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a b s t r a c t

Herbal medicines are popular natural medicines that have been used for decades. The use of alternative
medicines continues to expand rapidly across the world. The World Health Organization suggests that
quality assessment of natural medicines is essential for any therapeutic or health care applications, as their
therapeutic potential varies between different geographic origins, plant species, and varieties. Classification
of herbal medicines based on a limited number of secondary metabolites is not an ideal approach. Their
quality should be considered based on a complete metabolic profile, as their pharmacological activity is not
due to a few specific secondarymetabolites but rather a larger group of bioactive compounds. A holistic and
integrative approach using rapid and nondestructive analytical strategies for the screening of herbal med-
icines is required for robust characterization. In this study, a rapid andeffective qualityassessment system for
geographical traceability, species, and variety-specific authenticity of the widely used natural medicines
turmeric, Ocimum, andWithania somniferawas investigated using Fourier transform near-infrared (FT-NIR)
spectroscopy-based metabolic fingerprinting. Four different geographical origins of turmeric, five different
Ocimum species, and three different varieties of roots and leaves ofWithania somniferawere studiedwith the
aid ofmachine learning approaches. Extremely good discrimination (R2> 0.98, Q2> 0.97, and accuracy¼ 1.0)
with sensitivity and specificity of 100%was achieved using thismetabolic fingerprinting strategy. Our study
demonstrated that FT-NIR-based rapidmetabolic fingerprinting canbe used as a robust analyticalmethod to
authenticate several important medicinal herbs.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of Xi’an Jiaotong University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Natural medicines obtained from medicinal plants, including
traditional Chinese medicines and Indian Ayurvedic medicines,
have been widely employed as therapeutic agents [1]. The use of
herbal medicines continues to grow globally as their role in
improving and curing various adverse health conditions becomes
better understood [2,3]. Natural medicines have played a critical
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role in clinical therapies for thousands of years. The global herbal
medicine market is dominated by Asia (81%), followed by Africa
(12%), while Europe accounts for less than 3% [4]. It is estimated
that more than 40% of the global population uses herbal medi-
cines, and over a quarter of all modern medicines are directly or
indirectly derived from medicinal plants [5,6]. During the last
decade, herbal medicines have drawn the attention of the popu-
lation of Western countries because of their high pharmacological
activities and low toxicity [7]. The World Health Organization
(WHO) places great emphasis on several critical issues regarding
herbal medicines. These include inadequate regulatory measures,
poor quality control, and uncontrolled distribution channels of
natural medicines [8]. Inadequate/poor-quality herbal medicines
may cause adverse effects [8]. The quality of natural medicines is
highly dependent on their bioactive constituents, including sec-
ondary metabolites. These compounds are metabolic products
derived from various primary and secondary biological pathways.
These secondary metabolites are mainly responsible for the
various health care and therapeutic functions of natural medi-
cines. However, the secondary metabolite profile is highly
dependent on the geographical origin, genotype, and chemotype,
including the species and variety of natural medicine [9].
Furthermore, some herbal medicines are derived from different
species and, as a result, have very different therapeutic perfor-
mances due to different bioactive constituents. However, they
may have very similar morphological characteristics and could be
prone to misclassification [9].

The globalization of herbal medicines starting from production
to consumption involves complex supply chains that need to be
managed and ideally fully traceable. The WHO, European Medi-
cines Agency, and United States Food and Drug Administration
have updated their regulations, which require that authentication
of particular herbal medicines is one of the first assays that should
be conducted, specifically to ensure that they are of the correct
species and that batches are free from adulteration [8]. The
identification of the geographical origin, the type of species, and
varieties of herbal medicines is highly challenging, as there are
many bioactive constituents present, and precise measurements
are required to fully assess their quality. The quality and efficacy
can be markedly different for species that have different varieties
even when grown under identical geographical and climatic
conditions [9].

The pharmaceutical industry has initiated the use of high-
throughput untargeted methods for the quality assessment of
medicinal products during the last decade [10]. This includes the
use of untargeted metabolomics-based methods to identify
geographical origin, species, and variety-specific variations [11,12].
Although these methods have significant advantages for the iden-
tification of marker compounds, these techniques are time-
consuming, and complex sample preparation steps are needed,
including extraction, purification of samples, and in some in-
stances, the derivatization/modification of metabolites [13].
Furthermore, the analytical platforms, gas chromatography-mass
spectrometry (GC-MS) and liquid chromatography (LC)-MS anal-
ysis, are expensive and require highly skilled operators for sample
preparation, instrument use, and subsequent data analysis. The cost
and requirement of skilled personnel for these MS-based platforms
created the need for alternative techniques that are rapid, nonde-
structive, and capable of using small sample volumes and requiring
minimal preparation are highly desirable.

Fourier transform near-infrared (FT-NIR) spectroscopy is a
simple, rapid, accurate, easy-to-operate, and nondestructive tech-
nique that requires minimal sample preparation prior to analysis.
Moreover, the key advantage of FT-NIR spectroscopy combined
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with chemometrics is that once a reliable database and suitable
analytical protocol are established, samples can be screened within
a few minutes [3,14]. FT-NIR provides complex structural infor-
mation correlated to the variation in combinations of bonds within
secondary metabolites. This technique is widely used in pharma-
ceutical, biomedical, and clinical applications [15]. Recently, FT-NIR
metabolic fingerprinting has been used to identify the geographic
origin of herbal medicines [3,16]. However, the application of this
strategy for the most widely used traditional herbal medicines
needs to be further explored.

Globally, turmeric, Ocimum, and Withania somnifera are widely
used natural medicines. The rhizome of turmeric is used as a tradi-
tional medicine in Ayurveda and in Eastern Asian medical systems
such as traditional Chinese medicine [17]. It is one of the most
popular natural medicines and grows primarily in India (85%), but it
can also be found in China (8%), Myanmar (4%), and Bangladesh (3%).
Recently, this medicinal herb has drawn significant attention due to
its wide-ranging health benefits, including anti-inflammatory and
antioxidant properties. Turmeric is traditionally used to treat skin
disorders, upper respiratory tract infections, joint pain, and diseases
of the digestive system [18]. It is recorded in both the Indian and
Chinese Pharmacopoeias and was the second top-selling herbal
supplement in the United States in 2020, with sales totaling more
than $92 million. India is the leading cultivator and exporter (more
than 85%) of turmeric worldwide, with more than $226 million
recorded in sales in 2021 [19]. Geographic indication (GI) is a major
consideration for the overall quality of this natural medicine [3,16].
Four geographical origins (Lakadong turmeric from Meghalaya,
Alleppey turmeric from Kerala, Sangli turmeric from Maharashtra,
and Erode turmeric from Tamil Nadu) are considered premium
turmeric sources and are regarded as being of exceptionally high
quality. A rapid and effective technique for the identification of the
GI of this herb has yet to be demonstrated.

