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Abstract
Structural variants (SVs) represent a major source of aberration in tumour genomes. Given the diversity in the size
and type of SVs present in tumours, the accurate detection and interpretation of SVs in tumours is challenging.
New classes of complex structural events in tumours are discovered frequently, and the definitions of the genomic
consequences of complex events are constantly being refined. Detailed analyses of short-read whole-genome
sequencing (WGS) data from large tumour cohorts facilitate the interrogation of SVs at orders of magnitude greater
scale and depth. However, the inherent technical limitations of short-readWGS prevent us from accurately detecting
and investigating the impact of all the SVs present in tumours. The expanded use of long-readWGSwill be critical for
improving the accuracy of SV detection, and in fully resolving complex SV events, both of which are crucial for
determining the impact of SVs on tumour progression and clinical outcome. Despite the present limitations, we
demonstrate that SVs play an important role in tumourigenesis. In particular, SVs contribute significantly to
late-stage tumour development and to intratumoural heterogeneity. The evolutionary trajectories of SVs represent
a window into the clonal dynamics in tumours, a comprehensive understanding of which will be vital for influencing
patient outcomes in the future. Recent findings have highlighted many clinical applications of SVs in cancer, from
early detection to biomarkers for treatment response and prognosis. As the methods to detect and interpret SVs
improve, elucidating the full breadth of the complex SV landscape and determining how these events modulate
tumour evolution will improve our understanding of cancer biology and our ability to capitalise on the utility of
SVs in the clinical management of cancer patients.
© 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great
Britain and Ireland.
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Introduction

During their evolution from normal cells to invasive
tumours, cells acquire somatic mutations throughout
their entire genome. Structural variants (SVs) represent
an underappreciated class of genomic aberration that
may amplify, delete, and rearrange genomic regions
either focally as a simple change to a single genomic
segment, or catastrophically, combining multiple SVs,
encompassing large genomic regions and involving
multiple chromosomes. Tumours harbour a diverse
range of structural events along this spectrum of increas-
ing size and complexity. While copy number alteration
(CNA) and aneuploidy have been well studied in
tumours [1,2], the impacts that more complex classes
of SV have on tumour development and progression
are less well understood. However, the increased
availability of whole-genome sequencing (WGS) data

from tumours generated by large-scale studies such as
The Cancer Genome Atlas (TCGA) [3], the Pan-Cancer
Analysis Group of the International Cancer Genome
Consortium (PCAWG-ICGC) [4–6] and the Hartwig
Medical Foundation (HMF) [7], combined with
advances in the methods required to interrogate SVs,
allow us to examine SVs in tumours at increased depth
and scale. Nevertheless, our understanding of the critical
role that SVs have in tumourigenesis has been slower to
emerge as accurate and comprehensive detection of SVs
is challenging due to the diversity in types, sizes, and
complexity of SVs in tumours. Some SVs can drive
tumourigenesis, while others shed light on the processes
of mutation and repair acting during tumour develop-
ment [8]. Evolutionary histories of cancer genomes
reveal the major role of SVs in tumour evolution across
many cancer types and the potential of SVs as
biomarkers to inform the treatment of cancer patients at
various stages of their disease is emerging. In this
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review, we discuss recent challenges and developments
in detecting SVs, present the important roles of SVs in
cancer progression and in generating intratumoural
heterogeneity, and highlight the emerging clinical
applications of SVs as biomarkers in cancer.

The structural complexity of tumour genomes

SVs are frequently found in the normal human genome and
contribute greatly to individual human variation [9–11].
What differentiates tumour genomes fromnormal genomes
are the unusual clusters, types, and sizes of SVs, and in
highly rearranged tumours, the increased frequency and
complexity of SVs relative to that observed in normal
tissues [5]. SVs are formed by the improper repair of
double-stranded DNA breaks [12–14]. These DNA breaks
are triggered by various mechanisms such as exogenous
mutagens (DNA damaging chemicals, viral infections,
ionising radiation, and ultraviolet light) and cell-intrinsic
mutational processes (oxidative metabolism, telomere
dysfunction, and replication stress); in-depth reviews of
the mechanisms contributing to SV formation are detailed
elsewhere [13–16]. SVs can reconfigure DNA sequences
across scales from a single genomic locus tomultiple entire
chromosomes. Simple SVs are single-segment alterations
that include insertions, deletions, duplications, inversions,
and translocations (Figure 1A). Complex SVs constitute
multiple simple SVs whose co-occurrence in a genome,
within a spatial and/or temporal window, represent the
expected genomic consequences of complex events.
These consequences, in the form of clusters of SVs, are
used to predict the past occurrence of a diverse set of com-
plex events including chromothripsis, chromoplexy,
chromoanasynthesis, breakage-fusion-bridge (BFB) cycles,
extrachromosomal circular DNA (ecDNA), aneuploidy,
and whole-genome duplication (WGD) (Figure 1B).
Briefly, chromothripsis is defined by extensive genomic
rearrangement localised to a single or sometimes a few
chromosomes. The hallmarks of chromothripsis include
oscillations between two or three copy number states,
random reassembly of fragmented DNA segments, and
loss of heterozygosity [17,18]. Chromoplexy contains
interdependent translocations and deletions of multiple
chromosomal segments organised in a closed chain [19].
Chromoanasynthesis involves serial microhomology-based
breakage-induced replication or fork stalling and template
switching mechanisms, resulting in localised duplications
and triplications and short stretches of microhomologies
at breakpoint junctions [20]. BFB cycles occur as a result
of telomere loss, dicentric chromosome formation,
and mitotic spindle stress [21,22]. ecDNAs are large,
typically more than 1 Mb in length, acentric circular DNAs
that are independent from chromosomes and often contain
oncogenes and regulatory regions [23,24]. ecDNAs have
previously been described as ‘doubleminutes’ due to their
appearance as paired structures [25]. These ecDNA
segments can be reincorporated into the chromosome
as large sections of tandem duplications known as

