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Innate immunity is regulated by a broad set of evolutionary conserved receptors to finely
probe the local environment and maintain host integrity. Besides pathogen recognition
through conserved motifs, several of these receptors also sense aberrant or misplaced
self-molecules as a sign of perturbed homeostasis. Among them, self-nucleic acid sensing
by the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway
alerts on the presence of both exogenous and endogenous DNA in the cytoplasm. We
review recent literature demonstrating that self-nucleic acid detection through the STING
pathway is central to numerous processes, from cell physiology to sterile injury, auto-
immunity and cancer. We address the role of STING in autoimmune diseases linked to
dysfunctional DNAse or related to mutations in DNA sensing pathways. We expose the
role of the cGAS/STING pathway in inflammatory diseases, neurodegenerative conditions
and cancer. Connections between STING in various cell processes including autophagy
and cell death are developed. Finally, we review proposed mechanisms to explain the
sources of cytoplasmic DNA.
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GRAPHICAL ABSTRACT | Illustration of the diversity of processes triggering self-DNA mediated cGAS/STING activation and subsequent pathways involved in the
immune regulation of various conditions.
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INTRODUCTION

Supported by Charles Janeway’s central model of innate
immunity based on pathogen recognition through conserved
motifs (1), host detection of pathogen-derived nucleic acids by
pathogen recognition receptors (PRRs) is a common and
effective strategy to sense invading microorganisms and initiate
innate and adaptive immune responses (2). PRRs are also
involved in context-dependent recognition of self-nucleic acids,
either nuclear DNA (nDNA) or mitochondrial DNA (mtDNA)
(3–6). This is in line with Polly Matzinger’s model proposing that
in numerous instances what ultimately matters for a host is to
detect danger independently of its external or internal origin to
mount an immune response. Cell stress or damage results in the
production and/or the release of host-derived danger signals (7).
Apart from mitosis, cell DNA is confined within the nucleus or
mitochondria. DNA in the cytoplasm, from microbial origin (e.g.
following viral or bacterial infection) or from the host own
genetic material, informs of a potentially deleterious situation
and the latter constitutes an endogenous danger signal.

Among PRRs involved in self-nucleic acid recognition, an
increasing interest has emerged for STimulator of Interferon
Genes (STING), also known as TMEM173, MPYS or MITA (6,
8–10). STING is an endoplasmic reticulum (ER)-located PRR,
which does not directly bind to DNA. Its activating ligands are
cyclic dinucleotides (CDNs). CDNs are produced as second
messengers by microorganisms (11, 12) or synthesized by the
enzyme cyclic GMP-AMP synthase (cGAS) in response to
binding either host- or pathogen-derived cytosolic double-
stranded (ds)DNA (6, 13–15). While displaying no apparent
DNA sequence specificity (16), cGAS activity is limited by spatial
distribution of its substrate as well as its degradation by host
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DNases. cGAS binds to nDNA (17) or mtDNA (18) that can be
continuous, fragmented or supercoiled (17). Crystal structure
analysis of mouse cGAS revealed that it functions as a dimer,
with each protein catalytic domain binding to an 18 base pairs
(bp) double-stranded (ds) DNA at two different sites, forming a
2:2 complex (19, 20). While initially described as a cytoplasmic
protein, a recent study found that cGAS binds to the inner leaflet
of the plasma membrane to regulate its activity and prevent
overactivation from genotoxic stress (21). Other studies
proposed that cGAS resides predominantly in the nucleus of
various mouse and human cell lines, as well as human peripheral
blood mononuclear cells (PBMC)-derived macrophages and
dendritic cells (22, 23). However, its baseline activation in the
nucleus is prevented by poorly accessible nucleosomal state of
nDNA (20, 22, 24). Thus, cGAS cellular localization appears
unclear and additional studies are required.

