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Abstract Recent advances in genome editing technologies
have enabled the rapid and precise manipulation of genomes,
including the targeted introduction, alteration, and removal of
genomic sequences. However, respective methods have been
described mainly in non-differentiated or haploid cell types.
Genome editing of well-differentiated renal epithelial cells has
been hampered by a range of technological issues, including
optimal design, efficient expression of multiple genome
editing constructs, attainable mutation rates, and best screen-
ing strategies. Here, we present an easily implementable
workflow for the rapid generation of targeted heterozygous
and homozygous genomic sequence alterations in renal cells
using transcription activator-like effector nucleases (TALENs)
and the clustered regularly interspaced short palindromic

repeat (CRISPR) system. We demonstrate the versatility of
established protocols by generating novel cellular models for
studying autosomal dominant polycystic kidney disease
(ADPKD). Furthermore, we show that cell culture-validated
genetic modifications can be readily applied to mouse embry-
onic stem cells (mESCs) for the generation of corresponding
mouse models. The described procedure for efficient genome
editing can be applied to any cell type to study physiological
and pathophysiological functions in the context of precisely
engineered genotypes.
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Introduction

Analyses of epithelial physiology in genetically tractable
model organisms have provided important biological insights.
However, the complex interaction of multiple cell types and
finite experimental resolution of specific cellular functions
within tissues have made complementary cell culture-based
approaches desirable. Wild-type renal cells have been charac-
terized extensively, but considerable limitations concerning
the genetic tractability of cultured cells have confounded mo-
lecular studies: the majority of isolated primary cells are het-
erogenous and have a finite replicative capacity; the genera-
tion of immortalized, differentiated renal epithelial cells from
patients or mouse models has proven difficult; murine embry-
onic fibroblasts (MEFs) from genetically modified mice lack
the epithelial characteristics of renal tubular cells; and the
physiological relevance of heterologous expression systems
has been questioned [9]. We therefore reasoned that the genet-
ic manipulation of endogenously expressed proteins in differ-
entiated renal epithelial cell lines may accelerate reaching

Alexis Hofherr and Tilman Busch contributed equally to this work.

Electronic supplementary material The online version of this article
(doi:10.1007/s00424-016-1924-4) contains supplementary material,
which is available to authorized users.

* Alexis Hofherr
alexis.hofherr@uniklinik-freiburg.de

* Michael Köttgen
michael.koettgen@uniklinik-freiburg.de

1 Renal Division, Department of Medicine, Faculty of Medicine,
University of Freiburg, Hugstetter Straße 55,
79106 Freiburg, Germany

2 Spemann Graduate School of Biology and Medicine (SGBM),
University of Freiburg, Freiburg, Germany

3 Faculty of Biology, University of Freiburg, Freiburg, Germany
4 Institute of Experimental and Clinical Pharmacology and Toxicology,

Faculty of Medicine, University of Freiburg, Freiburg, Germany
5 BIOSS Centre of Biological Signalling Studies,

Albert-Ludwigs-University, Freiburg, Germany

Pflugers Arch - Eur J Physiol (2017) 469:303–311
DOI 10.1007/s00424-016-1924-4

http://dx.doi.org/10.1007/s00424-016-1924-4
http://crossmark.crossref.org/dialog/?doi=10.1007/s00424-016-1924-4&domain=pdf


novel insights into renal function. Indeed, genome edited renal
epithelial cells have been successfully used to study renal
epithelial physiology [e.g. 26, 29]. However, the practical im-
plementation of required genome engineering technologies
has been challenging for many laboratories. Thus, we provide
a step-by-step protocol for efficient genome editing of differ-
entiated renal epithelial and pluripotent cell types using
TALEN [3, 5, 18] and CRISPR [7, 14, 17, 24] technology to
generate targeted alleles within a short time-frame of 10weeks
at reasonable costs.

Methods

Genome editing of MDCK, mIMCD3, and mES cells—See
Supplementary Methods for step-by-step protocols.

Molecular biology

Mouse Pkd1 and human PKD2 cDNA have been described
previously [11]. All DNA constructs were validated by Sanger
sequencing. Oligonucleotides for genotyping PCRs are listed
in Supplementary Table 3 and Supplementary Table 4.

