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Abstract: Glaucoma is extensively treated with topical eye drops containing drugs. However, the
retention time of the loaded drugs and the in vivo bioavailability of the drugs are highly influenced
before reaching the targeted area sufficiently, due to physiological and anatomical barriers of the
eye, such as rapid nasolacrimal drainage. Poor intraocular penetration and frequent administration
may also cause ocular cytotoxicity. A novel approach to overcome these drawbacks is the use of
injectable hydrogels administered intravitreously for sustained drug delivery to the target site. These
injectable hydrogels are used as nanocarriers to intimately interact with specific diseased ocular
tissues to increase the therapeutic efficacy and drug bioavailability of the anti-glaucomic drugs. The
human eye is very delicate, and is sensitive to contact with any foreign body material. However,
natural biopolymers are non-reactive, biocompatible, biodegradable, and lack immunogenic and
inflammatory responses to the host whenever they are incorporated in drug delivery systems. These
favorable biomaterial properties have made them widely applicable in biomedical applications,
with minimal adversity. This review highlights the importance of using natural biopolymer-based
intravitreal hydrogel drug delivery systems for glaucoma treatment over conventional methods.

Keywords: glaucoma; natural biopolymers; intravitreal injectable hydrogel; drug delivery systems

1. Introduction

Reports of the World Health Organization (WHO) indicate that nearly 80 million
people have glaucoma globally, and around half of the people with the disease are unaware
that they have it. This number is expected to rise to 112 million individuals by 2040 [1].
Glaucoma has become the second most example cause of irreparable visual impairment
around the world. It is a multifactorial, imperceptible, and gradual neurodegenerative
disease that affects the optic nerve [2].

In human physiology, the eye is a delicate and complex organ that is specialized for
detecting and converting light stimuli into meaningful information that is structured into
different sections—namely, the anterior and posterior sections [3]. The anterior chamber
located in between the cornea and the iris is filled with aqueous humor made by the ciliary
body [4]. Fluid from the anterior chamber flows out through the pupil and then reaches the
eye’s drainage system, as well as the trabecular meshwork and a network of canals [5,6].
The vitreous chamber situated between the lens and the back of the eye contains a thick,
gel-like fluid called vitreous humor or vitreous gel [7,8]. Proper drainage of this fluid
helps the eye to keep internal pressure at a normal level, which is an active and continuous
process that is needed for the health of the eye.

In the human eye, the normal level of intraocular pressure (IOP)—as indicated in
Figure 1—can be regulated by the balance between how much fluid is made and how much
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drains out of the eye in a given time [9]. In most types of glaucoma, the eye’s drainage
system becomes clogged, so the intraocular fluid cannot drain [10].
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Figure 1. Physiology of a human eye with normal IOP.

The physiological optic cycle establishes the drainage flow through and out of the
eye, and if any partial or total drainage obstruction occurs, elevation of the IOP may cause
adverse effects on the retinal ganglion cells (RGCs) and RGC axons, causing glaucoma. The
course of glaucomic progression is chronic and perdurable for a long time—usually asymp-
tomatic, but gradually impairing the peripheral visual field before optimal damage [11].

The main causes of increased and abnormal elevation in IOP driving primary glau-
coma remain undiscovered [12]; however, the causes of increased IOP leading to secondary
glaucoma have been identified. Abnormally high IOP may be caused by advanced cataracts,
inflammation, high or elevated blood pressure, optic tumors, diabetes, myopia, or hyper-
thyroidism [13]. Genetic and ethnic background, age, lifestyle, and narrowing retinal nerve
fibers are risk factors that have been associated with glaucoma [14]. The disease has also
been suspected to arise as a side effect of the prolonged use of corticosteroids [15].

Currently, there are various glaucoma treatments on the market that are designed to
lower the IOP by lessening the production of aqueous humor or expanding non-trabecular
fluid humor drainage with surgical- (i.e., implants and therapeutic surgeries) and pharmaco-
logical-based methodologies. Pharmaceutical therapeutics for the management of glau-
coma through topical eye drops, ointments, and oral medications reduce elevated IOP;
however, there are limitations, including low patient compliance and insufficient bioavail-
ability [16]. To elevate bioavailability and improve patient compliance, advanced drug
delivery mechanisms such as liposomes, microneedles, niosomes, dendrimers, ocular
inserts, nanoparticles, and injectable hydrogels should be used [17].

To overcome the limitations of pharmaceutical therapeutics, several methods have
been explored, including the use of in situ hydrogels, which potentially serve as delivery
vehicles for nutrients, oxygen, and drugs to the targeted area [18].

Hydrogels play a significant role in upgrading the remedial adequacy of anti-glaucomic
drugs, and are relevant in glaucoma treatment because of their reliable drug delivery ap-
plicability [19]. Polymers crosslinked with hydrophilic drugs can retain more than 90%
water within the mesh of their porous network structure, thus aiding in the encapsulation
of hydrophilic drugs [20]. Therefore, localized delivery of drug-loaded hydrogels can be
achieved relatively more easily and less invasively than by implantation, and can reach the
tissues that are difficult for conventional delivery methods to reach [21].

2. Glaucoma

Glaucoma is classified primarily according to the severity and different causes of
the ailment. The most predominant types are primary open-angle glaucoma (POAG) and
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primary acute angle-closure glaucoma (PACG) [22]. Gradual blockage of the eyes drainage
channel—resulting in increased IOP, as shown in Figure 2—is the cause of POAG [23].
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Figure 2. Open-angle glaucoma (chronic).