homogeneously staining regions (HSRs) [26]. Aneuploidy
is the presence of an abnormal number of chromosomes
[27], whereas WGD results from the doubling of a
complete set of diploid chromosomes [28].

Despite the wide variety in the complex classes of SVs
that have been defined, recent large-scale studies have
identified a large fraction of clustered SVs, which are
not thought to be the consequence of a particular known
complex event as defined in Figure 1B [5,29]. These
unclassified SV clusters represent a gap in our under-
standing of the highly rearranged tumour genome. It is
unclear what proportion of these clusters represent
as-yet uncharacterised classes of complex events or
whether they remain unclassified due to significant
flexibility in the current genomic definitions of known
complex events. For example, arbitrary thresholds are
often applied in defining the genomic consequences
of complex events such as chromothripsis [18], and
complex SVs that do not meet the arbitrary thresholds
will not be classified as such. With the increasing
availability of long-read WGS data and improvements
in methods for SV detection and analysis, we expect that
more classes of complex events will be uncovered and
that definitions of the genomic consequences of complex
events will be refined. A more recent study [30], using a
new algorithm to classify SVs, identified several novel
classes of complex SV, the mechanistic origins of which
have yet to be explored [31]. These include rigma (large
deletions at fragile sites), pyrgo (superenhancer associ-
ated duplicated regions) and tyfonas (amplified areas of
fold-back inversions). Further, tracing the sequential
formation of complex SVs reveals more complex pat-
terns of rearrangements, such as the recently reported
‘seismic amplifications’ [32]: amplifications which are
thought to occur as a result of circular recombination
of chromothripsis-generated ecDNAs. These wave-like
patterns of amplification can be integrated into
the chromosome as HSRs or may persist as ecDNAs
[33]. Although complex SVs represent a variety of
intriguing genomic alterations, this heterogeneous class
of mutation is still to be comprehensively characterised,
as reflected in the dynamic and often overlapping
definitions of these variants. The ability to generate
accurate observations of the structural complexity of
tumour genomes will benefit the comprehensive analysis
of large tumour cohorts and experimental studies of the
mechanisms underlying complex events.

New horizons in SV detection

Substantial diversity in the type, size, and complexity
of SVs in tumours poses a challenge for accurate detec-
tion. Historically, SVs were detected by microscopic
karyotyping, fluorescence in situ hybridisation (FISH),
and microarray technologies; providing limited SV
breakpoint resolution and obscuring complex events.
In the last two decades, short-read WGS has revolutio-
nised SV detection, providing both higher accuracy
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Figure 1 Legend on next page.
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and resolution; and much of our current knowledge on
the diversity of SVs in cancer is derived from short-read
WGS data. In-depth reviews on short-read WGS-based
SV detection are discussed elsewhere [8,34–36]. Briefly,
nucleic acids extracted from tumour tissues and a germ-
line control (usually a blood sample) are PCR (polymer-
ase chain reaction)-amplified, sequenced as paired-end
reads of 100–300 base pairs in length, and computation-
ally aligned to the reference genome. SV detection-
algorithms (callers) are then used to identify the SVs
unique to the tumour sample.Many SV callers have been
developed, and their relative merits have been reviewed
in detail [8,37,38]. SV callers leverage distinct align-
ment signatures to identify SVs by type and size [39].
Changes in read depth are used together with allelic
imbalances to infer CNAs [40–42]. Clusters of discor-
dantly aligned read pairs (reads that map at abnormal
distance or orientation) together with split reads (reads
that are partially mapped) can provide precise SV break-
point locations [43–47]. SVs can also be detected using a
local assembly approach where aberrant reads are reas-
sembled into contigs, before pairwise comparison to
the reference genome [46–48]. Newer SV callers such
as GRIDDS-PURPLE-LINX [49] and JaBbA [30] incor-
porate both SV and CNA information to reduce false-
positives and detect the presence of complex SVs.
Specialised SV callers have also been developed, tai-
lored to detect specific complex SVs, including Shatter-
Seek [18] (for chromothripsis) and Amplicon Architect
[50] (for ecDNAs).
Irrespective of the strategies used to call SVs, no sin-