Ocimum is one of the most widely used medicinal herbs, espe-
cially in Asia and Africa, to treat diarrhea, kidney diseases, coughs,
and many other ailments [20,21]. It is known as the “Queen of
herbs”; moreover, the Ocimum basilicum (sweet basil) plant is a
perennial crop extensively cultivated in various regions of the
world to meet market demand [22]. There are various species of
Ocimum available, such as Ocimum kilimandscharicum, Ocimum
basilicum, Ocimum africanum, Hybrid tulsi, and Ocimum sanctum;
however, the secondary metabolite profile and therapeutic efficacy
vary from species to species.

Withania somnifera (Ashwagandha, Solanaceae family), also
known as poison gooseberry or winter cherry, is a herb that has
been widely used across the world. It has a relatively high content
of bioactive compounds such as carotenoids, phytosterols, with-
anolides, and polyphenols [23]. Leaf and root powders from this
plant are used as immunomodulators that significantly increase
CD4þ and CD8þ counts. They also alter the blood profile, specif-
ically, platelet counts and white blood cell counts [24]. The With-
ania species is also well known for its neuroprotective properties
and is used to improve sleep and brain health [23,24]. The global
population has shown increased stress levels in recent years,
further driving the demand for medicinal herbs that can improve
immune health and sleep cycles. Withania somnifera, during 2020,
achieved significant sales growth, with sales over $31.7 million,
which makes this 12th top-selling herb [25]. The United States and
European markets have also shown significant growth in recent
years. In 2020, the global sales of Withania somnifera were more
than $198 million, and the demand for this medicinal herb is
forecast to increase each year by over 26%. The roots of this plant
are widely used, followed by the leaves, as the active secondary
metabolite content varies depending on the source being used.
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Identification of GI, species- and variety-specific variation, and
adulteration of medicinal herbs is of great importance in terms of
ensuring the integrity of products, avoiding any forms of adulter-
ation or mislabeling and protecting their commercial value.
Because of an increasing demand from the global market for the
screening of therapeutic drugs from natural products, there is high
demand and interest in efficient and robust analytical strategies for
plant-based medicinal herbs in the pharmaceutical industry. The
therapeutic potential is highly dependent on the GI, type of species,
and variety. Therefore, it is important to have a suitable analytical
method with rapid and high-throughput analysis and on-site
capability that requires little or no sample preparation. The main
aim of the present study was to develop and validate testing
methods to authenticate widely used natural medicines in terms of
their GI, species, and variety using rapid metabolic fingerprinting
models. Although herbal medicines derived from turmeric, Oci-
mum, and Withania somnifera play significant roles in health and
therapeutic applications, no such approaches have yet been
reported.

An untargeted and rapid FT-NIR-based metabolic fingerprinting
approach was used to investigate the GI phenotype, species, and
variety of turmeric, Ocimum, and Withania somnifera samples. FT-
NIR combined with multivariate models, partial least square
discriminant analysis (PLS-DA), and random forest (RF) classifica-
tion were used to identify the phenotype. Furthermore, one-class
models, data-driven soft independent modelling of class analogy
(DD-SIMCA), and K-nearest neighbors (KNN), were used to classify
the samples based on GI, species- and variety-specific variation.
Moreover, the methods were further tested against adulterated
samples from the market.

2. Materials and methods

2.1. Chemicals and reagents

All standards and reagents were procured from Sigma-Aldrich
(St. Louis, MO, USA) unless otherwise stated. Ethyl acetate and
methanol were procured from Sigma-Aldrich. Acetic acid, ethanol,
acetonitrile and ammonium dihydrogen phosphate were procured
from Merck (Rahway, NJ, USA). Ultrapure water was prepared by a
Milli-Q® IQ 7000 water purification system from Millipore (Bill-
erica, MA, USA).

2.2. Sample preparation

The leaves of five different Ocimum species, namely, Ocimum
basilicum, Ocimum africanum, Ocimum kilimandscharicum, Ocimum
sanctum and Hybrid tulsi, were collected from the research field of
Council of Scientific and Industrial Research (CSIR)-Central Institute
of Medicinal and Aromatic Plants (CIMAP) in October 2021. CSIR-
CIMAP has a history of cultivating medicinal plants for more than
50 years.Ocimum plants with similar growthwithout diseases were
randomly selected. The dried Ocimum leaves were ground to
powder, passed through mesh, and stored in glass containers in
dark and dry conditions prior to analysis. The leaves and roots of
three different sample classes of Withania somnifera, including
NMITLI-101 (WS 101), NMITLI-118 (WS 118), and PHPL were
collected from the research field of CSIR-CIMAP in May 2022. WS
101 and WS 118 seeds were obtained from CSIR-CIMAP while PHPL
seeds were provided from Pharmanza Herbal Pvt. Ltd., Gujarat,
India (acquired from Madhya Pradesh, India). Root, leaf, and stem
samples were dried and ground to powder. Turmeric samples from
four different geographical origins, namely, Lakadong turmeric
fromMeghalaya, Sangli turmeric fromMaharashtra, Erode turmeric
from Tamil Nadu, and Alleppey turmeric from Kerala, were
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obtained from farmers. The collected samples were shed dried and
ground to powder and then passed through a mesh. All medicinal
herbs were identified by expert botanists. The individual provinces,
species, and varieties of samples are presented in Table S1.
2.3. High performance liquid chromatography (HPLC) analysis

2.3.1. Analysis of turmeric samples
Quantitative analysis of methanolic extracts of turmeric samples

was performed by a Shimadzu Prominence-i (LC-2030C 3D Plus)
HPLC system (Kyoto, Japan). Separation was achieved using a Pur-
ospher® STAR RP-18 end-capped (5 mm) LiChroCART® 250e4.6
column (Merck) subjected to isocratic elution. The two solvents
used for the analysis consisted of water containing 0.1% (V/V) acetic
acid in water (solvent A) and acetonitrile (solvent B). Isocratic
programming of the solvent system was at 50% B for 0e15 min,
with a flow rate of 1.2 mL/min. Five microliters of sample was
injected, and the column temperature was maintained at 35 �C.
Wavelengths were set at 420 nm for curcumin, demethox-
ycurcumin, and bisdemethoxycurcumin. Pooled samples were run
to serve as quality control (QC). The compounds were quantified
using standards with the aid of Labsolutions version 6.89 software.
2.3.2. Analysis of Withania somnifera samples
Quantitative analysis of the ethanolic extract of Withania sam-

ples was carried out using a Nexera-XR HPLC system (Shimadzu)
equipped with a quaternary pump (Nexera XR LC-20AD XR), a
diode arrays detector (SPD-M20 A), an autosampler (Nexera XR SIL-
20 AC XR), a degassing unit (DGU-20A 5R), and a column oven
(CTO-10 AS VP). A Phenomenex reversed-phase Luna 100 Å C18
column (250 mm � 4.6 mm, 5 mm) (Torrance, CA, USA) was used to
analyze the samples. The two solvents used for the analysis were
water-containing phosphate buffer (solvent A) and acetonitrile
(solvent B). Samples were separated by gradient elution. The
gradient programming of the solvent systemwas initially at 5% B for
0e18 min, 5%e45% B for 18e25 min, 45%e80% B for 25e28 min,
80%e45% B for 28e35 min, 45%e5% B for 35e40 min, and 5% B for
40e45 min, with a flow rate of 1.5 mL/min. The total run time was
45 min, with 10 mL of sample injected and the column temperature
kept at 35 �C. Wavelengths were set at 227 nm for withanoside IV,
withanoside V, withaferin A, 12-deoxy-withastramonolide, with-
anone, withanolide A, and withanolide B. Pooled samples were run
to serve as QC. The compounds were quantified using Labsolutions
version 6.89 software.
2.4. GC-MS analysis of Ocimum samples