Primarily, PACG is caused by elevation of the intraocular aqueous humor outflow at
the closure angle, caused by mechanical occlusion of the iris tissue [24,25], or blockage of
the Schlemm canal, as shown in Figure 3. Uveitis glaucoma, pigmentary glaucoma, and
normal-tension glaucoma (NTG) are classified as secondary types of glaucoma [26].
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Figure 3. Blockage of Schlemm canal drainage.

3. Ocular Barriers

The eye’s anatomy and physiological structure comprise ocular barriers that are
profound for defending its inner components from unfamiliar substances [27]. These ocular
barriers include the blood–ocular barrier, tear film, conjunctiva, cornea, blood–aqueous
barrier, and blood–retina barrier, which control the uptake of liquids. The anatomical
barriers comprise conjunctiva, sclera, and the cornea, retina–blood–aqueous barrier, and
blood–retina barrier. Secondly, all ocular mechanisms are protected by active physiological
clearing systems. The systems are nasolacrimal drainage and pre-corneal tear secretion for
the elimination of irritants, the blinking reflex, conjunctival blood flow, efflux transport,
and choroid, which shield the eye from the effects of destructive drugs [28].

The principal objective of ophthalmological therapy is to bypass the defensive hin-
drances of the eye without affecting the surrounding tissue. These barriers forestall the
transition, withholding, and bioavailability of some ophthalmologic medications by re-
stricting ocular drug permeability to the foremost segments of the eye [29].
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4. Current Therapies for Glaucoma

Ordinarily, the noninvasive methodologies incorporate topical eye drops, ointments,
and oral drugs, while surgical nanotechnology has enabled glaucoma drainage through
inserts, laser treatment procedures, and trabeculectomy. A schematic summary of cur-
rent drug delivery methods and formulations is presented in Figure 4. However, these
methodologies have drawbacks [30].
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Despite their efficiency in lowering the IOP, these therapeutic approaches have some
important adverse effects. For example, drawbacks associated with oral medication in the
treatment of glaucoma include conjunctival hyperemia in certain formulations. One of
the most common treatments among oral medications is topical eye drops. However, this
treatment is subject to low patient compliance and low bioavailability [31]. Alternatively,
laser and surgical methodologies such as inserts and trabeculectomy have been found to be
effective. However, they also carry adverse limitations, such as swelling, soreness, dryness
of the cornea, and post-surgical complications [32].

In light of this, searching for novel targets to treat IOP and play a neuroprotective role
could be taken as an advancement in the treatment of glaucoma by decreasing the side
effects of the currently available drugs. To counteract these hindrances, targeted drug delivery
systems that simplify ophthalmological treatments of glaucoma for an extended duration
after the administration in the anterior and posterior parts of the eye have been designed
to be sustainable [33]. To elevate bioavailability or alleviate chronic visual impairments,
advanced drug delivery mechanisms should be used. Liposomes, microneedles, niosomes,
dendrimers, ocular inserts, nanoparticles, and in situ hydrogels assume a significant role in
upgrading the remedial adequacy of the anti-glaucomic drugs [34].

5. Constraints of Current Glaucoma Drug Delivery Treatment

The drug delivery of anti-glaucoma medications and therapies is challenging because
of the presence of ocular barriers, which result in low bioavailability of the active ingredient
within the drug [9]. Essential challenges in the administration of ocular medications
through conventional strategies incorporate the lack of patient training for the technique in
terms of medication, consistency, adherence, and diligence. Each treatment approach has
its limitations, and there are severe side effects of some applications.

5.1. Eye Drops and Eye Ointments

Eye drops are a fundamental type of topical administration due to their ease of
application, favorable cost, and good patient consistency [35]. The typical retention time of
eye drops administered topically in the pre-corneal tear film is about 1 min. This retention
time is the only time presented for drug permeation through the cornea to reach the
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aqueous humor. Due to obstruction of the cornea and pre-corneal components, under 5% of
completely directed medications permeate to the aqueous humor. The corneal epithelium,
which contains different desmosomes and tight intersections, forestalls the permeation of
particles bigger than 500 Da, barring them from infiltrating the cornea [36].

Subsequently, 80% of the conveyed drug is unable to enter the cornea, and might be ab-
sorbed into the veins of the conjunctiva. Just under 10% of the given medication is uptaken
into the ocular system, and roughly 1–7% of that arrives at the target site—particularly in the
aqueous humor [37]. However, the most widely prescribed anti-glaucoma medications—the
PG analogs—do not suffer from these same limitations, and can be effectively administered
once daily, with good effects in many patients. Some drugs can infiltrate the cornea, and
are immediately separated through the trabecular meshwork. In the trabecular meshwork,
most ocular drugs possess a half-life slightly less than 2 h, which is a hindrance for drug
molecules in reaching the targeted tissue. Regularly utilized eye drops and ointments have
little corneal penetrability, and are thus restricted to treatment in the external fragment of
the eye. Subsequently, to achieve the ideal dosage using this approach, eye drops should
be controlled with high-recurrence dosing regimens. Consequently, using eye ointments to
attain the required dosage to the posterior chambers may cause harm to the ocular cells.
Patient movement while administering the eye drops and regular medication bring about
poor patient compliance, and making sure to take a daily dose of the optical drug might be
a challenge for patients as well [38].