gle short-read WGS-based SV caller can identify the
complete range of SV types reliably, due to the structural
complexity of tumour genomes and the technical limita-
tions of short-read lengths [51]. Despite our best efforts
at optimising SV detection, a large swathe (�15%) of
the genome remains inaccessible to short-read WGS
[52]. These genomic regions frequently harbour highly
repetitive sequences or extreme GC content [10,53].
PCR amplification introduces coverage bias across
regions with extreme GC content [54]; this bias leads
to the artificial reduction of supporting reads that can
affect methods used to detect CNAs [40–42]. In addi-
tion, short-read lengths are not able to span large regions
of repetitive sequence in the genome, which are particu-
larly prone to SV formation [14,52]. Repetitive sequence
causes increased alignment ambiguity particularly
for short sequencing reads, reducing variant calling

accuracy. Similarly, short-read WGS cannot span most
complex SVs in their entirety, leading to the incomplete
classification of patterns of single SVs into complex
SVs. Due to the read length limitation, short-read WGS
also cannot adequately phase complex SVs into their
constituent haplotypes, thereby affecting the ability of
short-read WGS in resolving complex events at allelic
resolutions [55]. These challenges to comprehensively
detecting SVs, and mapping complex SVs from short-
read WGS suggest that we will have missed many SVs
present in tumour genomes and may have underesti-
mated the importance of SVs in tumour progression.

To overcome the limitations of short-read WGS in
fully resolving the structural complexity of tumour
genomes, several approaches incorporating longer-range
information have been developed [56–58]. These
include barcoding collections of short reads from the
same genomic region to improve assembly accuracy
[59–68], and using fluorescently labelled sequence
motifs to image very long contiguous stretches of
DNA, termed optical mapping [69]. The former is still
subject to the limitations of short-read lengths and the
latter, while useful in identifying complex SVs such as
ecDNAs [50,70,71], is unable to identify precise break-
point locations at high resolution. Alternatively, long-
read sequencing approaches, such as those developed
by Oxford Nanopore Technologies (ONT) and Pacific
Biosciences (PacBio) [58] can generate individual reads
that are kilobases to megabases in length directly from
the native DNA, often spanning SVs in their entirety.
In-depth reviews of the technologies underlying ONT
and PacBio long-read sequencing platforms are detailed
elsewhere [56–58]. Both ONT and PacBio reads can
readily traverse the most repetitive regions of the human
genome, and lack GC bias, allowing for more compre-
hensive identification of SVs, including those that span
repeat-rich centromeric and telomeric regions [72–78].
Most of the SVs discovered using ONT and PacBio
reads are novel, lending weight to the notion that a large
number of SVs are not detected by short-read
approaches [52,79–81]. In addition, longer read lengths
allow haplotype phasing and de novo assembly of com-
plex SVs, crucial for the accurate interpretation of the
functional impact of these events [82–85]. Taking
advantage of the unique properties of both ONT and
PacBio long-read sequencing, and the development
of new whole-genome assembly methods [78,86],
the Telomere-to-Telomere Consortium has recently

Figure 1. The diverse structural variant (SV) landscape in tumours. (A) Simple SVs include (i) insertions where segments of DNA are added,
(ii) deletions where DNA segments are lost, (iii) inversions where DNA segments are in the opposite orientation, (iv) duplications where extra
copies of DNA segments are present, and (v) translocations where a section of DNA is joined onto another section at a different genomic
location. (B) Complex SVs include: (i) chromothripsis where the genome is shattered and the pieces joined back together at random,
(ii) chromoplexy where interdependent translocations and deletions are joined together in a chain, (iii) chromoanasynthesis, which is a pat-
tern of localised amplification and short stretches of breakpoint microhomology, (iv) breakage-fusion-bridge cycles, where telomeres are lost,
dicentric chromosomes form before breaking due to mitotic stress, (v) extrachromosomal DNAs (ecDNAs), where large segments of DNA form
acentric circles that often contain oncogenes and regulatory regions; these ecDNAs may be reincorporated into the chromosome, as
(vi) homogeneously staining regions, and (vii) aneuploidy and whole-genome duplication where some or all chromosomes have additional
or double the number of copies, respectively.
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assembled a complete human genome for the first time
[72,87,88]. In the future, we expect that this approach
will be applied at scale to accurately resolve large
complex SV events. With further refinement in long-
read sequencing technologies, including improvements
in cost and throughput, and the development of more
accurate SV detection algorithms [78,89,90], it is likely
that long reads will be used more broadly in the future.
Large scale initiatives involving the use of long-read
sequencing in cohorts with detailed clinical follow up
data, such as Cancer 2.0 by Genomics England [91],
represent a valuable opportunity to further our under-
standing of the full diversity and complexity of SVs
and better evaluate their impact on tumour development
and progression.