DNA binding to cGAS triggers ATP and GTP conversion into
cyclic guanosine monophosphate–adenosine monophosphate
(cGAMP). cGAMP is the canonical CDN that binds and
activates STING (Figure 1). cGAMP binding to STING elicits
a conformational shift and its dimerization as well as its
translocation to the ER-Golgi intermediate compartment
(ERGIC). STING dimers recruit TANK-binding kinase 1
(TBK1), which phosphorylates STING on Ser366 to serve as a
docking site for interferon regulatory factor 3 (IRF3) and its
phosphorylation by TBK1. STING also leads to nuclear factor kB
(NF-kB) activation. IRF3 and NF-kB transcription factors
induce the production of type I interferons (IFNs) and other
cytokines involved in host immune responses (6, 8, 25, 26).
Interestingly, recent studies showed that STING stimulation can
also lead to type III IFN production (also known as IL-28/IL-29
or IFN-l) (27–29). Besides its roles in the regulation of gene
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expression, STING induces non-canonical autophagy through its
direct interaction with the microtubule-associated protein light
chain 3 (LC3), a key initiator of autophagy that cycles between
the nucleus and cytoplasm (25, 30–32). Importantly, STING-
induced autophagy mediates the clearance of cytosolic DNA (30).
STING also regulates various cell death processes including
lysosomal cell death (33), apoptosis (34) and necroptosis (35). Of
note, in addition to cGAS, other cytosolic receptors (e.g. DDX41,
IFI16) can sense DNA or CDNs and activate STING (36, 37). The
cGAS/STING pathway is important to control viral and bacterial
pathogen infection (38, 39) as well as for immune surveillance (40,
41). STING is ubiquitously expressed in a variety of tissues
including lungs, liver, kidney, heart and spleen (8). STING is
expressed in both innate and adaptive immune cells (e.g.
macrophages (8), dendritic cells (8), natural killer cells (42), CD4+

and CD8+ T lymphocytes (43) and B lymphocytes (44). It is also
expressed by nonhematopoietic-derived cells including endothelial
cells (45), epithelial cells (46) and neurons (47).
Frontiers in Immunology | www.frontiersin.org 3
Here, we detailed known mechanisms to explain DNA
access to the cytoplasm, briefly review STING allelic variants
and then focus on STING biology in the context of self-DNA
sensing associated with autoimmunity, cancer or sterile
inflammatory settings.
DNA ACCESS TO CYTOPLASM

Host DNA, which resides within the nucleus or mitochondria,
may be released into the cytoplasm following numerous
processes, including genomic DNA instability, mitochondrial
stress and endosomal/lysosomal rupture (Figure 2). For
instance, nDNA-containing micronuclei rupture (17, 48) and
mitochondrial stress (49–52) lead to DNA release in the
cytoplasm and cGAS activation. MtDNA stress elicited by
mitochondrial transcription factor A (TFAM) deficiency
induces its release into the cytosol and activates the cGAS/
FIGURE 1 | Self-DNA-mediated activation of the cGAS/STING pathway.
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STING pathway leading to type I IFN-dependent interferon
stimulated genes (ISGs) expression and increased antiviral
capacity (26). DsDNA from dying cells stimulates STING
pathway in surrounding cells, suggesting that extrinsic
phagocytic DNA improperly processed within lysosomes access
the cytosol (53, 54). The mechanisms by which self-DNA from
neighboring cells becomes accessible for intracellular DNA
sensors remain uncertain. Several context-dependent pathways
have been reported, such as IgG- or HMGB1-bound DNA
internalization following interaction with FcgRIIa or receptor
for advanced glycation end products (RAGE), respectively (55).
The antimicrobial peptide LL37 was shown to transport
extracellular DNA into the cytoplasm of human primary
monocytes triggering STING activation (56). IL-10-family
member IL-26 binds to genomic, mtDNA or neutrophil
Frontiers in Immunology | www.frontiersin.org 4
extracellular traps (NETS) DNA and traffic them into the
cytosol of human myeloid cells activating STING (57).
Radiotherapy-induced cytosolic dsDNA accumulation in
cancer cells activates the cGAS/STING pathway to promote
type I IFN production-dependent protective effect, notably by
recruiting BATF3-dependent DCs (58). It was shown that
exosomes-containing DNA from cancer cells can be
transferred to the cytoplasm of DCs (58).