5.2. Trabeculectomy

Trabeculectomy is frequently associated with visual hypotony, which is a post-surgical
complication due to an overabundance in the filtration of fluid humor after a medical pro-
cedure. Nonetheless, surgical procedures are restricted to treatments—for example, corneal
transplant, glaucoma treatment, or removal of the vitreous humor. Surgical drainage inserts
are utilized in glaucoma treatment when IOP-decreasing medications cease to work. A com-
mon postoperative complication after implantation of these devices is the development of
fibrosis around the implants [39,40].

5.3. Laser Treatment

For patients who are unable to endure the administration of other forms of medication,
or for whom the therapeutic drug alone has not been satisfactory, laser treatment is an
alternative. Laser treatment is becoming more common—particularly in Europe—for the
treatment of glaucoma.

Subliminal trans-scleral cyclophotocoagulation (SL-TSCPC) is one of the alternative
therapies to decrease IOP safely and efficiently. However, there are few studies regarding
SL-TSCPC using a Supra 810 laser machine, and limited data regarding its effectiveness in
moderate-severity glaucoma that still has good preservation of vision. SL-TSCPC is a safe
and alternative method of lowering IOP in moderate-to-advanced glaucoma over 6 months
of follow-up. As it has a good safety profile and repeatability, it is a good treatment option
for patients with uncontrolled glaucoma. The parallel effect while using laser treatment is
usually temporary, and may cause swelling, soreness, dryness of the cornea, and/or risk of
corneal scratching by the laser [41].

5.4. Oral Medication

As it is rare for oral medications to be administered to glaucoma patients, when applied,
the potential side effects include metallic taste, depletion of potassium, and development of
kidney stones [42].

6. Current Pharmaceutical Interventions for the Treatment of Glaucoma

A number of medications are currently in use for the treatment of glaucoma. Typically,
medications are intended to decrease elevated IOP and prevent loss of optic nerve fibers.
Generally, drugs used in the treatment of glaucoma are classified by their active ingredient.
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These include prostaglandin (PG) analogs, β-blockers, α-adrenergic agonists, carbonic
anhydrase inhibitors, and rho-kinase inhibitors. Combination drugs are also available
for patients who require more than one type of medication. With various technological
advancements, some drugs of various classes—including carbonic anhydrase inhibitors, PG
analogs, β-blockers, miotics, α-adrenergic agonists, and hyperosmotics—have been devel-
oped. These drugs are responsible for treating glaucomatous complexes either by increasing
aqueous humor drainage from the eye or by reducing aqueous humor production [43].

6.1. Beta-Adrenergic Blockers

Timolol maleate (TM) is the primary line of medication in the treatment of glau-
coma [44], belonging to the class of β-adrenergic blockers. Even after the appearance of the
most recent medications, such as PG analogs and α-2 agonists, TM remains the best option
because of its cost-effectiveness. Long-lasting treatment with skin drops is typically needed
in the treatment of glaucoma.

Consequently, a decrease in dosing recurrence can improve tolerance consistency and
treatment. Having low blood pressure, fatigue, and a low pulse rate are the side effects
of the medication. β-blockers can also be a reason for shortness of breath in people who
have a history of asthma or other respiratory disorders, and can alter cardiac activity by
decreasing the amount of blood the heart pumps out, which may reduce the pulse rate
and/or slow down the heart’s response rate during rare side effects of exercise, including
reduced libido and depression [45,46].

6.2. PG Analogs

PG analogs are another course of visual hypotensive medications produced for the
treatment of POAG. Latanoprost and unoprostone are medications that lower the IOP
specifically by increasing the uveoscleral drainage. The standard dosage of PG that reduces
IOP by 30% in glaucomic patients is 50 µg/mL, applied topically once per day. Additional
therapeutic impact is achieved when PGs are used with other glaucoma treatments. Po-
tential side effects include eye color change, eyelash growth, droopy eyelids, darkening of
eyelid skin, sunken eyes, stinging, eye redness, and itching [47].

6.3. Alpha-Adrenergic Agonists

Alpha-adrenergic agonists are usually applied after ocular laser therapy to decrease
the aqueous humor secretion and to control the adverse increases in IOP and episcleral
venous pressure. Unfortunately, they can induce ocular irritation and dry eyes, along with
systemic side effects involving the central nervous system, and are therefore usually not
recommended for long-term therapy [43].

6.4. Carbonic Anhydrase Inhibitors

Carbonic anhydrase inhibitors are sulfonamide derivatives that decrease ocular pres-
sure by lessening the production of intraocular fluid, thus reducing the formation of
aqueous humor and inhibiting the activity of carbonic anhydrase in the ciliary process
of the eye, consequently decreasing the IOP. They are available and administered in the
form of eye drops and as pills. Systemic use of carbonic anhydrase inhibitors reduces
the IOP by approximately 40%. Utilizing these medications causes a quick impact on the
therapeutic treatment of acute angle-closure glaucoma. Loss of strength of the hands and
feet, along with tingling, upset stomach, mental fuzziness, memory problems, depression,
kidney stones, and frequent urination, are among the side effects of the pill form of these
medications. Side effects of the eye drops include stinging, burning, and other forms of eye
discomfort [48].

6.5. Miotic Agents

Treatments using miotic agents primarily decrease pressure in the eye by increasing
the drainage of intraocular liquid through the trabecular meshwork. Miotics work by con-
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striction of the ciliary muscle, fixing the trabecular meshwork and permitting an expanded
surge of fluid through the customary pathways. Miosis results from the activity of these
medications on the pupillary sphincter. Patients who use these medications complain of
dim vision, especially at night or in darkened areas such as movie theaters. This is due to
constriction of the pupil. Miotics increase the drainage of intraocular fluid by making the
pupil smaller, thereby increasing the flow of intraocular fluid from the eye [49].