Structural variation as a critical dimension in
tumour evolution

Cancers evolve from single cells into genetically distinct
and heterogeneous subpopulations of cells. Cells that
acquire mutations that confer selective advantages
undergo clonal expansion [92,93]. The dynamics of
somatic evolution are thus determined by the rate of
mutation and the likelihood that a mutation confers a
selective advantage [94]. High rates of mutation provide
more opportunity for clonal expansion, while conversely
increasing the likelihood of a clone acquiring a deleteri-
ous variant. Intratumour heterogeneity, during selective
sweeps and in periods of neutral evolution where no cell
subpopulation has a fitness advantage over another,
offers a reservoir of mutations upon which selection
could act in the presence of selective pressures; for
example, as a result of therapy [92], driving malignant
progression, and therapeutic resistance. Driver muta-
tions can occur early as tumour-initiating events or
present late, contributing to tumour progression and
metastasis. In a given tumour sample, these driver muta-
tions might have propagated clonally and be present in
all cells or might be subclonal, existing only in a subset.

The importance of SVs, in particular for the continued
development of the tumour after the last clonal expan-
sion, may be underappreciated due to the substantial
technical challenges in identifying subclonal SVs [91].
Recent large-scale studies suggest that SVs play a signif-
icant role in driving tumourigenesis, with more than
50% of cancers harbouring at least one clonal SV driver
[91]. Additionally, only 11% of subclones carry a single
nucleotide variant (SNV) or small indel driver, suggest-
ing that late tumour development may be disproportion-
ately driven by subclonal large CNAs or SVs [95]. Our
ability to detect subclonal SVs is dependent on sequenc-
ing depth and quality, tumour cellularity, and back-
ground ploidy. The low allelic frequencies of subclonal
SVs can present a substantial challenge for both accurate
detection and probabilistic assignment of breakpoints to
subclones using bulk sequencing methods, where our
ability to detect SVs is impaired by sequencing a pooled

sample from a heterogeneous population [96]. Single-
cell WGS has greatly helped to accurately determine
the clonality of SVs [97–100]. Regardless, challenges
in establishing clonality will inevitably result in a sub-
stantial underestimation of the proportion of SVs that
are subclonal. Nonetheless, based on current estimates,
when SVs occur during tumour evolution shows striking
differences across tumour types [101,102]. For example,
pilocytic astrocytomas and non-Hodgkin lymphomas
harbour predominantly clonal SV drivers which
are likely to have occurred earlier in tumourigenesis,
whereas leiomyosarcomas and ovarian adenocarcinomas
contain frequent subclonal SV drivers, which are more
likely to contribute to later development [95]. In glioblas-
tomas and medulloblastomas, a substantial fraction of
chromosomal gains occur very early in molecular time
(within the first 10%), whereas in melanomas, lung
cancers, and papillary kidney cancers, chromosomal
gains occur late and towards the end of molecular time
[101]. Further, driver clonality may depend on the
type of SV. For example, there is some suggestion
from their predominantly clonal presence in tumour
samples that gain-of-function SVs, including certain recur-
rent oncogenic fusions such as TMPRSS2-ESG and
BRAF-KIAA1549, occur early in tumour development [95].
Genomic instability is a feature of almost all human

cancers and allows tumour cells to develop the capabilities
required to survive, proliferate, and spread [103–106].
Conceptually, genomic instability represents an increased
tendency for genomic alteration in tumour cells during cell
division, occurring as a result of defective surveillance
mechanisms governing genomic integrity [107]. Histori-
cally, genomic instability in cancer genomes has been
thought to follow a stepwise process in which drivers
accumulate gradually over time [93,108,109]. This is in
contrast to the ‘Big Bang’ model of evolution which
posits that tumours grow as a single terminal expansion,
producing heterogeneous subclones at tumour initiation
[110,111]. In this model, the driver alterations required
for tumour initiation are present early and are sufficient
to support subsequent expansion [110]. In most tumour
types there is a wide temporal window of genomic insta-
bility; however, this is not always the case [101]. Recent
large-scale studies suggest that complex SVs such as chro-
mothripsis [17] and chromoplexy [19,112,113] typically
occur within a single event [17]. Such mutational bursts
suggest that cancer cells can alternate long phases of
latency with short periods of intense, punctuated events
[109,112,114], allowing cancer cells to attain greater fit-
ness than would be possible through a gradual or stepwise
accumulation of alterations [18]. Within a cancer genome,
complex events can occur sequentially, suggesting that
they may be mechanistically interlinked, in that the occur-
rence of one event increases the likelihood of a second. For
example, dicentric chromosomes generated byBFB cycles
and telomere attrition are precursors to chromothripsis
[115,116]. Similarly, the formation of a complex SV
may facilitate the development of another one. For exam-
ple, chromothripsis frequently occurs after the onset of
WGD, with the latter presumably providing cells with
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sufficient intact geneticmaterial to withstand the onslaught
of genomic instability of the former [117]. In support of
this, WGD commonly occurs in the intermediate stages
of evolution in various cancers [101,118].
Another form of accelerated evolution is mediated by