Ethyl acetate extracts of Ocimum samples were analyzed using a
PerkinElmer GC Clarus 680 (Waltham, MA, USA) equipped with a
mass spectrometer (PerkinElmer SQ8C). Full scan mass spectra were
acquired in themass range of 40e500 Da at a 0.8 scan/s rate with an
initial solvent delay of 3 min. The injector, ion source, and transfer
line temperatures were set at 290, 220, and 220 �C, respectively. The
initial oven temperature was kept at 60e240 �C at a rate of 3 �C per
min. Helium was used as a carrier gas at a flow rate of 1.0 mL/min.
One microliter of sample was injected into the DB-5 MS capillary
column (Agilent Technologies, Santa Carla, CA, USA)
(30 m � 0.25 mm i.d. 0.25 mm film thickness) consisting of a sta-
tionary phase of 5% (V/V) phenyl and 95% (V/V) methyl polysiloxane
in the split-less mode. Detection was achieved using a mass spec-
trometer in electron ionization mode at 70 eV. After every 10 sam-
ples, a blank and pooled sample was run to serve as QC to estimate
run time variables.
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2.5. FT-NIR spectroscopy analysis

FT-NIR spectrawere recorded using the spectrometer ANTARIS II
FT-NIR Analyzer (Thermo Fisher Scientific Inc., Waltham, MA, USA)
equipped with an interferometer and an integrated sphere.
Approximately 1 g of weighed powdered samples was placed in
glass vials for spectral recording. Spectra were recorded in the
range of 10,000e4,000 cm�1, with each spectrum being an average
of 64 scans. The raw dataset was measured with a spectral reso-
lution of 4 cm�1 resulting in 1557 variables. The FT-NIR reflectance
spectra were expressed as log (1/R), where R is the reflectance. The
time of analysis was approximately 60 s. The spectra of the samples
were randomly generated to remove any systematic variation in the
model. All spectral measurements were carried out at room tem-
perature (26 ± 1 �C).

2.6. Data processing and multivariate analysis

2.6.1. Data processing and PLS-DA models
The resulting spectral files were converted into comma-sepa-

rated values (CSV) files. The data matrix containing wavenumbers,
samples, and absorbances was further used for statistical analysis.
Quantile normalization was performed in the data matrix. Pareto
scaling (mean centered and then divided by the square root of the
standard deviation of the variable) was performed tomake features
more comparable in magnitude with each other. These standard-
ized FT-NIR data were used to perform principal component anal-
ysis (PCA) to identify patterns. Multivariate statistical analysis was
performed using R software (version 4.2.0). The differences among
various groups can be visualized by projecting the objects of the
dataset into the space of the first few principal components (PCs).

Furthermore, supervised PLS-DAwas performed to discriminate
the samples. The developed PLS-DA model was validated using a
ten-fold cross validation method, and its quality was assessed on
R2, Q2, and accuracy scores [26]. Furthermore, this model was
validated using 1000 permutation tests [27].

Both training (60%e70% of data) and validation sets (30%e40%)
were used. The performance classification models were evaluated
using calculated merit figures with the values in contingency ta-
bles, such as the number of samples wrongly classified as true (FP),
number of samples correctly classified as true (VP), number of
samples correctly classified as false (VN), number of samples
wrongly classified as FP, and number of samples wrongly classified
as false (FN). Furthermore, sensitivity (SEN) and specificity (SPE),
representing the measure of correct classification of samples, were
also calculated. The false-positive (TFP) and false-negative (TFN)
rates are incorrectly classified samples.

SEN ¼ VP
VPþ FN

(1)

TFN ¼ FN
VPþ FN

(2)

SPE ¼ VN
VNþ FP

(3)

TFP ¼ FP
VNþ FP

(4)

For variable selection, variable importance in projection (VIP)
values were considered provided that the lowest root mean square
error for cross validation (RMSECV) was selected.
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2.6.2. RF classification models
Other supervised RF models were performed to classify

different groups based on geographical indication, species, and
varieties of herbs and spices. This model works based on bagging
and random feature selection. This model builds numerous deci-
sion trees and combines them to obtain a more accurate predic-
tion. It is worth mentioning that decision trees differ from RF
models, as decision trees can be vulnerable to overfitting; how-
ever, RF models can overcome this by creating random subsets of
the features and building smaller trees using those subsets, with
the subsets then merged for classification. The RF algorithm per-
forms cross-validation in parallel with the training step by using
out-of-bag samples. On average, each tree grows with approxi-
mately 2/3 of the training data and leaves approximately 1/3 of the
test data.
2.7. Development of one-class classification models

2.7.1. DD-SIMCA classification
DD-SIMCA models [28] for turmeric, Ocimum, and Withania

somnifera were performed using MATLAB R2021a, DD-SIMCA
tool box [29]. This one-class classifier method distinguishes ob-
jects of one particular target class from all other objects and
classes.

The SIMCA model is developed using the PCA decomposition of
matrix X:

X ¼ TPt þ E (5)

where T ¼ {tia} is the (I � A) score matrix, P is the (J � A) loading
matrix, E is the (I� J) residual matrix, and A is the number of PC. The
PCA results are used to calculate two relevant statistics: the
orthogonal distance (OD) and the score distance (SD). OD is the
squared Euclidian distance between a sample and the score sub-
space. It is calculated in the original X-space as the sum

qi ¼
XJ

j¼1

e2ij i ¼ 1;2;3; :::::; I (6)

of the squared residual presented in the matrix E defined in Eq.
(5). SD is the squared Mahalanobis distance calculated by the
formula

hi ¼
XA

a¼1

t2ia
la

i ¼ 1;2;3;…:; I (7)

where tia is an element of matrix T defined in Eq. (5), and

la ¼ PI
i¼1t

2
ia is the eigenvalue.