6.6. Hyperosmotic Agents

Hyperosmotic agents essentially lower the IOP by causing an osmotic inclination be-
tween ocular fluid and blood. Systemic adverse effects include nausea, vomiting, headache,
increased thirst, chills, fever, confusion or disorientation, electrolyte imbalances, and uri-
nary retention [50].

7. Natural Polymer-Based Hydrogels as Drug Delivery Vehicles for Glaucoma Therapy

Biopolymers have been extensively investigated in a number of medical fields, including
tissue engineering and drug delivery. This is largely due to the fact that they are biodegrad-
able within the body, and do not induce an inflammatory reaction [51]. A summary of
some polymers used in anti-glaucoma drug delivery systems can be seen in Section 7.9.
Polynucleotides such as nucleic acids (DNA and RNA), proteins such as polypeptides, and
polyesters derived from both plants and animals are also used [52].

When compared to synthetic polymers, naturally occurring biopolymers and their
derivatives have acquired preference, and have a comprehensive range of applications
in pharmaceutical as well as biomedical research. Natural biopolymers are preferred for
medical applications due to their biodegradability, biostability, biocompatibility, and non-
toxicity [53]. Additionally, natural polymers have the advantage of being readily available,
economically friendly, and ecofriendly. Hydrogels designed from natural polymers exhibit
high potential as drug delivery systems for biomaterials to treat ocular impairments [54,55].

The current market is brimming with numerous formulations and applications of
biopolymers that are intended to treat glaucoma. Every one of the present modes and
applications of drug delivery utilizes a particular biopolymer. The advantages and disad-
vantages of various natural biopolymers are tabulated in Section 7.9.

7.1. Silk Fibroin

Bombyx mori silk is a natural biopolymer obtained from arthropods and lepidopteran
insects, particularly silkworms and some spider groups, that produce silk fibers at large.
Due to their remarkable mechanophysical and biological properties, silk fibers have at-
tracted the interest of researchers [56], for biomedical and pharmaceutical applications.
Silk fibroin is an essential biopolymer used in biomedical applications due to its adaptable
properties, with a natural physiology that makes it preferable in the study of tissue recon-
struction in age-related ocular disease [57]. Silk fibroin is a fibrous protein that exhibits
favorable biocompatibility, bioresorbability, low immunogenicity, and hydrophilicity, pro-
moting its increasing consideration in hydrogel design. It is also rich in β-sheet structures,
owing to hydrophobic domains that influence its biodegradability rate [58], as well as its
cytological compatibility [59]. Silk fibroin proteins have been used for ocular therapies
such as wound healing [60], ocular drug delivery [61], and ocular prostheses [62].

7.2. Chitosan

Linear-structured chitosan is a natural biopolymer composed of an acetylated unit
of N-acetyl-D-glucosamine and β-(1→4)-linked D-glucosamine, a deacetylated unit. It is
prepared by treating chitin shrimp shells and various crustacean shells with sodium hy-
droxide [63].

Due to poly-oxy salt formation, chitosan exhibits basic properties different from those
of other polysaccharides [64]. As with other polymers, chitosan can also form hydrogels,
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films, and particles that can be used for biomedical applications in terms of drug delivery
units, tissue engineering, cell culturing, and platforms for cancer diagnosis. Its low toxicity,
high biocompatibility, and easy degradability in a natural environment which makes it
suitable as natural extracellular matrices [65].

According to surveys carried out by several researchers, the major constraint when
working with injectable hydrogel preparations is regulating the time of gelation [66].
However, a chitosan-based formulation of injectable hydrogel was developed that regulates
the time of gelation [67].

To be used as a biomaterial, chitosan has important properties that mimic the extracel-
lular matrices of cells, tissues, and organs. Chitosan is prepared and used either in a dried
form or in the form of gels, depending on the temperature used and the amount of water
present in the structure, which impart properties of flexibility [68].

According to the study conducted by Franca, J.R. et al. [69], chitosan can be widely
applied in the treatment of glaucoma-induced intraocular pressure, acting as a basis for
controlled drug delivery in the eye. This is because chitosan is polycationic by its very
nature, allowing interaction with the polyanionic surface through hydrogen bonding of
the ocular mucosa. Chitosan has several biological properties that make it an attractive
material for use in ocular formulations [70]. Chitosan has inherent antimicrobial and
mucoadhesive properties [71], as well as low toxicity, biodegradability, biocompatibility,
and hemocompatibility [72]. Chitosan can disrupt epithelial tight junctions, thus acting as
a permeability enhancer [71].

7.3. Alginic Acid

Brown algae are the main source of the naturally derived polysaccharide alginic acid
(Alg), with the molecular formula (C6H11NO6)n. The molecular structure and composition
of alginic acid consist of L-guluronic acid and D-mannuronic acid structures connected
with alpha-1,4 bonds [73]. As a result of the carboxyl group attached to the C-5 carbon
as a chain, it exhibits an acidic nature, and with properties such high hydrophilicity, the
capacity for gelation, and pH-dependent viscoelasticity. Furthermore, biocompatibility
and biodegradability are some of the physiological properties that make it suitable for use
as films and gels developed for medical and food applications [74]. Alginic acid has a
biodegradable and biocompatible nature that is favorable for researchers; therefore, its use
has been encouraged in ocular treatments [75]. Ocular delivery therapeutics are a current
trend in ophthalmology, and alginates have been employed to play an imperative role
because of their biocompatibility and immunogenicity [76].