Besides chemotactic properties following their binding to
chemokine receptors (CXCR), several chemokines display
other functions. In particular, CXCL4 and CXCL10 have been
shown to activate endosomal TLR9. CXCL4 binds to self and
foreign DNA to form liquid crystalline complexes amplifying
TLR9-mediated IFN-a production in systemic sclerosis (59).
Neutrophil-derived CXCL10 binds to commensal skin
FIGURE 2 | Proposed mechanism for self-DNA access to the cytoplasm. Mitochondrial stress-induced membrane permeability with mitochondrial DNA (mtDNA)
leakage and chromosomal instability/senescence lead to micronucleus formation from incomplete segregation of chromatin and micronucleus rupture induces
cytosolic nuclear DNA (nDNA). Multiples pathways lead to self-DNA internalization within endosomal structures and we believe that endosomal pathway perturbation
leads to cytosolic delivery of DNA and cGAS/STING pathway activation. Apoptotic bodies engulfment may enable self-DNA delivery in the cytoplasm. The
antimicrobial peptide LL37 and IL-26 bind to genomic DNA and induce its translocation within endosomes and/or in the cytoplasm. CXCL4- and CXCL10-DNA
complexes as well as cell surface receptors FcgRIIa or receptor for advanced glycation end products (RAGE) bind to IgG- or HMGB1-bound DNA, respectively, and
may lead to cGAS activation upon cytosolic DNA release. DNA-containing exosomes constitute another source of cGAS activation. Finally, cGAMP enters the cell
from neighboring ones through gap junctions to directly activate STING.
October 2021 | Volume 12 | Article 753789
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microbiota DNA and triggers TLR9/type I IFN-dependent innate
repair responses in injured skin (60). It remains to be determined
whether CXCL4- or CXCL10-DNA complexes can activate
intracellular sensors such as cGAS.

cGAMP transfer from producing cells to neighboring ones
through gap junctions promotes STING activation and antiviral
immunity independently of type I IFN signaling (61). cGAS-
derived cGAMP in tumor cells diffuses to neighboring non-
cancerous cells through gap-junction channels to activate
STING, contributing to the recruitment of protective tumor-
infiltrating immune cells such as NK cells (62).
STING ALLELIC VARIANTS

There are several STING allelic variants in the general
population (63). The most commons are R232H and R71H-
G230A-R293Q (HAQ). Their prevalence varies among ethnic
populations. On average, about 15% and 20% of worldwide
population carries at least one copy of R232H or HAQ
variants, respectively (63–65). Alterations in STING biology
induced by these point mutations are not fully clear and
apparent discrepancies have been reported. Using ectopic
overexpression systems, human HAQ variant exhibited a
decreased response to exogenous CDNs (63) while its response
to 2’3’cGAMP was either normal (63) or absent (64). STING
R232H showed reduced responsiveness to most exogenous
CDNs although its response to 2’3’cGAMP was relatively
normal (63, 64) or reduced (66). Interestingly, it was shown
that R293Q STING variant displays protective effects against
obesity-associated cardiovascular disease (67) and tobacco-
induced aging-associated diseases (68). In contrast, gain-of-
function point mutations in the gene encoding STING (e.g.
V155M) are responsible for STING-associated vasculopathy
with onset in infancy (SAVI), a rare inflammatory and
autoimmune condition (69, 70).
STING AND AUTOIMMUNE OR
AUTOINFLAMMATORY DISEASES

STING-Associated Vasculopathy With
Onset in Infancy
In 2014, it was discovered that point gain-of-function mutations in
TMEM173 (i.e. N154S, V155M, and V147L) from six unrelated
children cause SAVI (69). SAVI is an autoinflammatory disease
with early-onset systemic inflammation, cutaneous vasculopathy
and interstitial lung disease (69, 71). Children PBMCs display
constitutive STING activation, leading to higher transcription
baseline for IFNB1, IL6 and TNF as well as ISGs such as
CXCL10 as compared to PBMCs from healthy controls. In
contrast, baseline and cGAMP-induced transcription levels of
IFNA4, IFNG and IL1B were similar between patients and
controls (69). The same year, V155M point mutation in STING
was also found in patients with familial lupus-like phenotypes (70).
STING mutant spontaneously localizes in the Golgi of patient
Frontiers in Immunology | www.frontiersin.org 5
fibroblasts and is constitutively active in the absence of exogenous
2′3′-cGAMP in vitro (70).

Two STING knock-in mouse strains corresponding to
mutations found in SAVI patients have been generated.
Heterozygous V154M STING (equivalent to V155M in
patients) and heterozygous STING N153S (equivalent to
N154S in patients) mouse strains both display severe combined
immunodeficiency disease (SCID) phenotype and thymocytes
impairment at early stages (72–74). Interestingly, STING N153S-
associated lung disease is T lymphocyte-dependent but does not
require IRF3/IRF7 nor type I IFN signaling (75). STING-
associated vasculopathy also develops independently of IRF3 in
mice (73).

Bloom Syndrome
Bloom syndrome is a rare autosomal recessive genetic disorder
caused by mutations in the BLM gene encoding BLM RecQ–like
helicase (76), which maintains DNA stability during cell
replication. BLM protein deficiency or lack of protein activity
leads to increased mutations. Bloom syndrome is characterized
by short stature, cancer predisposition, genomic instability and
accumulation of micronuclei. A recent study showed that BLM-
deficient fibroblasts display constitutive ISGs up-regulation in a
cGAS/STING/IRF3-dependent mechanism (77). Further
investigation are required to determine the exact contribution
of the STING pathway in Bloom syndrome.