The scaled chi-squared distribution and the full distance can be
calculated as

c ¼ Nh
h
h0

þ Nq
q
q0

fc2
�
Nh þ Nq

�
(8)

where c is statistical total distance; h0 and q0 are the scaling
factors; and Nh and Nq are the numbers of degrees of freedom.
These parameters are considered unknown and are estimated
using the training dataset.

SIMCA establishes the decision rule that determines whether a
sample belongs to the target class. This is determined by employing
a cutoff value



Fig. 1. Metabolic fingerprinting of turmeric from four different geographical in-
dications (GI). (A) Fourier transform near-infrared spectroscopy (FT-NIR) average
spectra of turmeric samples. The fingerprint wave numbers are indicated with boxes.
(B) Principal component analysis (PCA) scores plot for the 1st component (50.1%) vs.
2nd component (23.7%), explaining the clustering of four different turmeric samples,
Lakadong turmeric, Alleppey turmeric, Erode turmeric, and Sangli turmeric samples.
(C) Pearson correlation of samples from Alleppey turmeric, Lakadong turmeric, Sangli
turmeric, and Erode turmeric. PC: principal component.

Fig. 2. Quantification of marker metabolites in Lakadong turmeric, Alleppey turmeric,
Erode turmeric, and Sangli turmeric samples.
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c � ccrit

where

ccrit ¼ x�2�1� a;Nh þ Nq
�

(9)

which delineates an acceptance area in the space of statistics h
and q.
2.7.2. KNN classification
KNN is a nonparametric and supervised learning algorithm used

to classify test data based on a distance metric. Euclidean distance
with a desired range of values for the neighborhood parameter k
(k ¼ 1, 2, 3, etc.) is used for classification of samples [30]. KNN was
performed using R version 4.2.0.
Fig. 3. Partial least square discriminant analysis (PLS-DA) prediction of four different
geographical indication (GI) turmeric samples.
3. Results and discussion

3.1. Geographic classification of turmeric samples based on FT-NIR
metabolic fingerprinting

Overall, 194 samples, including 46 samples of Lakadong
turmeric, 50 samples of Erode turmeric, 49 samples of Sangli
turmeric and 49 samples of Alleppey turmeric, were analyzed
using FT-NIR spectroscopy. The spectral profile was obtained in
the range of 10,000e4,000 cm�1 for all turmeric samples, as
shown in Fig. S1, and the corresponding average spectral profiles
are shown in Fig. 1A. The absorption intensities (Figs. 1A and S1)
were obtained in the range of 8,526�8,083 cm�1 with maxima at
8,350 corresponding to 2nd overtone of CH, CH2, and CH3 func-
tional groups; 6,980�6,210 cm�1 with maxima at 6,850 cm�1

corresponding to 2nd overtone of CH, and OH functional groups;
5,943-5,563 cm�1with maxima at 5,730 cm�1 corresponding to
1st overtone of CH2, and CH functional groups; 5,236�5,106 cm�1

with maxima at 5,173 cm�1; and 4,840�4,636 cm�1 with maxima
at 4,730 cm�1 corresponding to 1st overtone of OH functional
group.

The variation in intensities of absorption bands can be seen.
Initially, a preliminary extrapolatory analysis of the data using PCA
was applied. The unsupervised PCA model obtained from the FT-
NIR spectra of all samples revealed the general structure of the
complete dataset, in which the first two PCs cumulatively accoun-
ted for 73.8% of the total variation, with PC1 accounting for 50.1% of
the variance, discriminating Lakadong and Alleppey turmeric from
Erode and Sangli turmeric samples (Fig. 1B). PC2 was responsible
for 23.7% of the variance in discriminating the Erode and Lakadong
turmeric samples from the Sangli and Alleppey turmeric samples
(Fig. 1B). The cumulative and individual explained variances of PCs
are presented in Fig. S2. To correlate turmeric samples, Pearson
correlation was performed between sample groups. Fig. 1C shows
that each sample group from a specific GI has a strong positive
correlation with the corresponding sample groups based on
geographical origin. The key metabolites of turmeric, such as cur-
cumin, demethoxycurcumin, and bisdemethoxycurcumin, were
measured using HPLC (Fig. 2). These metabolites are considered to
be good quality markers for turmeric samples, as these compounds
have effective pharmacological activity [31]. HPLC data revealed
that Lakadong turmeric has a high content of curcumin (>12.5%),
demethoxycurcumin (>3.6%), and bisdemethoxycurcumin (1.3%) in
comparison to the other three GI groups of samples. The Sangli
turmeric contents of curcumin (5.0%), demethoxycurcumin (1.8%),
and bisdemethoxycurcumin (0.7%), and the Alleppey turmeric
contents of curcumin (4.7%), demethoxycurcumin (2.0%), and bis-
demethoxycurcumin (0.7%) were higher than the Erode turmeric
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contents of curcumin (4.0%), demethoxycurcumin (1.1%), and bis-
demethoxycurcumin (0.5%).

A supervised PLS-DA model was then constructed to find a
small number of linear combinations of the original variables,
which was predicted for the class membership and that described
most of the variability of the FT-NIR metabolic profile of Lakadong,
Alleppey, Sangli, and Erode turmeric samples (Fig. S3A). Fig. S3A
shows that four distinct clusters were identified in the PLS-DA
score plot. Two components cumulatively accounted for 48.3% of
the total variation, with the first component explaining 34.9% of
the variation between the Lakadong, Alleppey turmeric from
Erode, and Sangli turmeric samples. The second component ex-
plains 13.4% of the variation between Erode, Lakadong turmeric
from the Sangli, Alleppey turmeric samples. Ten-fold cross-
validation was performed to find the predictive accuracy and fit
of the polynomial model (Fig. S3B). The cumulative values of PLS-
DAwith R2¼ 0.99303, Q2¼ 99,147, and accuracy¼ 1.0 show a good
fit of the model. To assess the statistical significance of these
potentially highly predictive multivariate models, permutation
testing was conducted, and the supervised models were validated
with 1000 permutation tests (Fig. S3C). From the analysis of these
distributions, the significance of the power of the optimal models
to predict the profiles of sample groups was determined to be



Table 1
Calculated values for the merit figures for the partial least square discriminant analysis (PLS-DA) model using the Fourier transform near-infrared (FT-NIR) data for the four
different turmeric geographical origins samples.

