, 145–154.
- Jiang, C., He, H., Zhang, C., Zhang, X., Han, J., Zhang, H., Luo, Y., Wu, Y., Wang, Y., Ge, B., Xu, J., 2019. One-step triplex reverse-transcription PCR detection of porcine epidemic diarrhea virus, porcine sapelovirus, and porcine sapovirus. J. Vet. Diagn. Invest. 31, 909–912.
- Jones, M.K., Watanabe, M., Zhu, S., Graves, C.L., Keyes, L.R., Grau, K.R., Gonzalez-Hernandez, M.B., Iovine, N.M., Wobus, C.E., Vinje, J., Tibbetts, S.A., Wallet, S.M., Karst, S.M., 2014. Enteric bacteria promote human and mouse norovirus infection of B cells. Science 346, 755–759.
- Jun, Q., Lulu, T., Qingling, M., Xingxing, Z., Haiting, L., Shasha, G., Zibing, C., Xuepeng, C., Jinsheng, Z., Zaichao, Z., Kuojun, C., Chuangfu, C., 2016. Serological and molecular investigation of porcine sapovirus infection in piglets in Xinjiang. China. Trop. Anim. Health Prod. 48, 863–869.
- Katsuda, K., Kohmoto, M., Kawashima, K., Tsunemitsu, H., 2006. Frequency of enteropathogen detection in suckling and weaned pigs with diarrhea in Japan. J. Vet. Diagn. Invest. 18, 350–354.
- Katsuta, R., Sunaga, F., Oi, T., Doan, Y.H., Tsuzuku, S., Suzuki, Y., Sano, K., Katayama, Y., Omatsu, T., Oba, M., Furuya, T., Ouchi, Y., Shirai, J., Mizutani, T., Oka, T., Nagai, M., 2019. First identification of Sapoviruses in wild boar. Virus. Res. 2 (271), 197680.
- Keum, H.O., Moon, H.J., Park, S.J., Kim, H.K., Rho, S.M., Park, B.K., 2009. Porcine noroviruses and sapoviruses on Korean swine farms. Arch. Virol. 154, 1765–1774.
- Kim, D.S., Hosmillo, M., Alfajaro, M.M., Kim, J.Y., Park, J.G., Son, K.Y., Ryu, E.H., Sorgeloos, F., Kwon, H.J., Park, S.J., Lee, W.S., Cho, D., Kwon, J., Choi, J.S., Kang, M.I., Goodfellow, I., Cho, K.O., 2014. Both alpha2,3- and alpha2,6-Linked Sialic Acids on O-Linked Glycoproteins Act as Functional Receptors for Porcine Sapovirus. PLoS. Pathog. 10, e1004172.
- Kim, H.J., Cho, H.S., Cho, K.O., Park, N.Y., 2006. Detection and molecular characterization of porcine enteric calicivirus in Korea, genetically related to sapoviruses. J. Vet. Med. B. Infect. Dis. Vet. Public Health. 53, 155–159.
- Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.
- Kuroda, M., Masuda, T., Ito, M., Naoi, Y., Doan, Y.H., Haga, K., Tsuchiaka, S., Kishimoto, M., Sano, K., Omatsu, T., Katayama, Y., Oba, M., Aoki, H., Ichimaru, T., Sunaga, F., Mukono, I., Yamasato, H., Shirai, J., Katayama, K., Mizutani, T., Oka, T., Nagai, M., 2017. Genetic diversity and intergenogroup recombination events of sapoviruses detected from feces of pigs in Japan. Infect. Genet. Evol. 55, 209–217.
- Lauritsen, K.T., Hansen, M.S., Johnsen, C.K., Jungersen, G., Böttiger, B., 2015. Repeated examination of natural sapovirus infections in pig litters raised under experimental conditions. Acta. Vet. Scand. 26 (57), 60.
- L'Homme, Y., Brassard, J., Ouardani, M., Gagné, M.J., 2010. Characterization of novel porcine sapoviruses. Arch. Virol. 155, 839–846.
- L'Homme, Y., Sansregret, R., Plante-Fortier, E., Lamontagne, A.M., Lacroix, G., Ouardani, M., 2009. Genetic diversity of porcine Norovirus and Sapovirus: Canada, 2005-2007.

M. Nagai, et al.

Arch Virol. 154, 581-593.