Multiple Sclerosis
Multiple sclerosis (MS) is a demyelinating condition that can
affect both the brain and spinal cord. It was shown that STING
activation attenuates experimental autoimmune encephalitis
(EAE) utilized as an MS model by attenuating effector T cell
infiltration and inducing a dominant T regulatory (Treg)
response (78). Systemic treatments with DNA nanoparticles or
CDNs activate the STING/type I IFN pathway enhancing
indoleamine 2,3 dioxygenase (IDO) enzyme activity in
dendritic cells promoting Treg cells (78). Another study
showed that FDA-approved antiviral drug ganciclovir (GCV)
induces a STING-dependent type I IFN response inhibiting
inflammation in cultured myeloid cells and in EAE model (79).
Together, STING pathway appears to be an important regulator
of microglial reactivity and neuroinflammation with possible
beneficial therapeutic effects for MS patients.

Type I Diabetes
Type 1 diabetes (T1D), sometimes referred to as juvenile
diabetes, is caused by the destruction of pancreatic beta cells
resulting in insufficient amount of insulin and hence elevated
blood sugar levels. High glucose environment increases ROS
production, triggering mitochondrial stress and mtDNA release
in retinal cells and activating the cGAS/STING pathway leading
to IRF3 activation via ERK1/2-Akt-tuberin - mechanistic target
of rapamycin (mTOR) dependent pathways (49). Treatments
with DNA nanoparticles or cGAMP attenuate type I diabetes
progression in non-obese diabetic (NOD) female mice by
inducing type I IFN-dependent IDO activity which promotes
Treg cell function and therefore limits autoimmunity (80). It was
October 2021 | Volume 12 | Article 753789
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further shown that TBK1 in monocytes from type 1 diabetes
patients is important for IFN-a production in response to CpG
DNA stimulation (81).

Dysfunctional DNase and Autoimmune
Diseases
An expected consequence of self-DNA-triggered immunity is
tolerance breakdown and autoimmunity (82, 83). Host
cytoplasmic DNA sensing is typically prevented since it is
usually restricted to the nucleus and mitochondria. However,
multiple situations lead to the presence of misplaced DNA and
autoimmunity can result from failure to properly dispose it
through DNAse activity. Besides cell extrinsic DNAse I,
mammalian cells express the endonuclease DNase II and the
exonuclease TREX1/DNase III located within lysosomes and in
the cytosol in an ER tail-anchored manner, respectively. In
human, loss-of-function mutations in TREX1 trigger
autoimmune diseases, such as Aicardi–Goutières syndrome
(AGS), systemic lupus erythematosus (SLE), familial chilblain
lupus (FCL), and retinal vasculopathy with cerebral
leukodystrophy (RVCL) (84, 85). Recent data suggest that
STING pathway may be involved in these autoimmune
diseases linked to dysregulated nucleases activity (84).

Aicardi-Goutières Syndrome
Aicardi-Goutières syndrome (AGS) is a neuroinflammatory
autoimmune disease triggered by mutations in genes encoding
nucleotide-processing proteins. Trex1-deficient mice succumb
from systemic inflammation during early adulthood (86, 87)
whereas DNase II-deficient mice are embryonic lethal (88).
Interestingly, lethality observed in both Trex1 or Dnase II-
deficient mice is rescued by crossing these mice to either cGas or
Sting-deficient mice (54, 89). It was shown that STING-mediated
type I IFN production in Trex1-deficient mice occurs first in
nonhematopoietic cells, which trigger T and B lymphocytes-
mediated inflammation and autoantibody production (90).

RNase H2 is essential to remove ribonucleotides incorporated
in genomic DNA during replication. Defective RNase H2 leads to
AGS by promoting self-nucleic acid accumulation leading to
chronic type I IFN production. A knock-in mouse strain
containing an RNase H2 AGS mutation (G37S) shows
perinatal lethality. This phenotype is partially rescued when
these mice are crossed with Sting-deficient mice (91),
confirming that STING signaling pathway is involved in AGS.
Using in vitro RnaseH2a G37S/G37S mouse embryonic
fibroblast (MEF) cell cultures, the authors confirmed that the
cGAS/STING pathway triggers type I IFN and ISGs upregulation
(91). The exact mechanism by which defective RNase H2 leads to
cGAS activation remains to be determined.