ecDNAs. Because ecDNA fragments lack centromeres,
the molecules are not attached to the mitotic spindle
during cell division, leading to uneven segregation into
daughter cells [119–121]. The resultant stochastic non-
Mendelian inheritance leads to rapid and dynamic
changes of oncogene content under selection pressure,
in response to tumour microenvironment and targeted
therapies, leading to treatment resistance [122–125]. In
addition, circular recombination can occur after ecDNA
formation, as a result of ongoing mutational processes
[32]. In this instance, rapid alterations of the DNA
sequence within the ecDNA can occur outside of cell
division via complex events such as chromothripsis, pro-
viding another dimension to the evolution of structural
complexity in the tumour genome [33]. SVs, and
particularly complex SVs, play a significant yet underap-
preciated role in determining how cancer genomes
evolve. Single-cell WGS applied to organoid systems
[126,127] has enabled high-resolution phylogenetic
studies and functional interrogation of subclonal SVs
[128]. In addition, longitudinal single-cell WGS of
patient-derived xenografts from tumour samples has
demonstrated that CNAs have an underappreciated
impact on clonal fitness [129]. The evolutionary trajecto-
ries of structural complexity in tumours significantly
impact how tumours progress but vary substantially
between tumours and particularly between cancer types.
The potential utility of these evolutionary trajectories in
informing our understanding of tumour biology and as
clinical biomarkers for treatment response and disease
progression represents a currently untapped translational
opportunity.

The functional impacts of structural complexity

Recent studies indicate that pathogenic SVs occur in at
least 30% of all cancers [8,101,130]. SVs that are
pathogenic disrupt the function of oncogenes or tumour
suppressor genes, by increasing or decreasing their
expression, respectively. Themost well-studied pathogenic
consequences of SVs are their direct impacts on genes,
either via gene dosage alteration (Figure 2A) or by the
creation of gene fusions (Figure 2B). Gene dosage alter-
ations occur via unbalanced rearrangements from simple
SVs such as deletions and duplications, whichmay encom-
pass entire chromosomes (aneuploidy) or even genomes
(WGD). Alternatively, complex SVs such as chromothrip-
sis and ecDNAs generate CNAs [101,131–133]. Gene
fusions occur via rearrangements that cause juxtaposition
of two genes normally at distant loci [112,134,135]. A
canonical example of a pathogenic oncogenic fusion is
the BCR-ABL1 oncoprotein, highly prevalent in chronic
myeloid leukaemia [136,137]. The functional and clinical

impacts of simple CNAs, aneuploidies and fusion genes
have been demonstrated across many cancers [138,139],
and form the basis for several highly effective clinical inter-
ventions described in the next section. However, WGS
has enabled investigation of these events at a much greater
depth and scale than was possible before and has
highlighted alternative routes to gene dosage alteration
that were previously obscured. SVs that occurwithin non-
coding regulatory regions can cause indirect disruption of
gene function. For example, in medulloblastoma, differ-
ent SV classes juxtapose the proto-oncogenes GFI1 and
GFI1B to distal active enhancer elements [140], increas-
ing their expression. This phenomenon has been termed
‘enhancer hijacking’ (Figure 2C). Further, SVs can
disrupt the function of oncogenes and tumour suppressor
genes via alteration of higher-order chromatin
structure [141–143] (Figure 2D). A recent study by the
PCAWG demonstrated that SVs affect topologically
associating domain (TAD) boundaries in a cancer-specific
manner (according to overall SV burden), are able to gen-
erate new TAD structures, and can lead to marked
changes in chromatin folding [142]. SVs often overlap
with binding sites for the transcriptional regulator, CTCF,
near proto-oncogenes of certain cancer types, potentially
resulting in disruption of CTCF-CTCF chromatin folding
loops [142]. Both disruption to TAD structures and
CTCF-CTCF chromatin folding loops result in genome
restructuring, bringing ectopic enhancers close to proto-
oncogenes, leading to increased expression. Also, differ-
ent classes of SVs may employ different mechanisms that
converge on the same functional outcome, for example,
altered gene expression, and these may occur indepen-
dently or together within the same cancer genome. For
example, in glioblastoma, the receptor tyrosine kinase sig-
nalling pathway can be altered by disruption of the EGFR
oncogene, either via gene fusion (EGFRvIII fusion [144])
or gene dosage increase (EGFR amplification [145,146]),
caused by either simple or complex SVs [147,148].