Cell transduction

Constitutive gene expression was achieved by pLXSN-
mediated (Clontech) retroviral transduction.

RNA isolation and reverse transcription polymerase chain
reaction

mRNA of a confluent 35 mm cell culture dish was isolated
(RNeasy Plus Mini Kit, Qiagen) and reversely transcribed to
complementary DNA (One Step RT-PCR Kit, Qiagen) ac-
cording to the manufacturer ’s protocols [1 , 6] .
Oligonucleotides for RT-PCRs are listed in Supplementary
Table 5.

Antibodies

Mouse anti-beta-Actin (Clone AC-15; Sigma-Aldrich), goat
anti-TRPP2 (G-20; Santa Cruz Biotechnology), mouse anti-
Polycystin-1 (7E12; Santa Cruz Biotechnology), chicken anti-
GFP (ab13970; Abcam), mouse anti-Flag M2 (clone M2;
Sigma-Aldrich), rabbit anti-V5 epitope tag (Merck
Millipore), and mouse anti-V5-Tag (Clone SV5-Pk1; Bio-
Rad) antibodies were obtained commercially. Mouse anti-
TRPP2698–799 antibodies have been described previously
[12, 13]. Western blot detection was performed using an anti-
mouse (Dako) horse-radish peroxidase-coupled secondary anti-
body. Antigens were visualized by immunofluorescence using

secondary goat anti-chicken Alexa Fluor 488 (Thermo Fisher
Scientific).

Protein isolation, SDS-PAGE, Western blot and ECL
detection

Cells were harvested 5 days after epithelial confluency.
Proteins were isolated and processed as described previously
[12, 13]. Chemiluminescence was detected by either a 16-bit
ChemoCam system (Intas) or by Super RX film (Fujifilm).

Immunofluorescence staining of cells

Indirect immunofluorescence staining of cells has been de-
scribed previously [12]. Cells were fixed by paraformalde-
hyde (Electron Microscopy Sciences). Primary (GFP, 1:2′
000) and secondary antibodies (1:1′000) were diluted in
PBS. F-actin was stained by Alexa Fluor 568 Phalloidin
(A12380, Thermo Fisher Scientific). DNAwas probed using
DAPI (Sigma-Aldrich). Bright-field images were recorded
using an Axio Observer microscope (Zeiss).

Results

To date, American Type Culture Collection lists 21 mamma-
lian renal epithelial cell lines (www.atcc.org). Of those,
Madin-Darby Canine Kidney (MDCK) cells and mouse
Inner Medullary Collecting Duct 3 (mIMCD3) cells are most
widely used to study renal epithelial biology (≥ 5′000 entries
on www.ncbi.nlm.nih.gov) [8, 22]. Both cell lines are
phenotypica l ly s table and reta in core epi thel ia l
characteristics, including apico-basolateral polarity, directed
epithelial transport, primary cilia, and well-defined cell

MDCK

mIMCD3

a

ZO1

aTub

b

ZO1

aTub

Fig. 1 MDCK and mIMCD3 cells are highly differentiated renal epithelial
cells. aMDCKand bmIMCD3 cells stained for acetylated tubulin (aTub) to
mark primary cilia (white arrows) and ZO1 to visualize tight junctions as
markers for epithelial cell differentiation. Scale bars = 20 μm
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junctions in 2D and 3D culture (Fig. 1) [4, 10]. Furthermore,
cells proliferate rapidly and are suitable for biochemical, phys-
iological, and imaging-based experiments as well as high
throughput screening.

Genome editing in renal epithelial cells

To take advantage of well-characterized cell lines, we have
developed a widely applicable workflow for the efficient
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Fig. 2 Genome editing of MDCK and mIMCD3 renal epithelial cells. a
Here, we provide a practical guide to generate genetically modified renal
epithelial cell culture models. Genome editing requires transfection of
programmable sequence-specific nucleases to induce DNA double strand
breaks (iDSB) [15, 21]. After PCR-based testing for genome editing
efficacy, cells are singularized in 96-well plates and clones are PCR-
screened for targeted alleles. Targeted clones (−/−) are selected and val-
idated by independent methods. d days,WBWestern blot, IF immunoflu-
orescence. See Supplementary Methods for a step-by-step protocol. b
Nuclease-induced DSBs are repaired by non-homologous end joining
(NHEJ) or homology directed repair (HDR). Both mechanisms can be
exploited for genome editing [15, 21]. For example, if two DSBs are
induced, error prone NHEJ may skip the middle piece causing a deletion;
or, if two DSBs are induced and a targeting vector is provided, precise
HDR may incorporate exogenous sequence elements (here, a
Flag epitope tag for biochemical protein detection and isolation) into
the genome. c Repeated transfection of cells increases the proportion of