Parameters Sample category

Alleppey turmeric Erode turmeric Lakadong turmeric Sangli turmeric

Training set Validation set Training set Validation set Training set Validation set Training set Validation set

Sensitivity (%) 100 100 100 100 100 100 100 100
False negative (%) 0 0 0 0 0 0 0 0
Specificity (%) 100 100 100 100 100 98 100 100
False positive (%) 0 0 0 0 0 2 0 0
Accuracy (%) 100 100 100 100 100 99 100 100
Reliability (%) 100 100 100 100 100 98 100 100
Latent variables 3 3 3 3 3 3 3 3
Root mean square error of calibration 0.10 0.09 0.13 0.05
Root mean square error of cross validation 0.11 0.09 0.13 0.05
Root mean square error of prediction 0.13 0.13 0.17 0.07
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P < 0.001. Supervised PLS-DA was used to validate individual
models with 60%e70% of samples considered as the training set
and the remaining 30%e40% of samples considered as the vali-
dation set. The calculated values for the PLS-DA model using FT-
NIR data are presented in Table 1, with 100% sensitivity, speci-
ficity, accuracy and reliability for the training set. One hundred
Fig. 4. Data driven-soft independent modelling of class analogy (DD-SIMCA) classification o
turmeric samples, (C) Alleppey turmeric samples, and (D) Lakadong turmeric samples. The
area, the area inside the blue curve with the threshold for a ¼ 0.01 and the red line is the o
were considered as extremes represented with orange box. No extreme samples were found
of training samples; h: score distance of individual samples; h0: score distance of training
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percent sensitivity, specificity, accuracy, and reliability were ob-
tained for the test set of samples from the Alleppey, Erode, and
Sangli turmeric GI types. In the case of the Lakadong samples,
more than 98% sensitivity, specificity, accuracy, and reliability
were obtained. Fig. 3 illustrates the predictions of turmeric sam-
ples employing the PLS-DA model.
f geographic indication (GI) of turmeric samples: (A) Erode turmeric samples, (B) Sangli
acceptance plot for training set provides a graphical representation of the acceptance
utlier cut-off with threshold g ¼ 0.01. Authentic samples falling outside the blue curve
in all cases. v: orthogonal distance of individual samples; v0: mean orthogonal distance
samples.
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Furthermore, a one-class model, DD-SIMCA, was used for
classification. We used this model to identify the GI of turmeric
samples. This method consists of two steps, including decom-
position of the training data matrix by PCA and classification of
a new sample set with the derived PCs. These components are
represented by the acceptance area in the OD and SD with the a
value. This a value specifies a type 1 error, i.e., false-negative
decisions. External validation of these models involved using
60%e70% of the target class samples from each geographic
origin, including Erode turmeric (Fig. 4A), Sangli turmeric
(Fig. 4B), Alleppey turmeric (Fig. 4C), and Lakadong turmeric
(Fig. 4D) samples in the training set and the remaining samples
in the test set. The models of the acceptance plots for training
and test sets are shown in Fig. 4. One hundred percent sensi-
tivity and specificity were obtained for all four sample groups.
The summary of DD-SIMCA performance is presented in
Table S2. Furthermore, DD-SIMCA models were built by
considering the turmeric samples from each GI as a training set
Fig. 5. Metabolic fingerprinting Ocimum samples from five different species. (A) Images take
average spectra of five different Ocimum species. The fingerprint wave numbers are indicated
(48.5%) vs. second component (19.4%). PC: principal component.
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and tested with the new set of samples from all other
geographic origins. The corresponding models of acceptance
plots for the training and validation sets are shown in Fig. S4.
One extreme sample was found in the Erode, Sangli and
Alleppey turmeric samples, which resulted in 98% sensitivity
with 100% specificity. The summary of DD-SIMCA performance
is presented in Table S3.

RF models were built to classify turmeric samples based on GI.
A total of 500 decision trees were used to classify samples. None of
the samples from each group was misclassified, and the out-of-
bag error was 0 (Fig. S5 and Table S4). Another supervised
model, KNN, was used for classification. Initially, the complete
model (built with 1557 variables obtained by FT-NIR analysis) did
not perform well. Classification using the top 18 variables (rep-
resenting less than 2% of the number of variables) had better re-
sults for all samples belonging to a GI group. In this case, we
considered all 194 samples for analysis. Sixty-four out of 194
samples were randomly selected for model validation. The
n from fresh Ocimum species. (B) Fourier transform near-infrared spectroscopy (FT-NIR)
with boxes. (C) Principal component analysis (PCA) scores plot for the first component



Fig. 6. Partial least square discriminant analysis (PLS-DA) prediction of five different
Ocimum species samples.
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remaining 130 samples were considered as the training set. Factor
K ¼ 13 was used for classification. The model classified all samples
correctly with 100% sensitivity and specificity. There were no
cases of false-positives or false-negatives observed. The corre-
sponding results are presented in Table S5.

3.2. Rapid fingerprinting identifies species-specific variation in the
Ocimum herb

Overall, 172 samples from five differentOcimum species, namely,
Ocimum basilicum (35 samples), Ocimum kilimandscharicum (34
samples), Ocimum africanum (34 samples), Ocimum sanctum (34
samples), and Hybrid tulsi (35 samples), were analyzed using FT-
NIR in the spectral range of 10,000e4,000 cm�1. The representa-
tive images of five Ocimum species are presented in Fig. 5A. The
spectral profile for all samples is presented in Fig. S6, and the cor-
responding average spectral profiles are shown in Fig. 5B. The ab-
sorption intensities were obtained in the range of
8,782�8,110 cm�1 with maxima at 8,363 cm�1 corresponding to
2nd overtone of CH, CH2, and CH3 functional groups; the range of
7,054�6,580 cm�1 with maxima at 6,841 cm�1 corresponding to
2nd overtone of OH, and CH functional groups; the range of
5,922�5,610 cm�1 withmaxima at 5,813 cm�1 corresponding to 1st
overtone of CH, CH2, and CH3 functional groups; and the range of
4,880�4,580 cm�1 with maxima at 4,598 cm�1 corresponding to
the combination of vibrations for OH functional group.

As an initial step, PCA was performed. The first two PCs of the
unsupervised PCA model accounted for 67.9% of the total variation,
with PC1 explaining 48.5% of the variation in the species of Ocimum
basilicum, Ocimum kilimandscharicum, Hybrid tulsi from Ocimum
africanum, and Ocimum sanctum, and PC2 explaining 19.4% of the
variation in Hybrid tulsi from Ocimum basilicum and Ocimum kili-
mandscharicum (Fig. 5C). The cumulative and individual explained
variances of PCs for Ocimum samples are presented in Fig. S7. The
supervised PLS-DA model was obtained for all the Ocimum samples
from different species, revealing the general structure of the com-
plete dataset, in which component 1 explained 24.9% and compo-
nent 2 explained 37.3% of the total variance (Fig. S8A), with clear
clustering between sample groups. The PLS-DA score plot sug-
gested that there was significant variation in the FT-NIR spectral
profiles of Ocimum species. Component 1 separated Hybrid tulsi
sample groups from Ocimum kilimandscharicum, Ocimum africa-
num, and Ocimum sanctum. Ten-fold internal cross-validation was
performed to determine the predictive accuracy and fit of the
polynomial model. The cumulative values of the PLS-DA model,
with an accuracy of 0.99556, R2 ¼ 0.95097 and Q2 ¼ 0.93432,
showed a good fit of the model (Fig. S8B). To assess the statistical
significance of these apparently highly predictive multivariate
models, permutation testing was again conducted. The supervised
models were further validated with 1000 permutation tests
(Fig. S8C). The PLS-DAmodel was then used to validate the samples.
Sixty to seventy percent of Ocimum samples from each species were
considered as the training set, and the remaining 30%e40% of
samples were considered as the validation set (Fig. 6). The calcu-
lated values for the PLS-DA model using FT-NIR data are presented
in Table 2. These values having 100% sensitivity, specificity, accu-
racy, and reliability were obtained for Hybrid tulsi, Ocimum afri-
canum, and the remaining species had greater than 94% accuracy
and 89% reliability for the training set. A total of 99% accuracy and
98% reliability were obtained for the validation set.