Assigning pathogenicity to a given SV can be challeng-
ing, as most SV breakpoints reside within the noncoding
region of the genome [149], with no direct impact on the
sequences of the coding genome. SVs such as inversions
and complex SVs can have unpredictable functional impact,
suggesting the presence of complex regulatory effects
impacting long range noncoding regulatory elements dis-
cussed above rather than simple dosage alteration [150].
In addition, as a single SV commonly spans multiple genes,
assigning pathogenicity to disruption of a particular gene
can be difficult. Mutations driving tumour progression are
usually recurrent, meaning that the same alteration results
in the same phenotype across multiple cancer genomes or
patients [151,152]. Given the diversity in the types and sizes
of SVs, the discovery of a recurrent distinct SV event is rare,
making proving their role in driving tumourigenesis chal-
lenging. Furthermore, the combinatorial impacts ofmultiple
SVs can be hard to resolve as phasing SVs, to ensure that
they are impacting the same allele, based on short-read
WGS, is almost always impossible. These barriers to deter-
mining whether an SV is pathogenic lead to difficulties in
determining the clinical impact of such events on patients.
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Nevertheless, a clinically significant SV does not necessar-
ily have to be a driver of tumourigenesis. SVs can also be
the consequence of a particular mutational processes or dis-
ruptedDNA repair mechanisms and can reveal insights into
the presence or absence of these processes in a given tumour
[153,154]; these genome-wide patterns of SVs can be clin-
ically useful as biomarkers for treatment response. Lastly,
SVs do not always promote tumour development, and in
fact can be deleterious to the tumour. For example, deletions
of BRCA1/2 leads to DNA damage repair deficiencies in
certain tumours [155,156], and tumourswith a large fraction
of complex SVs generate vast amounts of neoantigens that
may confer susceptibility to immune therapies [157,158].

The emerging clinical applications of SVs in cancer

Despite the many challenges in identifying clinically rele-
vant SVs, recent findings uncover the translational

potential of SVs as both causes (direct functional impact)
and consequences (reflection of mutational processes) of
cancer. While SV products such as gene fusions and
amplifications are well known for their translational
impacts (for example, as treatment targets [137,159]),
the potential clinical application of other SVs, particularly
complex SVs, remain relatively unexplored. In the last
decade, many studies have demonstrated proof-of-
concept data highlighting the potential roles that SVs
can play in every stage of cancer, from screening to treat-
ment to prognostication (Figure 3). Premalignancy, driver
SVs can exist decades before the onset of symptoms, gen-
erating opportunities for screening and early detection
[160,164–168]. The TRACERx group [160] showed that
chromosome 3p loss is often the initiating driver in clear
cell renal cell carcinoma and is predicted to arise 30–
50 years before diagnosis (Figure 3A). In lung adenocar-
cinomas, driver fusion oncogenes, often derived from
complex SVs, could occur decades before disease onset
[164]. These findings suggest that in some cancer types

Figure 2. Pathogenic consequences of structural variants (SV). (A) Gene dosage alteration: SVs may (i) increase the expression of an oncogene
by having extra copies as a result of amplifications/gains, mediated by various mechanisms such as tandem duplication, breakage-fusion-
bridge cycle, and extrachromosomal DNA, or (ii) decrease the expression of tumour suppressor genes by reducing their copy number.
(B) Gene fusion: translocations may bring two genes together to form a novel gene fusion, which may result in the production of novel fusion
proteins beneficial to the cancer. (C) Gene function disruption: SVs may disrupt the function of genes via regulatory hijacking, for example by
bringing an enhancer closer to a proto-oncogene, thereby increasing its expression. (D) Genomic reorganisation: SVs may rearrange the wider
chromosomal architecture, for example by rearranging the boundaries of topological associated domains, potentially bringing closer ectopic
enhancers that would activate proto-oncogenes, increasing their expression.
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a long latent window exists in which an effective screen-
ing strategy could be employed to allow earlier detection
of cancer. However, it is important to consider when
employing such a strategy that a single initiating driver
may not be sufficient for cancer to develop and that for
some individuals a necessary secondary event may never
occur. SVs can also be used to predict progression to
tumour from a premalignant state. In multiple myeloma,
Oben et al [165] showed that the presence of myeloma-

defining genomic events, including chromothripsis in
the rarely progressing precursor state, monoclonal gam-
mopathy of undetermined significance (MGUS), can
define a more progressive subset. In oesophageal cancer,
complex SVs and CNAs are the most accurate predictors
of malignant transformation from the Barrett’s oesopha-
gus state [166–168].