transfected cells significantly. MDCK cells were repeatedly nucleofected
with GFP and fluorescent cells were counted using an automated cell
counter (N = 3; for each N we analyzed ≥2′000 cells). d In contrast to
MDCK cells, mIMCD3 cells are more sensitive to the transfection and
sorting procedure requiring higher cell numbers a priori (N = 5; wells
evaluated after single cell sorting / N ≥ 1′000). e To evaluate genome
editing efficacy in MDCK and mIMCD3 cells we targeted three genes
per cell line with both, TALEN and CRISPR technology. Target alleles
for TALENs and CRISPR were similar, but not identical, due to different
genomic binding site requirements.We aimed for large deletions (≥10 kb)
or HDR-mediated integrations of targeting vectors. Correctly targeted
heterozygous or homozygous clones were counted. Minor NHEJ-
mediated sequence changes were not considered. Significant genome
editing events were observed in 3.19% of MDCK and 6.62% of
mIMCD3 cells (N = 3 per cell line and genome editing technology; for
each N we analyzed between 90 and 1′101 clones). Data are presented as
means with s.e.m.
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generation of targeted alleles using genome editing technolo-
gy (Fig. 2a). During protocol optimization we have identified
several critical steps that facilitate gene targeting significantly.
Those include enhanced genome editing construct design for
rapid and reliable testing of editing efficacy, repeated transfec-
tions in intervals to increase targeting efficiencies, simplified
design of targeting vectors with or without selection cassettes
for homologous recombination, scalable clonal selection pro-
cedures, and streamlined screening approaches for positively
targeted clones (Fig. 2a–e and Supplementary Fig. 1a–f).
Details for the different experimental steps are discussed in
the Supplementary Methods. Our protocols provide a means-
tested basis to achieve genetically modified cell lines based on
non-homologous end joining (NHEJ) and homology directed
repair (HDR) (Fig. 2a–e, Supplementary Fig. 1a–f, and
Supplementary Methods).

Generation of cell culture models for ADPKD

The loss-of-function phenotypes of the ADPKD genes, polycys-
tic kidney disease 1 (PKD1) and PKD2, suggest that both genes
are part of an epithelial morphogenetic program to maintain
kidney structure [23, 27]. Yet, the molecular function of the
respective proteins, Polycystin-1 (PC1) and transient receptor
potential channel Polycystin-2 (TRPP2), has remained elusive
[2]. To demonstrate the versatility of our genome editing ap-
proach, we have established multiple novel cell lines for the
study of ADPKD by introducing targeted mutations into

PKD1 and PKD2 (Supplementary Table 1–4): (1) deletions of
PKD genes (Fig. 3a–d); (2) rescues of polycystin expression
(Fig. 4a, b); (3) generation of cell lines incorporating multiple
allelic features (Fig. 4c, d); and (4) introduction of epitope tags
into the Pkd1 genomic locus by homologous recombination
(Fig. 5a–d). The introduction of epitope tags into the PKD1
locus exemplifies the power of genome editing. Affinity purifi-
cation of PC1 is notoriously difficult (Fig. 5b). HA- and Myc-
tagged PKD1 alleles have been described previously, but purifi-
cation of sufficient amounts of native PC1 protein for mass
spectrometry-based proteomics has not been reported [30].
Here, we show that Flag epitope-tagged native PC1 can be pu-
rified with high affinity facilitating reliable detection by mass
spectrometry (Fig. 5b and Supplementary Table 6).
Furthermore, we confirm that endogenous PC1 and TRPP2
co-immunoprecipitate using a V5 epitope-tagged PC1
(Fig. 5d) [20, 28].