Furthermore, GC-MS-based metabolite profiling using ethyl
acetate sample extracts was performed to identify the specific
marker metabolites for species variation. Ocimum basilicum con-
tains a high quantity of linalool, Ocimum kilimandscharicum
samples contain a high quantity of camphor, Hybrid tulsi was
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found to have a quantity of eugenol, and methyl eugenol and
Ocimum africanum contain relatively large amounts of humulene
(Table S6).

A DD-SIMCA classification method was performed to deter-
mine the species-specific classification of Ocimum samples. In the
models, we considered performing external validation using 60%e
70% of the target class samples from all Ocimum species, namely,
Ocimum africanum, Ocimum basilicum, Ocimum kilimandscharicum,
Ocimum sanctum, and Hybrid tulsi samples in the training set, and
the remaining samples in the validation set. The models of the
acceptance plots for the training and test sets are shown in Fig. 7.



Table 2
Calculated values for the merit figures for the partial least square discriminant analysis (PLS-DA) model using the Fourier transform near-infrared (FT-NIR) data for the five
different Ocimum species samples.

Parameters Sample category

Hybrid tulsi Ocimum africanum Ocimum basilicum Ocimum kilimandscharicum Ocimum sanctum

Training
set

Validation
set

Training set Validation
set

Training
set

Validation
set

Training
set

Validation
set

Training
set

Validation
set

Sensitivity (%) 100 100 100 100 92 100 100 100 100 100
False negative (%) 0 0 0 0 8 0 0 0 0 0
Specificity (%) 100 100 100 98 97 98 95 100 96 100
False positive (%) 0 0 0 2 3 2 5 0 4 0
Accuracy (%) 100 100 100 99 94 99 97 100 98 100
Reliability (%) 100 100 100 98 89 98 95 100 96 100
Latent variables 5 5 5 5 5 5 5 5 5 5
Root mean square

error of calibration
0.15 0.14 0.31 0.23 0.18

Root mean square
error of cross validation

0.16 0.16 0.34 0.25 0.20

Root mean square error
of prediction

0.13 0.19 0.27 0.25 0.19
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One hundred percent sensitivity and 100% specificity were ob-
tained for all five groups of Ocimum species samples. The summary
of DD-SIMCA performance is presented in Table S7. Furthermore,
DD-SIMCA models were built by considering the Ocimum samples
from each species as a training set and validated with the new set
of samples from all other species. The corresponding models of
acceptance plots for the training and validation sets are shown in
Fig. 7. Data driven-soft independent modelling of class analogy (DD-SIMCA) classification
Ocimum basilicum samples, (C) Ocimum kilimandscharicum samples, (D) Ocimum sanctum s
graphic representation of the acceptance area, the area inside the blue curve with the thresh
samples falling outside the blue curve were considered extremes represented with orange
samples; v0: mean orthogonal distance of training samples; h: score distance of individual
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Fig. S9. One extreme sample was found in the Ocimum basilicum
and Ocimum kilimandscharicum samples, resulting in 97% sensi-
tivity with 100% specificity. The summary of DD-SIMCA perfor-
mance is presented in Table S8.

RF testing of all Ocimum samples classified five species samples
with 100% accuracy and an out-of-bag (OOB) error of 0 (Fig. S10 and
Table S9). Furthermore, the supervised model, KNN, was used for
of species-specific variation of Ocimum samples: (A) Ocimum africanum samples, (B)
amples, and (E) Hybrid tulsi samples. The acceptance plot for training set provides a
old for a ¼ 0.01 and the red line is the outlier cut-off with threshold g ¼ 0.01. Authentic
box. No extreme samples were found in all cases. v: orthogonal distance of individual
samples; h0: score distance of training samples.
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the classification of Ocimum species. Initially, the complete model
built with 1557 variables obtained by FT-NIR did not perform well.
RF classification with 18 variables (value representing less than 2%
of the original number of variables) had better results for all Oci-
mum samples. In this case, 67% of samples (115 of 174 samples)
were used for the training set, and the remaining 33% of samples
(59 samples) were used as the validation set. Factor K¼ 13was used
for classification in the region of 4,500e4,800 cm�1 for the analysis.
The model classified all five species of Ocimum samples correctly
with 100% sensitivity and specificity. There were no cases of false-
Fig. 8. Metabolic fingerprinting of Withania somnifera leaf and root samples from three diff
infrared (FT-NIR) average spectra of leaf samples. The fingerprint wave numbers are indicated
are indicated with boxes. (E) Partial least square discriminant analysis (PLS-DA) classification
from three specified varieties.
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positives or false-negatives observed. The corresponding results are
presented in Table S10.

3.3. Variety-specific classification of root and leaf samples of
Withania somnifera

Withania somnifera is a popular Indian medicinal plant whose
roots and leaves are used as an immune booster and for the
treatment of insomnia. The therapeutic activity of this medicinal
herb depends on the type of tissue and variety of the plant used as
erent varieties. (A) Plant leaf images. (B) Plant root images. (C) Fourier transform near-
with boxes. (D) FT-NIR average spectra of root samples. The fingerprint wave numbers
of leaf samples from three specified varieties. (F) PLS-DA classification of root samples



Fig. 9. Content of marker compounds in Withania somnifera fromWS 101, WS 108, and
PHPL samples: (A) leaf samples and (B) root samples.
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the active secondary metabolites; specifically, the withanolide
content varies. In the present study, we investigated leaf and root
samples of three different varieties of the plant. Three distinctive
varieties of Withania somnifera leaf (105 samples) and root (105
samples) samples with different qualities were tested for quality
assessment fingerprinting using FT-NIR in the spectral range of
10,000e4,000 cm�1. The representative images of three varieties of
Withania somnifera leaf and root samples are presented in Figs. 8A
and B. The corresponding FT-NIR spectral profiles of all samples are
presented in Figs. S11A and B, and the corresponding average plots
are presented in Figs. 8C and D.