Systemic Lupus Erythematosus
Systemic lupus erythematosus (SLE) development is classically
linked to endosomal toll like receptor (TLR) 7 and TLR9 nucleic
acid sensors engagement and the role of the cGAS/STING pathway
remains elusive. PBMCs from SLE patients express high levels of
cGAS (92). Itwas recently shown that in contrast to healthy donors,
Frontiers in Immunology | www.frontiersin.org 6
mostmonocytes from lupus patients produce IFN-a following 2’3’-
cGAMP stimulation and the frequency of IFN-a producing
monocytes positively correlates with SLE disease activity (93).
Interestingly, mTOR inhibition suppressed STING upregulation
and IFN-a production in lupus monocytes (93). In mice, Fas-
deficient lupus-prone MRL/Mp-lpr/lpr mice display systemic
autoimmunity, massive lymphadenopathy, arthritis and immune
complex glomerulonephrosis starting at about threemonths of age.
Crossing these lupus-prone mice with Sting-deficient mice
significantly increases autoimmunity and shortens lifespans (94).
The authors further show that STING-mediated protection is IRF3-
independent (94). Furthermore, TLR-dependent systemic
inflammation following 2,6,10,14-tetramethylpentadecane
(TMPD) stimulation is exacerbated by STING deficiency which
results in increased levels of pro-inflammatory cytokines and
elevated numbers of myeloid cells (94).

Familial Chilblain Lupus
Familial chilblain lupus is a rare autosomal dominant form of
cutaneous lupus erythematosus occurring mainly in young
children, due to mutations in the TREX1 gene as well as in
mutations within SAMHD1 or TMEM173 in rare cases (95, 96).
In particular, G166E heterozygous mutation in TMEM173 was
found in five patients with familial chilblain lupus resulting in
constitutive type I IFN production, for which the Janus kinase
(JAK) inhibitor tofacitinib showed promising results (95).
CGAS/STING IN INFLAMMATORY
DISEASES

Fibrosis
STING pathway has been linked to the regulation of fibrotic
processes in various tissues. Idiopathic pulmonary fibrosis (IPF)
is characterized by progressive lung scarring punctuated by life-
threatening acute exacerbations causing shorter life expectancy and
ahighmortality rate (97–99). It is believed that the physiopathology
relies on repetitive localmicro-injuries leading toDNAdamage, cell
death and finally to an aberrant repair with deposition of
extracellular matrix components and fibrosis (97–100). Using the
classical murine model of human IPF by airway exposure to
bleomycin (BLM), we published recently that STING deficiency
leads to increased lung fibrosis in an unexpected type I IFN-
independent manner indicating that STING plays a protective
role in limiting experimental lung fibrosis (101). In line with our
findings, a recent study in IPF patients showed that STING
expression in PBMC decreases during acute exacerbation. STING
protein levels post-treatment increased in patients showing clinical
improvement but remained low in patients displaying clinical
deterioration, strongly suggesting a benefic role of STING in IPF
(102). Of note, elevated plasma mtDNA copy numbers in IPF
patients predict death (103). A protective role of STING against
fibrosishas also been shown is amodelof chronicpancreatitis (104).
Authors showed that STING deficiency promotes Th17
polarization and IL-17A production therefore pancreatic
inflammation and fibrosis (104).
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On the other hand, Susztak et al. showed that patients
suffering from chronic kidney disease (CKD) display defective
mitochondrial integrity and further linked mtDNA release,
STING activation and renal fibrosis (50). STING expression
is upregulated in human and mouse hypertrophic hearts and
STING deficiency leads to decreased inflammation and fibrosis
in an ER stress-associated process (105). Inflammation-driven
liver fibrosis upon carbon tetrachloride (CCl4) administration
is a well-established model of chronic liver disease. It was
shown that STING/IRF3 pathway mediates hepatocyte death
and fibrosis independently of TLR and type I IFN signaling
(106). Of note, the same group showed that STING is activated
by alcohol-induced ER stress to trigger IRF3-dependent
hepatocyte apoptosis, independently of type I IFN signaling
(107). Chronic silica particles inhalation triggers silicosis, a
lung disease with progressive interstitial fibrosis and increased
risk of cancer. It was shown that airway silica exposure induces
both nDNA and mtDNA release and STING-dependent type I
IFN responses. Sting-deficient mice displayed significantly
attenuated lung inflammation (108) . Thus, STING
contribution to fibrosis appears highly context/organ
dependent and further studies are required to delineate the
molecular mechanisms involved.