Following malignant transformation, the presence of
specific SVs is pathognomonic of certain cancer types

Figure 3. The clinical importance of structural variants (SVs) across all stages of the patient journey. SVs have significant potential in
influencing the management of cancer patients throughout the disease trajectory. Some examples of the potential impact of SVs include:
(A) Early detection: the TRACERx study on clear cell renal cell carcinoma [160] identified that 3p loss was frequently generated via chromo-
thripsis, and that the loss could occur decades before diagnosis, suggesting the opportunity for early detection and intervention.
(B) Diagnosis: the stratification of low-grade gliomas (isocitrate dehydrogenase [IDH] mutant gliomas) has recently been updated by the
WHO to include those with or without concurrent 1p and 19q co-deletion [161]. (C) Treatment targets: tumours with large deletions of both
BRCA1 and BRCA2 loci form a subset of HR-deficient tumours that are exquisitely sensitive to PARP inhibitors [154,155,162]. (D) Treatment
response: Mansfield et al [157,158] demonstrated that malignant mesothelioma harbours neoantigens that are generated by complex SVs,
and that their generation was associated with the clonal expansion of T cells, indicating that complex SV burden can be used to predict
response to immune checkpoint inhibitors. (E) Prognosis: the presence of complex SVs are associated with poor prognosis. For example,
patients with chromothripsis-harbouring colorectal tumours have poorer survival rates compared to those without chromothripsis [163],
and patients with Ewing sarcoma that contain chromoplexy have a higher risk of relapse following first-line therapy [112].
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and can act as a diagnostic tool. For example, the proto-
typical oncoprotein BCR-ABL1 is diagnostic of chronic
myeloid leukaemia [169]. Other diagnostic fusion genes
include PML-RARA in acute promyelocytic leukaemia
[170], TMPRSS2-ERG in prostate adenocarcinoma
[171–173], and EWSR1-ETS in Ewing sarcoma
[112,135,174]. Other classes of SVs have been proposed
as part of the established diagnostic criteria of certain
cancers, including focal amplification or deletion (EGFR
amplification in glioblastoma and CDKN2A/B deletion
in IDH mutant astrocytoma [161]) and chromosomal
gains and losses (chromosome 7 gain or 10 loss in glio-
blastoma, 1p and 19q losses in oligodendroglioma
(Figure 3B) [175,176]). Diagnosis based on these types
of events is often indicative of their critical role in
driving the development of the tumour, and as such
many of the features used for diagnosis are effective
targets for treatment.

Several oncogenic gene fusions are currently being
used or explored as therapeutic targets in various cancer
types [139]. The prototypical example of this is the use
of imatinib mesylate to treat haematological cancers gen-
erating BCR-ABL fusion oncoprotein [137,169,177].
More recently, targeting fusion transcripts has expanded
into other cancer types. These include the application of
inhibitors of ALK-containing fusions in lung cancers
[178] and anaplastic large-cell lymphomas [169],
NTRK-containing fusions in various solid tumours
[179–181], and FCGR-TACC fusions in glioblastoma
[182,183] and other malignancies [184]. However, the
utility of SVs as therapeutic targets is not limited to gene
fusions. Significant progress has been made in some set-
tings by targeting treatment based on oncogene amplifica-
tion, including ERBB2 in breast and ovarian cancers
[159,185], EGFR in breast, colorectal, and lung cancers
[186–188], and MYC in neuroblastoma [189]. As evi-
dence accumulates on the role of complex SVs, in partic-
ular of ecDNAs, on oncogene amplification, we would
expect our grasp of the clinical utility of these events to
strengthen. On the flip side, tumour suppressor loss is also
an effective target for treatment. While restoring tumour
suppressor function is challenging [190], the greatest clin-
ical impact has come from exploiting vulnerabilities in
cancer cells that lack functional tumour suppressor genes.
This is the case when BRCA1/2 function is lost in
homology-directed repair (HR) deficient breast, ovarian,
prostate, and pancreatic cancers, conferring the tumours’
sensitivity to PARP inhibition via synthetic lethality.
BRCA1/2 loss consists of a pathogenic SNV/indel in
BRCA1/2 in either the germline or somatic DNA followed
by loss of the other allele via copy number neutral loss of
heterozygosity or deletion [154,162]. However, recent
evidence has emerged from WGS that indicates that
tumours with large heterozygous deletions spanning the
length of both BRCA1 and BRCA2, in the absence of
SNVs/indels, are also more likely to be HR-deficient
and may also benefit from PARP inhibitors [155]
(Figure 3C). This is an exciting exemplar, where the clin-
ical impact of a known therapeutic target may be extended
to a greater number of patients when we comprehensively

account for the full structural complexity of tumour
genomes.
In cases where SVs are not directly impacting tumour