The spectral profile of the leaf powder exhibited absorbance at
the range of 8,500�8,083 cm�1 with maxima at 8,372 cm�1 corre-
sponding to 2nd overtone of CH, CH2, and CH3 functional groups; the
range of 7,074�6,667 cm�1 with maxima at 6,861 cm�1corres-
ponding to 2nd overtone of CH2, CH, and CH3 functional groups; the
range of 5,882�5,555 cm�1 with maxima at 5,767 cm�1 corre-
sponding to combination vibrations of OH functional group; and the
range of 4,900�4,545 cm�1 with maxima at 4,698 cm�1 corre-
sponding to combination vibration of CH, C¼O functional groups.
Similarly, the spectral profile of root powder exhibited absorbance
maxima at 8,333 cm�1, 6,873 cm�1, and 5,706 cm�1. Initially, PCA
was performed to differentiate samples. In the case of the leaf
samples, the first two PCs of the PCA model explained 74.4% of the
total variation, with PC1 accounting for 48.6% of the variation,
discriminating the WS 101 variety samples from WS 118 and PHPL
samples, while PC2 was responsible for 25.8% of the variation,
separating leaf samples of WS 101 and PHPL samples from WS 118
variety (Fig. S12A). However, in the case of the root samples, PCA
could not separate WS 101 and WS 118 varieties (Fig. S12B). Indi-
vidual and cumulative explained variances of PCs for Withania
somnifera leaf and root samples are presented in Figs. S12C and D. A
PLS-DA model was built for supervised classification purposes. A
clear separation was identified between three leaf (Fig. 8E) and root
varieties (Fig. 8F) with total classifications of 71.5% (component 1
accounts for 47% and component 2 accounts for 24.5%) and 57%
(component 1 accounts for 45.7% and component 2 accounts for
11.3%), respectively, with three distinct clusters being identified in
the PLS-DA score plot.

Withanolides are considered to be qualitative markers, as
these metabolites have effective pharmacological activity for
treating various diseases [32]. In the present study, we measured
seven markers of withanolides (withanoside IV, withanoside V,
withaferin A, 12-deoxywithastramonolide, withanone, with-
anolide B, and withanolide A) for the comparison of species and
varieties (Fig. 9). In the case of leaf samples, the PHPL samples
contains high quantities of 12-deoxywithastramonolide in com-
parison to WS 118 samples. The differences in quantities of me-
tabolites are so small that it would be difficult to identify the
varieties based on HPLC profiles of the leaf samples alone. How-
ever, in the case of root samples, significant differences in the
quantity of metabolites were more clearly observed. Specifically,
high concentrations of metabolites, namely, withanoside V, 12-
deoxywithastramonolide, withanone, withanolide B, and with-
anolide A, were present in the PHPL samples in comparison to
those of the WS 101 and WS 118 samples. High concentrations of
withanolide A, withanolide B, and 12-deoxywithastramonolide
were present in WS 118 samples in comparison to WS 101 sam-
ples (Fig. 9).

Ten-fold cross-validation was performed to find the predictive
accuracy and fit of the polynomial models (Figs. S13A and B). The
cumulative values of PLS-DA with R2 ¼ 0.99303, Q2 ¼ 99,147, and
accuracy ¼ 1.0 for leaf samples and R2 ¼ 0.98313, Q2 ¼ 0.96261,
and accuracy ¼ 1.0 for root samples show good fit of the model. To
assess the statistical significance of these apparently highly
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predictive multivariate models, permutation testing was con-
ducted. The supervised models were further validated with 1,000
permutation tests (Figs. S13C and D). From the analysis of these
distributions, the significance of the power of the optimal models
to predict the profiles of sample groups was determined to be
P < 0.001.

The PLS-DA model was further used to validate individual
models, again with 60%e70% of samples being used as a training
set and the remaining 30%e40% of samples being used as a vali-
dation set. The calculated merit values for the PLS-DA model using
FT-NIR data for Withania somnifera leaf and root samples are
presented in Tables 3 and 4, respectively. One hundred percent
sensitivity, specificity, accuracy, and reliability were obtained for
the training and validation sets of all three Withania variety leaf
samples (Table 3). In the case of root samples, 100% sensitivity,
specificity, accuracy, and reliability were obtained for the training
set of all three Withania variety root samples (Table 4). One



Table 3
Calculated values for the merit figures for the partial least square discriminant analysis (PLS-DA) model using the Fourier transform near-infrared (FT-NIR) data for the three
different Withania somnifera leaf samples.

Parameters Sample category

WS 101 WS 118 PHPL

Training set Validation set Training set Validation set Training set Validation set

Sensitivity (%) 100 100 100 100 100 100
False negative (%) 0 0 0 0 0 0
Specificity (%) 100 100 100 100 100 100
False positive (%) 0 0 0 0 0 0
Accuracy (%) 100 100 100 100 100 100
Reliability (%) 100 100 100 100 100 100
Latent variables 2 2 2 2 2 2
Root mean square error of calibration 0.07 0.06 0.07
Root mean square error of cross validation 0.07 0.07 0.07
Root mean square error of prediction 0.08 0.07 0.07
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hundred percent sensitivity and 90% specificity were obtained for
the WS 101 validation set samples, while 80% sensitivity and 100%
specificity were obtained for the WS 118 validation set samples.
One hundred percent sensitivity and specificity were obtained for
the validation set of PHPL samples. Fig. 10 illustrates the pre-
dictions of Withania somnifera leaf and root samples by PLS-DA
models.

A one-class model using a DD-SIMCAmethodwas performed for
variety-specific classification of Withania somnifera leaf and root
samples. In these models, we considered performing external
validation using 65%e70% of the target class samples from all
Withania somnifera leaf and root variety samples in the training set
and the remaining samples in the validation set. The acceptance
plots for the training and test sets are shown in Figs. S14 and S15.
For the leaf samples, 100% sensitivity and specificity were obtained
for all three varieties of samples. However, in the case of the root
samples, 96%, 96%, and 100% sensitivity were obtained for the WS
101, WS 118, and PHPL samples, respectively, with a specificity of
100% in all cases. The summary of DD-SIMCA performance is pre-
sented in Tables S11 and S12.

The RF classification of Withania somnifera leaf samples
(Fig. S16A and Table S13) provided 100% accuracy. In the case of
Withania somnifera root samples, one sample is misclassified with
a classification performance of 94.28% having an OOB of 0.00952
(Fig. S16B and Table S14). Furthermore, a supervised KNN model
was used for the classification of leaf and root samples of three
Table 4
Calculated values for the merit figures for the partial least square discriminant analysis (P
different Withania somnifera root samples.