Obesity-Related Diseases
Chronic sterile inflammation in obesity and related metabolic
diseases such as type 2 diabetes, nonalcoholic fatty liver disease
(NAFLD) and cardiovascular disease have been widely
demonstrated (109). A number of studies recently showed that self-
DNA sensing, either nuclear ormitochondrial, plays important roles
in these pathologies. Obesity promotes mtDNA release into the
cytosol of adipocytes, which leads to cGAS-STING-mediated
inflammation (51). Using methionine/choline-deficient diet
(MCD) or high-fat diet (HFD) as murine models of non-alcoholic
steatohepatitis (NASH), it was shown that STING/IRF3 pathway
promotes hepatocyte injury and dysfunction by inducing
inflammation and apoptosis as well as by disturbing glucose and
lipid metabolism (110). Sting-deficient mice display reduced HFD-
induced adipose tissue inflammation and insulin resistance (111).
However, the cell subset(s) involved remain(s) unclear. A recent
study confirmed that STING deficiency attenuated steatosis, fibrosis,
and inflammation using both MCD and HFD murine models (52).
However, they pointed out that in contrast to IRF3, several studies
including theirs reported that STING protein is not expressed in
hepatocytes of adult humans or mice. They showed that hepatocytes
from HFD-fed mice release mtDNA which activates STING in
Kupffer cells leading to TNF-a and IL-6 productions and
pathology (52). The role of STING in hematopoietic-derived cells
in driving HFD-induced NAFLD has been confirmed by bone
marrow transfer experiments (112). However, STING role in non-
immune cells has also been confirmed. Adipose tissue chronic
inflammation and metabolic stress in obesity induce endothelial
inflammation, which plays a key role in insulin resistance. Obesity-
related increase in free fatty acid induces mitochondrial damage and
mtDNA release, which activates the cGAS/STING pathway leading
to IRF3-dependent upregulation of ICAM-1 expression and
endothelial inflammation (111).
Frontiers in Immunology | www.frontiersin.org 7
Myocardial Infarction
An elegant study showed that ischemic cell death and cell debris
uptake by cardiac macrophages lead to cGAS/STING pathway
activation and IRF3-mediated type I IFN production (113). As
compared to WT relatives, myocardial infarction induction in
Sting-deficient mice leads to decreased Ifnb1 expression and a
strong drop in Cxcl10, Irf7, and Ifit1 expressions (113). In contrast
to about 50% mortality in WT mice, Irf3- or type I IFN receptor
(Ifnar)-deficient mice showed virtually complete protection,
whereas Cgas-deficient mice displayed partial protection and
Sting-deficient mice did not reach statistical difference (113).
These data suggest that other innate immune sensors are
involved in IRF3 activation after myocardial infarction.

Upon myocardial infarction, cGAS induces iNOS and CXCL10
upregulation but not pro-inflammatory mediators such as IL-1b,
IL-18, TNF-a and IL-6 (114). Cgas-deficient mice display higher
regulatory capacities, including M2-like macrophages and
myofibroblasts in the region bordering the myocardial
infarction. cGAS deficiency also protects against myocardial
infarction-induced adverse ventricular remodeling and rupture
and enhances tissue repair in the infarct region (114). Of note, it
was suggested that cGAS-mediated autophagy protects the liver
from ischemia-reperfusion injury independently of STING (115).

COPD
Chronic obstructive pulmonary disease (COPD) is a major health
issue primarily caused by cigarette smoke (CS) inhalation. It is
characterized by chronic bronchitis and emphysema, i.e. long-term
inflammation of the airways and irreversible destruction of the
alveolar cell wall, respectively (116). Using an acute model of CS
exposure inmice, we showed that CS increases self-DNAcontent in
the alveolar space driving cGAS/STING-dependent neutrophilic
influx and inflammatory response (117). DNAse I treatment
reduces CS-induced lung inflammation by limiting deleterious
effects of neutrophil extracellular traps (NETs) for instance in
terms of protease expression (118). In contrast, sub-chronic CS
exposure induces a reduction of STING lung expression impeding
subsequent response to infection (119) and COPD patients display
lower pulmonary IFN-b expression (120). Lower IFN levels might
in part contribute to the poor immune response to infection
developed by COPD patients during exacerbation phases.
CGAS/STING IN NEURODEGENERATIVE
DISORDERS