7.4. Pullulan

Pullulan is a non-ionic polysaccharide extracted from the fermentation of black yeast
(Aureobasidium pullulan), and is used broadly in biomedical applications because of its less
immunogenic reaction, along with its non-toxic, non-mutagenic, and non-carcinogenic
nature [77]. It is utilized in the targeted delivery of drug mechanisms, tissue engineering
therapy, and wound-healing activities. Pullulan responds to external stimuli so that it
can be used to design hydrogels, which can be used to deliver drugs, nutrients, and (any)
other molecules to a targeted area of the host [78]. The biological properties of pullulan
include high water retention, biocompatibility, cytocompatibility, protective activity against
microbes and biodegradation, and tissue-regenerative characteristics [79].

7.5. Hyaluronic Acid

A biopolymer regularly found and extracted from the human body, applications of
hyaluronic acid as injectable hydrogels have been researched for ocular drug delivery
systems, since they can be designed as both stimulus-responsive and static [80]. Anionic
hyaluronic acid is incapable of gelation without additive molecules. Hence, hydrogels
produced using hyaluronic acid depend on chemical modifications. Egbu et al. formulated
two hyaluronic acid gel systems embedded with infliximab for the treatment of blinding
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infections influencing the elderly population [81]. Hyaluronic acid has been applied in
ocular therapeutics because of its favorable biological characteristics, such as biocompati-
bility, biodegradability, and non-immunogenicity [82]. Due to hyaluronic acid’s biological
safety, it has various ophthalmology-related applications, such as treatment for dry eyes,
intravitreal drug delivery, and use in contact lenses [82].

The main objective in the development of ophthalmic drug treatment is to extend the
therapeutic extent of medications, particularly proteins and antibodies [83].

7.6. Dextran

Dextran methacrylate and cyclodextrin–dextran are a few examples of dextran hydro-
gels used in ocular drug delivery [84]. Properties such as stiffness, mechanical strength, and
solidness can be adjusted by regulating the monomer in the gel, subsequently improving
their significance in drug delivery. Yao et al. [85], designed a drug delivery system for
effective in vivo drug release of bevacizumab from a hyaluronic acid/dextran-situated in
situ hydrogel for 6 months after intravitreal infusion in hare eyes. The in vivo drug release
efficiency results indicated that bevacizumab was delivered at a therapeutically relevant
concentration by means of a controlled release mechanism within the vitreous humor [86].
Dextran has been found to exhibit great biocompatibility and low cytotoxicity. Additionally,
it has hydrophilic domains, which promote its biodegradability in water and other organic
solvents. This biological feature enables its applicability in blended forms with bioactive
agents of hydrophobic polymers [87].

7.7. Methylcellulose

Derived from cellulose, hydroxypropyl methylcellulose (HMPC) is widely used in
the pharmaceutical industry because of its solvency in water, rheological properties, and
transparency [88]. A group of researchers designed a trans-scleral antisense oligonucleotide-
loaded gel for the delivery of drug-loaded macromolecules using methylcellulose and
ι-carrageenan dispersions [89]. Periocular injection of the gel resulted in impressive choroid
and sclera bioavailability in comparison to the injection of an oligonucleotide solution
alone. Methylcellulose has been incorporated into ocular inserts of three types: soluble,
insoluble, and bio-erodible, [90]. Methylcellulose has low reactivity with cells. Additionally,
interest has been shown in mixing it with biologically active materials such as cytokines
and/or the extracellular matrix to control the organization or functions of the cells [91].

7.8. Gelatin

Gelatin is a collagen-derived biopolymer normally found in scleral and corneal stroma,
and its structural networks make it an attractive natural complex for research applications.
El-Feky et al. [92] developed an oxidized sucrose-crosslinked gelatin–chitosan hydrogel
with the end goal of TM drug conveyance for the treatment and control of ocular hyperten-
sion [93]. In vivo and in vitro discoveries indicated that the formulated system maintained
favorable release efficacy of the active ingredient, in contrast to the regular eye drops [94].
Gelatin has favorable biological characteristics such as low antigenicity, biocompatibility,
and biodegradability, and promotes cell proliferation; therefore, it is widely researched in
ophthalmologic therapeutics [95].

7.9. Collagen

Collagen is biocompatible, biodegradable, and non-toxic for living organisms [96].
Type 1 collagen is an essential biopolymer that has been utilized in hydrogels for tissue
engineering applications [97]. Wong et al. [41] designed an injectable composite comprising
collagen and alginate for retinal treatment through a drug delivery system loaded with an
ocular drug. A summary of polymers used in anti-glaucoma drug delivery systems dis-
cussed in Table 1. Table 2 presents some natural biopolymers used in ophthalmic injectable
hydrogels. Intravitreally infused gels exhibited adequacy in rodents with deteriorating
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retinae and photoreceptor apoptosis. Twofold portion infusions into a similar eye yielded
greater results without sacrificing the gel’s feasibility [98].

Table 1. Summary of some polymers used in anti-glaucoma drug delivery systems.

Polymers Delivery System Drug Used Feature Reference

Silk fibroin Nanoparticles TM
TM caused a sustained and prolonged reduction in IOP

without adverse effects on the physiology of the eye
compared to conventional free drug use.