Parameters Sample category

WS 101

Training set Validation set

Sensitivity (%) 100 100
False negative (%) 0 0
Specificity (%) 100 90
False positive (%) 0 10
Accuracy (%) 100 90
Reliability (%) 100 90
Latent variables 8 8
Root mean square error of calibration 0.11
Root mean square error of cross validation 0.17
Root mean square error of prediction 0.25
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varieties of Withania somnifera. Initially, the complete model
(built with 1,557 variables obtained in the FT-NIR) did not perform
well. RF classification, which used 23 variables (less than 2% of the
original number of variables) for root samples and 15 variables for
leaf samples, gave better results for all the samples analyzed. In
this case, we considered all 105 samples for the analysis. A total of
30%e40% of samples (31 of 105 root samples and 37 of 105 leaf
samples) were randomly selected for model validation, i.e., the
test set. Seventy-four out of 105 root samples and 68 of 105 leaf
samples were considered as the training set. Factor K ¼ 10 was
used for classification in the region of 7,500 to 4,300 cm�1. The
model classified all samples correctly with 100% sensitivity and
specificity, and there were no cases of false-positives or false-
negatives. The corresponding results are presented in Tables S15
and S16.

3.4. Classification models of adulterants

Adulteration of materials by blending one GI with another or
mixing different species/parts of the same plant is a major issue in
natural medicines. Such activities are economically motivated and
a form of fraud. Rapid screening methods may find possible so-
lutions to these authenticity problems in terms of detection. For
geographic origin prediction, pure Lakadong turmeric samples
were blended with another GI type (Sangli turmeric and com-
mercial turmeric samples). PLS-DA models were built on spectral
LS-DA) model using the Fourier transform near-infrared (FT-NIR) data for the three

WS 118 PHPL

Training set Validation set Training set Validation set

100 80 100 100
0 20 0 0
100 100 100 100
0 0 0 0
100 80 100 100
100 80 100 100
8 8 8 8
0.09 0.08
0.13 0.10
0.24 0.11



Fig. 10. Partial least square discriminant analysis (PLS-DA) prediction of three different varieties of Withania somnifera samples: (A) leaf samples and (B) root samples.

Fig. 11. Partial least square discriminant analysis (PLS-DA) prediction of pure and blended samples: (A) Lakadong turmeric samples blendedwith Sangli turmeric and commercial turmeric
samples, (B) Ocimum basilicum samples blended with Hybrid tulsi and commercial Ocimum samples, and (C) Withania stem samples blended with leaves and root samples.

S. Khan, A.K. Rai, A. Singh et al. Journal of Pharmaceutical Analysis 13 (2023) 1041e1057
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profiles obtained from these samples. All three prediction models
were correctly classified pure and blended turmeric samples with
100% sensitivity and specificity having 0% TFP and TFN (Fig. 11A).
The corresponding merit values are presented in Table 5. For
species-specific adulteration identification, Ocimum basilicum
samples were blended with Hybrid tulsi samples and commercial
Ocimum samples. PLS-DA models were built on spectral profiles
obtained from these samples. Fig. 11B represents the class of PLS-
DA prediction models for pure Ocimum basilicum samples, Oci-
mum basilicum samples blended with commercial Ocimum sam-
ples, and Ocimum basilicum samples blended with different
Ocimum species (Hybrid tulsi). All three prediction models were
correctly classified pure and blended Ocimum samples with 100%
sensitivity and specificity having 0% TFP and TFN (Table 5). For the
identification of authentication in terms of plant tissue-specific
parts, Withania somnifera leaf and root samples were considered
by blending stem samples with leaf and root samples. The most
widely used adulteration method is mixing other portions of the
same plant tissue, such as stem samples of Withania somnifera.
PLS-DA prediction models were built on spectral profiles of
Withania somnifera leaf samples blended with stem samples
(Fig. S17A), root samples blended with stem samples (Fig. S17B)
and pure stem samples blended with root and leaf
samples (Fig. 11C). The PLS-DA class models correctly predicted
the pure tissue-specific samples from blended samples with 100%
specificity and sensitivity having 0% TFP and TFN. Furthermore, in
addition to multivariant PLS-DA class prediction models, one class
classifier model of DD-SIMCAwas performed to authenticate pure
turmeric, Ocimum, and Withania somnifera root and leaf samples
from the corresponding blended samples. In these models, pure
samples were considered as the training set and tested with the
corresponding blended samples. The corresponding acceptance
plots for training sets, validation sets, and extreme plots are pre-
sented in Fig. 12. The DD-SIMCA models classified pure turmeric
samples (Fig. 12A), pure Ocimum samples (Fig. 12B), and tissue-
specific pure Withania somnifera leaf, root (Figs. 12C and D), and
stem samples (Fig. S18) from their corresponding blend samples
with 100% sensitivity and specificity (Tables S17 and S18).

4. Conclusions

The global use of alternative medicines, especially herbal
medicines, is rapidly expanding and becoming increasingly pop-
ular. Methods to evaluate the efficacy and safety of herbal medi-
cines are described as major needs by the WHO. Traditionally,
discrimination of herbal medicines is carried out based on
morphology and the targeted chromatographic analysis of a few
specific compounds. However, the quality of herbal medicines
should not be limited to a few specific secondary metabolites but
rather the entire content of biologically relevant compounds
within a plant. The development and validation of integrated
approaches with rapid and nondestructive analytical strategies for
the screening of medicines are of utmost importance. The po-
tential of FT-NIR spectroscopy in combination with chemometric
modelling to identify geographic origin-, species-, and variety-
specific variation was investigated in this study. The results
demonstrate that FT-NIR spectroscopy in combination with che-
mometric models can classify GI in turmeric samples and species-
and variety-specific variation in Ocimum and Withania somnifera
samples. Supervised classification models using PLS-DA, KNN, and
RF tests can be used to assess the quality, GI, and authenticity of
medicinal herbs. The results obtained in this study indicate that
FT-NIR spectroscopy is a very promising tool for the identification
of GI-, species-, and variety-specific vegetation samples and could
be used for rapid authentication and quality control in the herbal



Fig. 12. Data driven-soft independent modelling of class analogy (DD-SIMCA) classification of pure and blended samples: (A) Lakadong turmeric samples blended with commercial
and Sangli turmeric samples, (B) Ocimum basilicum samples blended with commercial Ocimum samples and Hybrid tulsi samples, (C) PHPL leaf samples blended with stem samples,
and (D) PHPL root samples blended with stem samples. The acceptance plot for training set provides a graphic representation of the acceptance area, the area inside the blue curve
with the threshold for a ¼ 0.01 and the red line is the outlier cut-off with threshold g ¼ 0.01. Authentic samples falling outside the blue curve were considered extremes represented
with orange box. No extreme samples were found in all cases. v: orthogonal distance of individual samples; v0: mean orthogonal distance of training samples; h: score distance of
individual samples; h0: score distance of training samples.

S. Khan, A.K. Rai, A. Singh et al. Journal of Pharmaceutical Analysis 13 (2023) 1041e1057
pharmaceutical industry for the classification of turmeric, Oci-
mum, and Withania somnifera samples.
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