Over the past few years, a number of important studies showed
potential strong involvement of the cGAS/STING pathway in
neuroinflammatory processes and neurodegenerative disorders.
STING regulates steady-state and nerve injury-triggered
nociception through its signaling in sensory neurons (121).
Intrathecal injection (i.e. into the spinal canal) of STING
agonists leads to robust antinociception in mice and non-
human primates (NHPs) in a type I IFN-mediated signaling on
peripheral nociceptors (121). Sting or Ifnar-deficient mice
exhibit hypersensitivity to nociceptive stimuli and increased
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Couillin and Riteau STING Response to Self-DNA
nociceptor excitability. The exact mechanism of STING
activation at steady state and following nerve damage remains
to be determined, potentially implying cell death and self-
DNA sensing.

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative
disease of the central nervous system (CNS) causing progressive
loss of muscle control and often characterized by a cytotoxic
accumulation of TAR DNA-binding protein 43 (TDP-43). TDP-
43 accumulation in the mitochondria induces DNA leakage and
cGAS/STING pathway activation promoting inflammatory
signaling and pathology (122). Using mouse models to
investigate Parkinson’s disease (PD) inflammatory profile,
Sliter et al. showed that inflammation in Parkin-/- and Pink1-/-

mice undergoing exhaustive exercise is linked to mtDNA leakage
and rescued in the absence of STING (123). Serum/
glucocorticoid related kinase 1 (SGK1) is upregulated in the
brains of patients with various neurodegenerative disorders such
as PD and pharmacological inhibition of SGK1 limits NLRP3-
inflammasome- and cGAS-STING-mediated inflammatory
pathways (124). Employing PD mouse models, it was shown
that the neuroprotective agent withaferin A protected against
dopaminergic neuron loss in a STING-dependent manner (125).

The cGAS/STING pathway might also play a role in
accelerated aging and neurodegeneration observed in
Huntington’s disease (HD). Melatonin, a radical scavenger
expressed by neuronal mitochondria, decreases with aging and
neurodegeneration. Melatonin-deficient mice display increased
mtDNA release and activation the cGAS/STING/IRF3 pathway
(126). Exogenous melatonin administration in R6/2 mice as a
genetic mouse model of HD alleviates cGAS/STING-mediated
inflammation (126). STING pathway inhibition may offer
therapeutic benefits in HD by limiting deleterious up-
regulation of inflammatory and autophagy responses (127).
Finally, cGAS/STING activation delayed neurodegeneration in
neonatal hypoxia-ischemia in rats (128), however STING-
mediated protective mechanism remains to be determined.
CGAS/STING IN CANCER

cGAS/STING pathway in cancer settings is under deep
examination in both tumor cells as well as in neighboring
immune and non-immune cells. Most tumors retain cGAS and
STING expression (129) and cancer cell cGAS recognizing
cytosolic DNA produces cGAMP inducing STING-dependent
type-I IFN secretion (130). Acute STING activation is likely to
exhibit type I IFN-mediated anti-tumor effect associated with
cellular senescence and T lymphocyte-dependent immunity. In
more advance stages, chromosomally unstable tumors become
tolerant to chronic cGAS-STING signaling, downregulate
downstream IFN signaling while maintaining alternative
pathways that promote tumorigenesis (129). In mice, STING
deficiency facilitates development of several types of tumors
whereas STING stimulation favors antitumor immunity (41,
131, 132). Cytosolic DNA accumulation can result from
the combined action of the endonuclease MUS81 and
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PARP-dependent DNA repair as shown in prostate cancer
cells, leading to STING-dependent tumor rejection (133). In
contrast, by generating StingS365A/S365A mutant mouse strain that
precisely ablates IFN-dependent activities, Wu et al. showed that
T cells in tumors undergo substantial cell death in part mediated
by IFN-independent STING activities promoting tumor
evasion (134).

cGAS also elicits contrasting outcomes depending on the
context. Carcinoma-derived cGAMP diffuses to astrocyte
through connexin 43 (Cx43) gap junctions leading to STING-
dependent IFN-a production acting in paracrine manner on
metastatic cells to support chemoresistance and tumor growth
through STAT1 activation (135). DNA repair following double-
stranded breaks by homologous recombination prevents
tumorigenesis. DNA damage induces nuclear translocation of
cGAS where it inhibits homologous recombination and therefore
promotes tumor growth (136). A recent publication showed that
efferocytosis blockade by inhibiting MerTK-dependent apoptotic
tumor cell phagocytosis promotes CD8+ T cell-mediated anti-
tumor activity. Apoptotic tumor cells clearance failure leads to
secondary necrosis accompanied with danger signals release.
Among them, ATP and cGAMP activate P2X7 receptor and
STING, respectively, in neighboring CD8+ T cells leading to
enhanced type I IFN production-mediated immune activation
and tumor suppression, especially at early stage (137).