development or where the functional consequences of
the SVs have not yet been determined, such as those SVs
with breakpoints within a noncoding region, SVs can be
used as biomarkers for treatment response. Tumours
harbouring complex SVs such as chromothripsis and chro-
moplexy can generate various novel fusion junctions that
result in the generation of neoantigens when expressed
[112,113,135,164,191,192]. For example, in malignant
mesothelioma widespread complex SVs are predicted to
generate neoantigens and correlate with clonal expansion
of tumour infiltrating T lymphocytes [157,193], suggest-
ing that the presence of these complex SV events may be
a useful biomarker for response to immune checkpoint
inhibitors (Figure 3D) [194]. Further, tumours with
ecDNAsmay bemore resistant to targeted oncogenic ther-
apies due to their inherent plasticity and the significant
contribution of ecDNAs to intratumoural heterogeneity
[124]. In addition, overall genomic instability itself, rather
than the presence of a particular SV, may be exploited as a
treatment target [195]. A recent study suggested that drug
inhibition against KIF18A, a key protein in the mainte-
nance of spindle dynamics, resulted in antiproliferative
effects specifically in tumours with increased chromo-
somal instability [196]. A further area of biomarker dis-
covery lies in the application of mutational signatures
[154,162,197]. These genome-wide patterns of mutation
have been extensively studied in the context of SNVs
and are particularly useful for predicting exposure tomuta-
tional processes and DNA repair deficiencies. Although
SV signatures are currently less well explored due to
challenges in classifying SVs as a result of their diversity,
patterns of tandem duplication and deletion are strongly
associated with HR deficiency and can be used, together
with the rest of the mutational landscape, as a proxy for
treatment response [153,154,162]. We expect the clinical
utility of SV signatures as biomarkers to expand as our
understanding of the SV landscape develops and strategies
for informative classification emerge.
Increased genomic instability as a result of ongoing

chromosomal rearrangements has long been associated
with poor prognosis in many cancer types [92,198]. This
association is likely driven by a greater propensity for
treatment resistance as a result of the significant contri-
bution of genomic instability to intratumoural heteroge-
neity [105]. Further, the association may also reflect
analogous patterns of cell tolerance to extensive geno-
mic rearrangements as to treatment onslaught. On the
other hand, extreme levels of genomic instability, where
most of the tumour genome is subject to chromosomal
rearrangements and CNAs, are associated with better
prognosis [199,200]. In this instance, tumour cells
with an overwhelming burden of genomic instability
are on the brink of death, as so much of their genome
is adversely altered, making successful replication
unlikely. In addition, high levels of genomic instability
render the tumour cells more immunogenic, resulting
in a more efficient immune response and tumour
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clearance [201]. These seemingly conflicting findings
suggest that a threshold of genomic instability may exist,
such that tumour growth and adaptation are enhanced up
to a certain level of instability, but that beyond this level,
growth and survival may be compromised. This phe-
nomenon suggests that tumour cells rely on an exquisite
balance of genomic instability in ensuring their survival.
More specifically, the impact of individual structural
events on patient prognosis, other than where they are
a target for treatment, is less clear. Complex SVs
such as chromothripsis are associated with poor progno-
sis in multiple cancer subtypes (Figure 3E) [132,163],
including multiple myeloma [202], malignant mela-
noma [203], medulloblastoma [204], neuroblastoma
[205], osteosarcoma [206], metastatic colorectal cancer
[163,207], and acute myeloid leukaemia [208,209].
Similarly, ecDNAs are associated with poor outcome
in aggressive cancers such as glioblastoma [210], neuro-
blastoma [211], medulloblastoma [70], and breast cancer
[159]. Chromoplexy events in Ewing sarcoma portend
the high risk of relapse [112] (Figure 3E). SVs are also
a marker of late-stage disease in malignant melanoma
[212] and prostate cancer [213]. In general, those
tumours that acquire a burst of mutations, perhaps
through the generation of a complex SV, in a short
period of time tend to proliferate rapidly and metastasize
early to many differing sites, resulting in poorer clinical
outcomes [92]. Overall, despite the significant chal-
lenges in identifying and interpreting the impact of
SVs, their potential for substantial clinical impact,
whether as diagnostic tools, therapeutic targets, or bio-
markers for treatment response or patient prognosis, is
clear.

Conclusions and future perspectives

The SV landscape of a tumour genome in all its com-
plexity holds tremendous potential for clinical impact
at all stages of the patient’s treatment journey, from early
detection to predicting survival outcomes. However, if
we are to capitalise on this opportunity to maximise the
resultant benefit for patients, barriers with respect to
the accurate detection and interpretation of the entire
diverse SV landscape must be overcome. Our current
understanding of this facet of tumour biology is based
on insight gleaned from short-read WGS from large
tumour cohorts, which, due to technical limitations will
necessarily underestimate the scale and complexity of
these harder to study mutational events. Expanded use
of long-read sequencing technologies combined with
improvements in analytical methods designed to encap-
sulate the full complexity of these events will address
some of the current limitations. Nevertheless, challenges
to interpreting the impact of these events will remain, to
say nothing of the significant challenges in translating
resultant insights to a clinical setting, which are the sub-
ject of many dedicated reviews [214–216].

Despite current limitations, existing studies provide
an exciting glimpse into the emerging aspects of the
genomic landscape of tumours, which represent oppor-
tunities to expand our understanding of tumour biology
and provide novel avenues for translational exploitation
in the future. Our rapidly developing appreciation for the
impact that complex SVs have on tumour evolution and
patient outcome is still in its infancy, but as the field
develops we expect that these events along with the rest
of the SV landscape will be crucial to unravelling the
evolutionary trajectories that cells take on their routes
to malignancy and metastases.
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