- Le Guyader, F., Estes, M.K., Hardy, M.E., Neill, F.H., Green, J., Brown, D.W., Atmar, R.L., 1996. Evaluation of a degenerate primer for the PCR detection of human caliciviruses. Arch. Virol. 141, 2225–2235.
- Li, J., Shen, Q., Zhang, W., Zhao, T., Li, Y., Jiang, J., Yu, X., Guo, Z., Cui, L., Hua, X., 2017. Genomic organization and recombination analysis of a porcine sapovirus identified from a piglet with diarrhea in China. Virol. J. 14 (1), 57.
- Li, J., Zhang, W., Cui, L., Shen, Q., Hua, X., 2018. Metagenomic identification, genetic characterization and genotyping of porcine sapoviruses. Infect. Genet. Evol. 62, 244–252.
- Liu, G.H., Li, R.C., Huang, Z.B., Yang, J., Xiao, C.T., Li, J., Li, M.X., Yan, Y.Q., Yu, X.L., 2012a. RT-PCR test for detecting porcine sapovirus in weanling piglets in Hunan Province. China. Trop. Anim. Health Prod. 44, 1335–1339.
- Liu, G.H., Li, R.C., Li, J., Huang, Z.B., Xiao, C.T., Luo, W., Ge, M., Jiang, D.L., Yu, X.L., 2012b. Seroprevalence of porcine cytomegalovirus and sapovirus infection in pigs in Hunan Province. China. Arch. Virol. 157, 521–524.
- Liu, W., Yang, B., Wang, E., Liu, J., Lan, X., 2014a. Complete sequence and phylogenetic analysis of a porcine sapovirus strain isolated from western China. Virus Genes 49, 100–105.
- Liu, Z.K., Li, J.Y., Pan, H., 2014b. Seroprevalence and molecular detection of porcine sapovirus in symptomatic suckling piglets in Guangdong Province. China. Trop. Anim. Health Prod. 46, 583–587.
- Lu, Z., Yokoyama, M., Chen, N., Oka, T., Jung, K., Chang, K.O., Annamalai, T., Wang, Q., Saif, L.J., 2016. Mechanism of cell culture adaptation of an enteric calicivirus, porcine sapovirus Cowden strain. J. Virol. 90, 1345–1358.
- Makino, A., Shimojima, M., Miyazawa, T., Kato, K., Tohya, Y., Akashi, H., 2006. Junctional adhesion molecule 1 is a functional receptor for feline calicivirus. J. Virol. 80, 4482–4490.
- Martella, V., Bányai, K., Lorusso, E., Bellacicco, A.L., Decaro, N., Mari, V., Saif, L., Costantini, V., De Grazia, S., Pezzotti, G., Lavazza, A., Buonavoglia, C., 2008. Genetic heterogeneity of porcine enteric caliciviruses identified from diarrhoeic piglets. Virus Genes 36, 365–373.
- Martínez, M.A., Alcalá, A.C., Carruyo, G., Botero, L., Liprandi, F., Ludert, J.E., 2006. Molecular detection of porcine enteric caliciviruses in Venezuelan farms. Vet. Microbiol. 216, 77–84.
- Mauroy, A., Scipioni, A., Mathijs, E., Miry, C., Ziant, D., Thys, C., Thiry, E., 2008. Noroviruses and sapoviruses in pigs in Belgium. Arch. Virol. 153, 1927–1931.
- Mijovski, J.Z., Poljsak-Prijatelj, M., Steyer, A., Barlic-Maganja, D., Koren, S., 2010. Detection and molecular characterisation of noroviruses and sapoviruses in asymptomatic swine and cattle in Slovenian farms. Infect. Genet. Evol. 10, 413–420.
- Nakamura, K., Saga, Y., Iwai, M., Obara, M., Horimoto, E., Hasegawa, S., Kurata, T., Okumura, H., Nagoshi, M., Takizawa, T., 2010. Frequent detection of noroviruses and sapoviruses in swine and high genetic diversity of porcine sapovirus in Japan during Fiscal Year 2008. J. Clin. Microbiol. 48, 1215–1222.
- Oka, T., Mori, K., Iritani, N., Harada, S., Ueki, Y., Iizuka, S., Mise, K., Murakami, K., Wakita, T., Katayama, K., 2012. Human sapovirus classification based on complete capsid nucleotide sequences. Arch. Virol. 157, 349–352.