[99]

Hydroxyethyl
chitosan Hydrogel Heparin

The heparin-loaded hydroxyethyl chitosan hydrogel was
able to sustain and improve the reduction in the IOP after
GFS for protracted periods of time. Clear inflammatory

responses and results were not seen in the eye during the
trial’s timeframe.

[100]

Gelatin-g-poly(N-
isopropylacrylamide) Hydrogel Pilocarpine

Pilocarpine-loaded gelatin hydrogels were designed by
grafting with carboxylic end-capped

poly(N-isopropylacrylamide) for anti-glaucoma treatment
by intracameral administration.

[101]

Poly
(lactic-co-glycolic

acid) (PLGA)
Nanoparticles Dexamethasone and

melatonin

A dual-loaded melatonin and dexamethasone
poly(lactic-co-glycolic acid) nanoparticle system was
designed as an anti-glaucoma treatment option. The

in vitro release of the loaded drug from the nanoparticles
revealed a supported delivery profile for the two

medications, with no signs of burst discharge.

[102]

Gellan
gum/pullulan

Nanofibers, in situ
gel Fluorescein sodium

Development of a novel fluorescein delivery system that
is applied topically in dry nanofibrous form and gelates in
situ immediately after administration guaranteed a solid

match to the eye structure by the designed nanofibers,
which were molded into conforming geometries.

Prolongation of the ocular drugs’ residence time was
achieved

[103]

Chtosan/hydroxyethyl
cellulose Ocular inserts Dorzolamide

Dorzolamide-loaded ocular inserts were effective in
glaucoma treatment. The ophthalmologic drug embedded

in the polymeric matrix displayed a 3-h drug release
efficiency, and released 75% of the loaded drug.

[104]

Alginate–chitosan Nanoparticles/
nanogels TM

This study proposed that loading and delivering TM onto
alginate–chitosan nanoparticles may be a suitable drug

delivery approach for controlled delivery of TM through
the cornea

[99]

Table 2. Natural biopolymers used in ophthalmic injectable hydrogels.

Natural Biopolymer Gelation Strengths Drawbacks Reference

Silk fibroin Ionic crosslinking, hydrophobic
interactions Easily modified Low mechanical strength [53]

Chitosan Chemical crosslinking, pH
gelation Simple to adjust Low dissolvability at

neutral pH [54]

Alginate Chemical gelation, ionic
crosslinking

Favorable mechanical
properties, rapid gelation Poor cytoadhesion [55]

Gelatin Chemical crosslinking Hydrophilic, various responses
available

Susceptible to
degradation, poor

mechanical properties,
[94]

Pullulan Chemical crosslinking Easily dissolvable
Undesirable swelling

properties and mechanical
properties

[77]

Methylcellulose Hydrophobic, chemical,
physical

Easy modification of
physiochemical properties

Uncontrollable
degradation, poor cell

adhesion, poor mechanical
properties

[74,89]

Dextran Chemical crosslinking, physical
crosslinking

Simple crosslinking, large
capacity, hydrophilic,

controlled drug release

Prone to causing in vivo
side effects [71,90]
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Table 2. Cont.

Natural Biopolymer Gelation Strengths Drawbacks Reference

Hyaluronic acid
High temperature (specific to
contact with other polymers),

chemical gelation

Simple modification, natural
vitreous component (ECM),

bioactive

High viscosity, susceptible
to degradation [80]

Collagen Chemical crosslinking, high
temperature

Natural ECM component,
favorable cell adhesion,

Susceptible to
degradation, strenuous

dissolution
[85]

8. Design of Hybrid Hydrogels for Injectable Drug Delivery in the Treatment
of Glaucoma

The development of hybrid hydrogels should be conducted in a sterile environment
that is free from the creation of an overabundance of gas, protons, heat, or substances dan-
gerous to living beings. The gel should be shaped under physiological states of temperature
and ionic strength, light, and chemical gelation, in a controllable manner [105,106].

A hydrogel ought to have the capacity to conform to various applications, and should
have the option to be administered via a slight needle (i.e., 30-gauge or thinner) in the
confined space of the eye. Other fundamental variables to be considered are the mode
of crosslinking, the solvents used in biopolymer dissolution, the solvent and chemical
molecular weight and concentration, and the crosslinking time period [107,108].

8.1. Physicochemical, Pharmacokinetic, and Pharmacodynamic Properties of Ophthalmic Hydrogels

To design this intravitreal injectable hydrogel system, there should be strict param-
eters adhered to, such as viscoelasticity, viscosity, drug release efficiency, sustainability,
etc. [109,110].

8.1.1. Drug Release Efficiency

Hydrogels developed for targeted drug delivery should have the ability to encapsulate
a highly concentrated drug with a sustained release profile from the crosslinked hydrogel,
so that an initial burst release is inevitable [111]. A high local concentration of the active
pharmaceutical ingredient is retained over a significant stretch of time by means of a
suitable release mechanism controlled by swelling, diffusion, or chemical/environmental
stimuli [112].

Covalently crosslinked hydrogels have been utilized in the development of ocular drug
delivery systems. These hydrogels remain in situ if applied topically to the lacrimal canal;
however, if administered intravitreously, they tend to display swelling mechanisms. The
drug release efficiency of embedded drugs can be modulated to some degree by variance
in biopolymer concentration and molecular weight, adjustment of crosslinking density,
and alteration of the degradation rate. Modulating these parameters may also alter other
parameters of the drug–complex system, such as biocompatibility, mechanical properties,
and the stability of the active ingredient [113].