Translation of validated alleles to mouse models

We have shown that genetically engineered cells provide
valuable tools to complement in vivo models. Equally
useful, however, is the inverse approach: utilization of
tissue-specific cell culture models for functional valida-
tion of genetically engineered alleles before generation
of respective mouse models. Even though the generation
of genetically engineered mice is continuously improving,
it is still an expensive and hugely time-consuming
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(Supplementary Table 1),
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procedure. Genome editing has been used to generate mu-
tant alleles in mice [e.g. 25, 31]. Here, we propose that
testing of alleles in differentiated cells may help to facil-
itate the generation of complex genetic mouse models.
One example of this application is the addition of fluores-
cent tags to proteins of interest. Ideally, the function of
such engineered fusion proteins should be validated be-
fore generation of the respective mouse line. As a proof of
principle, we have generated a fluorescently tagged allele
of the basal lamina component, Laminin subunit alpha 5
(Lama5). Basal lamina biogenesis is a core epithelial
function, but its visualization in vivo has been difficult.
The generation of fluorescent laminin fusion proteins
showing sufficient brightness and proper localization to
the basal lamina has been particularly challenging. To
visualize basal lamina, we genetically fused eGFP to the
3′-end of the Lama5 coding sequence (Fig. 6a and
Supplementary Figure 2a–d). Resulting mIMCD3 cells
express a fluorescent LAMA5 (LAMA5GFP) that can be

studied in 3D culture (Fig. 6b, c) [10]. Obviously, a
complementing in vivo system is likely to provide addi-
tional insights. The C57BL/6J mouse origin of mIMCD3
cells, i.e. their isogenic status to commonly used mESCs,
is key to the direct transferability into mouse models [22].
Accordingly, we applied the mIMCD3-validated genome
editing constructs to the Lama5 locus in mESCs.
Comparable targeting efficiencies (mIMCD3 = 55%;
mESCs = 50%) suggest that genomic alterations in
mESCs can be readily tested in mIMCD3 cells and suc-
cessively used for the establishment of novel mouse al-
leles (Fig. 6a–e).

Discussion

Programmable sequence-specific nucleases are highly ef-
ficient genome editing tools in MDCK, mIMCD3, and
mES cells. Thus, TALEN and CRISPR technology may
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complement RNAi-based approaches, which are limited to
inhibition of post-transcriptional gene expression. The
modular nature of TALEN and CRISPR systems facili-
tates additional applications other than genome editing,
including selective labeling of nucleotide sequences, tran-
scriptional regulation, or alteration of epigenetic DNA
modifications [15, 21]. Similar to genome editing all these
applications are based on the sequence-specific targeting
of enzymes by the nucleotide-binding TALEN or CRISPR
construct. Therefore, although their sequence specificity
has been shown to be fairly high—especially in compar-
ison to RNAi—experimental designs based on TALEN or
CRISPR constructs have to control for putative off-target
effects [16, 19]. For genome editing-mediated generation
of cellular loss-of-function models, we suggest the com-
bination of a complete gene excision with subsequent

gene rescue (Fig. 4a–d). NHEJ-mediated short sequence
alterations are commonly used, but may be difficult to
interpret due to alternative splicing or stop codon read-
through, which may result in residual protein function.
In contrast, complete gene excision generates definite null
alleles with complete loss of protein function (Fig. 3 and
Supplementary Fig. 1c). Rescue of the gene excision by
reintroduction of the respective coding sequence can ac-
curately distinguish, whether an observed phenotype is
gene-dependent or caused by deletion of additional regu-
latory sequences in the mutant background. HDR-
mediated genome editing, furthermore, facilitates the
study of physiological functions of endogenous proteins
(Fig. 5a–d and Fig. 6a–e). Targeted mutation or introduc-
tion of tags, for example, may elucidate the molecular
mechanisms of native proteins.
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Conclusions

Here, we present an easily applicable workflow for efficient
genetic manipulation of differentiated renal epithelial cell
lines. The development of genetically engineered MDCK
and mIMCD3 cells with isogenic controls provides novel ver-
satile tools to study renal biology under well-controlled con-
ditions. Importantly, the described protocols can be readily
adjusted to other cell types, including mESCs for the efficient
generation of novel mouse models. In addition, we show that

complex genetic alterations can be tested in differentiated cell
types before the corresponding mouse strains are established.
Taken together, we anticipate that described protocols will
contribute to a broader use of genome editing technology for
functional studies of renal epithelial cells as well as other cell
types in health and disease.
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