- Oka, T., Wang, Q., Katayama, K., Saif, L.J., 2015. Comprehensive review of human sapoviruses. Clin. Microbiol. Rev. 28, 32–53.
- Oka, T., Lu, Z., Phan, T., Delwart, E.L., Saif, L.J., Wang, Q., 2016. Genetic characterization and classification of human and animal sapoviruses. PLoS ONE 11, e0156373.
- Orchard, R.C., Wilen, C.B., Doench, J.G., Baldridge, M.T., McCune, B.T., Lee, Y.C., Lee, S., Pruett-Miller, S.M., Nelson, C.A., Fremont, D.H., Virgin, H.W., 2016. Discovery of a proteinaceous cellular receptor for a norovirus. Science 353, 933–936.
- Parwani, A.V., Flynn, W.T., Gadfield, K.L., Saif, L.J., 1991. Serial propagation of porcine enteric calicivirus in a continuous cell line. Effect of medium supplementation with intestinal contents or enzymes. Arch. Virol. 120, 115–122.
- Reuter, G., Bíró, H., Szucs, G., 2007. Enteric caliciviruses in domestic pigs in Hungary. Arch. Virol. 152, 611–614.
- Reuter, G., Zimsek-Mijovski, J., Poljsak-Prijatelj, M., Di Bartolo, I., Ruggeri, F.M., Kantala, T., Maunula, L., Kiss, I., Kecskeméti, S., Halaihel, N., Buesa, J., Johnsen, C., Hjulsager, C.K., Larsen, L.E., Koopmans, M., Böttiger, B., 2010. Incidence, diversity, and molecular epidemiology of Sapoviruses in swine across Europe. J. Clin. Microbiol. 48, 363–368.
- Saif, L.J., Bohl, E.H., Theil, K.W., Cross, R.F., House, J.A., 1980. Rotavirus-like, calicivirus-like, and 23-nm virus-like particles associated with diarrhea in young pigs. J. Clin. Microbiol. 12, 105–111.
- Salamunova, S., Jackova, A., Mandelik, R., Novotny, J., Vlasakova, M., Vilcek, S., 2018. Molecular detection of enteric viruses and the genetic characterization of porcine

astroviruses and sapoviruses in domestic pigs from Slovakian farms. BMC Vet. Res. 14 (1), 313.

- Scheuer, K.A., Oka, T., Hoet, A.E., Gebreyes, W.A., Molla, B.Z., Saif, L.J., Wang, Q., 2013. Prevalence of porcine noroviruses, molecular characterization of emerging porcine sapoviruses from finisher swine in the United States, and unified classification scheme for sapoviruses. J. Clin. Microbiol. 51, 2344–23453.
- Shen, Q., Ren, R., Zhang, W., Yang, Z., Yang, S., Chen, Y., Cui, L., Hua, X., 2011. Prevalence of hepatitis E virus and porcine caliciviruses in pig farms of Guizhou province. China. Hepat. Mon. 11, 459–463.
- Shen, Q., Zhang, W., Yang, S., Chen, Y., Ning, H., Shan, T., Liu, J., Yang, Z., Cui, L., Zhu, J., Hua, X., 2009. Molecular detection and prevalence of porcine caliciviruses in eastern China from 2008 to 2009. Arch Virol. 154, 1625–1630.
- Sisay, Z., Wang, Q., Oka, T., Saif, L., 2013. Prevalence and molecular characterization of porcine enteric caliciviruses and first detection of porcine kobuviruses in US swine. Arch. Virol. 158, 1583–1588.
- Sisay, Z., Djikeng, A., Berhe, N., Belay, G., Abegaz, W.E., Wang, Q.H., Saif, L.J., 2016. First detection and molecular characterization of sapoviruses and noroviruses with zoonotic potential in swine in Ethiopia. Arch. Virol. 161, 2739–2747.
- Smiley, J.R., Chang, K.O., Hayes, J., Vinje, J., Saif, L.J., 2002. Characterization of an enteropathogenic bovine calicivirus representing a potentially new calicivirus genus. J. Virol. 76, 10089–10098.