8.1.2. Biocompatibility

Biocompatibility testing provides initial screening of whether or not the components
of the desired biomaterial may cause adverse effects when interacting with the human
body. These biocompatibility tests may include sensitization assays, carcinogenesis, hemo-
compatibility, genotoxicity, and systemic toxicity [111]. To design an injectable hydrogel,
biocompatibility with cells, bodily fluids, and tissues should be considered in light of the
fact that the hydrogel should maintain cell differentiation without causing cytotoxicity
or adverse inflammatory responses in the host organism. Subunits of most biopolymers
derived from natural sources are similar to organic extracellular matrix (ECM), making
them more biocompatible than manmade polymers [114].
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8.1.3. Biodegradability

Naturally derived biopolymers with the ability to degrade to naturally occurring
byproducts without causing adverse inflammatory and immune responses are preferred
for use [115]. The hydrogel ought to be biodegraded, bio-eroded [116], and expelled from
the host at a rate that is relative to the pace of the tissue/organ development, so as to make
space for cell multiplication [117].

8.1.4. Porosity

Exceptionally interconnected and profoundly coordinated permeable networks that
exhibit micro- or nanoscale pores are preferred in hydrogel design and development [118].
The partial permeability facilitates active ingredient release of the therapeutic drug from
the hydrogel, and supports cell nutrient movement for cell growth [119].

8.1.5. Viscosity

Low hydrogel viscosity is a crucial factor when designing these biomaterials, because
the hydrogel should permit a homogeneous distribution of the active ingredient prior to
complex gelation [120].

8.1.6. Mechanical Strength

A hydrogel ought to offer mechanical support and guide cell differentiation [121,122].
Mechanical strength is significant because the biomaterial must be able to withstand its
biochemical structure and shape to overcome unavoidable natural forces that come with
the eye’s physiology [123].

8.1.7. Swelling Properties

A favorable property of hydrogels is their capacity to grow in contact with a ther-
modynamically viable solvent [124,125]. At the point when a hydrogel in its underlying
state is in contact with dissolvable particles, the latter assaults the hydrogel’s surface and
infiltrates into the polymeric organization [126]. Solvent molecules penetrate into the
polymeric network due to charge repulsion between polymer chains, causing an increase
in the polymer volume due to liquid uptake [127].

8.1.8. Rheology

Rheology instruments can be utilized to gauge antecedent arrangement attributes,
e.g., yield pressure, which have direct importance for clinicians’ utilization of the materi-
als [110,128]. Practically speaking, the three most applicable rheological boundaries are the
simplicity of infusion (shear reaction), time for position (recuperation time), and mainte-
nance of the hydrogel’s forerunner arrangement at the deformity site (yield pressure) [129].

8.1.9. Opacity and Transparency

Hydrogels that bio-mimic the high opacity and transparency of the natural ocular
humor remain materials of preference [130,131].

9. Intravitreal Administration of Injectable Drug-Loaded Hydrogels to The Eye

Ophthalmic applications of intravitreal injectable drug-loaded hydrogels for glaucomic
treatment to the posterior section of the eye have been shown to overcome ocular barriers
and effectively treat glaucoma [132,133]. This novel drug delivery system has properties
of good adherence and viscosity, and achieves the objective of retention and therapeutic
treatment of ocular diseases in the most remote areas of the eye.

To counteract ocular barriers and defense mechanisms, scientists have developed
intravitreal injectable hydrogel-based drug delivery mechanisms that enable retention on
the surface of the eye and in the posterior segments of the eye for an extended duration after
their administration, where conventional therapies have not successfully and sustainably
achieved the same targets [134]. Administration of intravitreal injectable hydrogels results
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in an acceptable retinal bioavailability, since the drug is directly injected into the targeted
area [135]. An advantage of administering intravitreal injectable hydrogels is that they are
biodegradable, so they are exceptionally alluring as intravitreal delivery systems because
they are degraded by the body over a favorable timeframe that relies upon the particular
polymeric framework utilized [136].

The installation of this type of delivery system is just one methodology. For example,
the drug-loaded polymeric complex will be required once as an injection to the target site,
whereafter the polymer will undergo optimal biodegradation, bio-erosion, and elimination
from the body, without creating any possible incendiary side effects. Intravitreal injectable
hydrogels alleviate the problem faced while using solid implants, because injectable hy-
drogels can hold water. In addition, their easy dissolution enables them to encapsulate
drugs to be released in the local area. The administration of intravitreal hydrogels as drug
delivery systems increases the bioavailability of the active drug at the required target site
by overcoming ocular barriers [137].

Due to their biocompatibility and suboptimal associated inflammatory response,
intravitreal hydrogels today have become a potential solution to current treatment compli-
cations, especially for preventable neural retinal diseases such as macular degeneration and
glaucoma. There are several treatments that are used for such therapy. However, many of
them exhibit various problems and limitations. In order to be able to solve these drawbacks,
the use of injectable hydrogels as drug delivery materials can improve the success of the
therapy [138].

Non-expulsion of a depleted non-biodegradable embed may aggravate the visual
tissue. Thus, it is better if it is eliminated after the medication is depleted. There is no
requirement for expulsion after the medical procedure. This implies that there will be a
lesser danger of difficulties related to the significant visual medical procedure. Trends in
systems have seen in situ gel frameworks become an exploration hotspot—particularly for
improvements in responsive hydrogels, such as ion-sensitive hydrogels, thermo-sensitive
hydrogels, and pH-sensitive hydrogel [139].