- Song, Y.J., Yu, J.N., Nam, H.M., Bak, H.R., Lee, J.B., Park, S.Y., Song, C.S., Seo, K.H., Choi, I.S., 2011. Identification of genetic diversity of porcine Norovirus and Sapovirus in Korea. Virus Genes 42, 394–401.
- Stuart, A.D., Brown, T.D., 2007. Alpha2,6-linked sialic acid acts as a receptor for Feline calicivirus. J. Gen. Virol. 88, 177–186.
- Taube, S., Perry, J.W., Yetming, K., Patel, S.P., Auble, H., Shu, L., Nawar, H.F., Lee, C.H., Connell, T.D., Shayman, J.A., Wobus, C.E., 2009. Ganglioside-linked terminal sialic acid moieties on murine macrophages function as attachment receptors for murine noroviruses. J. virol. 83, 4092–4101.
- Valente, C.S., Alfieri, A.F., Barry, A.F., Leme, R.A., Lorenzetti, E., Alfieri, A.A., 2016. Age distribution of porcine sapovirus asymptomatic infection and molecular evidence of genogroups GIII and GIX? Circulation in distinct Brazilian pig production systems. Trop. Anim. Health Prod. 48, 21–27.
- Vinjé, J., Deijl, H., van der Heide, R., Lewis, D., Hedlund, K.O., Svensson, L., Koopmans, M.P., 2000. Molecular detection and epidemiology of Sapporo-like viruses. J. Clin. Microbiol. 38, 530–536.
- Wang, L., Marthaler, D., Fredrickson, R., Gauger, P.C., Zhang, J., Burrough, E.R., Petznick, T., Li, G., 2019. Genetically divergent porcine sapovirus identified in pigs, United States. Transbound Emerg. Dis(Aug 28). https://doi.org/10.1111/tbed. 13337.
- Wang, Q.H., Han, M.G., Funk, J.A., Bowman, G., Janies, D.A., Saif, L.J., 2005. Genetic diversity and recombination of porcine sapoviruses. J. Clin. Microbiol. 43, 5963–5972.
- Wang, Q.H., Souza, M., Funk, J.A., Zhang, W., Saif, L.J., 2006a. Prevalence of noroviruses and sapoviruses in swine of various ages determined by reverse transcription-PCR and microwell hybridization assays. J. Clin. Microbiol. 44, 2057–2062.
- Wang, Q.H., Chang, K.O., Han, M.G., Sreevatsan, S., Saif, L.J., 2006b. Development of a new microwell hybridization assay and an internal control RNA for the detection of porcine noroviruses and sapoviruses by reverse transcription-PCR. J. Virol. Methods. 132, 135–145.
- Wang, Q., Zhang, Z., Saif, L.J., 2012. Stability of and attachment to lettuce by a culturable porcine sapovirus surrogate for human caliciviruses. Appl. Environ. Microbiol. 78, 3932–3940.
- Yin, Y., Tohya, Y., Ogawa, Y., Numazawa, D., Kato, K., Akashi, H., 2006. Genetic analysis of calicivirus genomes detected in intestinal contents of piglets in Japan. Arch. Virol. 151, 1749–1759.
- Yinda, C.K., Conceição-Neto, N., Zeller, M., Heylen, E., Maes, P., Ghogomu, S.M., Van Ranst, M., Matthijnssens, J., 2017. Novel highly divergent sapoviruses detected by metagenomics analysis in straw-colored fruit bats in Cameroon. Emerg. Microbes Infect. 24 (65), e38.
- Yu, J.N., Kim, M.Y., Kim, D.G., Kim, S.E., Lee, J.B., Park, S.Y., Song, C.S., Shin, H.C., Seo, K.H., Choi, I.S., 2008. Prevalence of hepatitis E virus and sapovirus in post-weaning pigs and identification of their genetic diversity. Arch. Virol. 153, 739–742.
- Zhang, B., Tang, C., Yue, H., Ren, Y., Song, Z., 2014. Viral metagenomics analysis demonstrates the diversity of viral flora in piglet diarrhoeic faeces in China. J. Gen. Virol. 95, 1603–1611.
- Zheng, D.-P., Ando, T., Fankhauser, R.L., Beard, R.S., Glass, R.I., Monroe, S.S., 2006. Norovirus classification and proposed strain nomenclature. Virology 346, 312–323.