Alternative Injection Locations

Intravitreal injection is one of the current methods of pharmaceutical delivery mecha-
nisms performed as often as monthly, which can result in resistance [116]. Currently, there are
alternative intraocular injections with respect to the location and drug being delivered
that might be more useful [140]. These alternatives include sub-conjunctival injection
and parabulbar injection, which take place underneath the conjunctiva for trans-scleral
delivery [141]. Practically, a sustained in vivo drug release for up to 4 weeks was shown
following sub-conjunctival injection of dorzolamide-loaded polymer disks [142]. Dorzo-
lamide is a carbonic anhydrase inhibitor, and it works by decreasing the pressure in the
eye [143].

Another alternative is sub-retinal injection, which is delivered beneath the retina to the
sub-retinal fluid. Sub-retinal injection has more direct effects on the targeted cells in the sub-
retinal space, providing a new therapeutic method for vitreoretinal diseases—especially
when gene therapy and/or cell therapy is involved [144]. Via this effective technique,
clinicians can administer drugs such as anti-VEGF [145] and steroids [146], among others,
directly into the back of the eye to increase the drug concentration in the vitreous humor
and the retina.

10. Pharmacokinetics of Intravitreal Hydrogel Drug Release

With this approach, the drug-loaded polymer complex is administered intravitreously
at the targeted posterior segment of the eye via a minimally invasive procedure. The in-
jectable systems utilize an anti-glaucoma drug-loaded polymer drug delivery system [36].
The polymer derived from ethylene-vinyl acetic acid is known by its non-degradable nature,
which prompts a resistant reaction because of the extended presence of an unfamiliar body.
The pace of drug release of medications from these frameworks is variable [147].
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The water solvency of the medication influences its adequacy, on the grounds that
hydrophilic medications cooperate ineffectively with biodegradable polymers due to their
hydrophobic nature. The water solubility of some drugs has a direct influence on the drug
release efficacy due to their hydrophilic nature [148].

Once the anti-glaucoma drug-loaded hydrogel has been injected into the target, the
drug molecules are distributed by Fickian diffusion from the vitreous humor to the sur-
rounding ocular tissues within reach and the target retinal sites. The vitreous body is not a
hindering factor of drug diffusion of some soluble proteins; however, it limits the mobility
of various drug delivery systems, such as drug-loaded nanoparticles. The vitreous humor
facilitates an increased rate of low-molecular-weight drug diffusion, since the mesh size in
the vitreous network has been estimated to be ~500 nm. Drugs administered intravitreally
normally have a diameter of 10 nm and below, e.g., ranibizumab (4.1 nm) and bevacizumab
(6.5 nm). Distribution of therapeutic drugs and the biodegradation of self-assembled
polymers and nanoparticulate transporters have previously been confirmed [149].

Intravitreal injection of the biopolymer–drug complex into the sub-conjunctival space
and posterior target site can lead to prolonged delivery over weeks or months, compared
with simple topical application, which would last at most of a few hours or days [54].
Biodegradable and non-biodegradable polymers have been investigated for their appli-
cation as injectable hydrogels for ocular treatment and therapy. Poly(ethylene-co-vinyl
acetate)—a non-degradable polymer—exhibits extended drug delivery efficiency for a wide
range of active drug ingredients, but unfortunately exhibits poor biodegradability, and the
continued retention of implanted foreign body material causes immune responses. On the
other hand, biodegradable polymers such as silk fibroin, chitosan, and alginate may be the
best alternatives for intravitreal injection, as they are more suitably biodegradable [150].

11. Discussion

In this review, various therapeutic anti-glaucomic drug delivery systems were in-
vestigated, and the most promising ones were highlighted. This survey elaborates the
importance of using natural biopolymer-based injectable hydrogels rather than other
therapeutic drug delivery systems utilizing synthetic materials, because of the former’s
biodegradability, biocompatibility, and non-immunogenic properties.

Numerous studies have proven that natural biopolymers rarely cause adverse in-
flammatory and immune responses when in contact with ocular tissue, as opposed to
synthetic polymers. The therapeutic injectability of these drug-loaded polymer complexes
has successfully overcome anatomical and physiological ocular barriers, thus increasing
bioavailability and therapeutic efficacy. Unlike other therapeutic drug delivery systems that
have failed to permeate through the ocular barriers, injectable hydrogels have the potential
for prolonged sustainability in the delivery of ocular drugs. The potential improvement in
patient compliance and persistence for optimal outcomes with the help of these systems is
unprecedented.

12. Conclusions

The development of intravitreal injectable hydrogel drug delivery systems is a promis-
ing approach for the treatment of ophthalmological diseases—particularly glaucoma. Ocu-
lar treatment remains challenging for scientists because of physiological ocular barriers to
any foreign substances. Thus far, using intravitreal injectable hydrogels for the treatment
of ocular disease has facilitated the delivery of drugs to the targeted area at the desired
dosage, with improved properties of penetration, bioavailability, and extended retention
time for the release of the drugs. All of this has been achieved by encapsulating drugs
into hydrogels made from naturally obtained biopolymers. Therefore, the assessment
presented in this review indicates that hydrogels made from natural biopolymers have
the ability to overcome the limitations of conventional ocular treatment, and could hence
become potential sources and suitable matrices with excellent biocompatibility, acting as
useful vehicles for the delivery of drugs. Researchers should devote more attention to
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the production and application of intravitreal hydrogels made from natural polymers to
deliver drugs to targeted areas for the treatment of glaucoma.
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