Numerous studies targeting the STING pathway have been
performed to address its potential use as antitumor. Intratumoral
delivery of synthetic CDN derivatives induces STING-dependent
tumor regression as well as metastases rejection and long-lived
immunologic memory in a dose-dependent manner (138, 139).
Intravenous CDN administration also increased survival rate in
mice with acute myeloid leukemia (140). These results and others
indicate potential strong benefit of targeting STING against
different types of cancer. While clinical use of immune
checkpoint blockade to promote anti-tumor immune responses
proved to display tremendous benefit in several types of cancers
(141–143), most patients do not show significant improvement
when these checkpoint inhibitors are given as a monotherapy
and thus require combined chemotherapy (143). Most
chemotherapeutic agents non-specifically target dividing cells by
blocking DNA replication leading to apoptosis (144). Besides a
direct positive effect by killing tumors cells, cytotoxicity and danger
signals induced by chemotherapeutic drugs can enhance the
inflammatory environment and CD8+ T cell activation (145).
Therefore, combining immunotherapy with additional targets
including the cGAS/STING pathway constitutes an intense scope
of investigation, recently reviewed (146). The potential ability of
radiotherapy to enhance immunotherapy constitutes another field
of investigation. While radiation doses above 12-18 Gy induce
DNA exonuclease TREX1 and therefore dampen cGAS activity,
repeated irradiation at lower doses (3 times 8 Gy) does not induce
TREX1 expression and leads to increased type I IFN production
through the cGAS/STING pathway (147). In addition, Trex1
knockdown restores cytosolic dsDNA accumulation and ISG
induction in a mouse model of mammary carcinoma refractory
to immune checkpoint inhibitors (147).
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In summary, cGAS-STING-elicited outcome in cancer is
largely context-dependent. Transient cGAS-STING activation
in innate immune cells may display anti-tumor activity,
whereas sustained activation might induce immune tolerance
and tumor growth. The use of synthetic CDNs together with
anti-cancer immunotherapy may be promising in response to
certain types of cancers (138, 148).
CELLULAR PROCESSES

STING and Autophagy
Autophagy is a phylogenetically conserved catabolic process
induced by numerous endogenous (e.g. nutrient deprivation)
or exogenous (e.g. infection) cellular stress conditions aiming to
either promote cell survival or apoptosis of senescent cells (149).
Autophagy induction by STING has been first identified in the
context of bacterial infection. Authors showed that M.
tuberculosis DNA recognition induces STING-dependent
targeting of bacteria and autophagy-mediated resistance to
infection (31). More recent studies suggest that STING-
dependent autophagy regulation may have evolved before type
I IFN induction. In invertebrates such as the sea anemone
Nematostella vectensis, STING protein does not harbor the two
C-terminal tail (CTT) domains critical to activate IRF3 but
effectively induces autophagy (30). STING triggers autophagy
in a TBK1- and type I IFN-independent manner (32). Upon
activation, STING binds to the autophagy inducing protein LC3
promoting both autophagy and STING degradation (32),
therefore regulating STING-mediated immune activation.
cGAMP binding induces STING translocation to the
endoplasmic reticulum-Golgi intermediate compartment
(ERGIC) and the Golgi. STING-containing ERGIC serves as a
membrane source for LC3 lipidation and autophagasome
formation. This form of autophagy, important for the
clearance of cytosolic DNA, is mediated by autophagy-related
gene 5 (ATG5) and Trp-Asp (W-D) repeat domain
phosphoinositide-interacting protein (WIPI2) (30). Furthermore,
cGAS protects hepatocytes by triggering autophagy independently
of STING in mouse models of ischemia-reperfusion (115).

Cell death following replicative crisis is a senescence-
independent process important to prevent oncogenic
transformation of pre-cancerous cells with disrupted cell cycle
checkpoints. It was shown that cytosolic DNA activates the
cGAS/STING pathway to promote macroautophagy and
autophagic cell death (150). Of note, STING signaling is
negatively regulated by p62/SQSTM1-dependent autophagy
pathway activated by TBK1 (151).

Circulating mtDNA levels and STING activation profile are
increased in sepsis-induced acute lung injury (ALI) patients
(152). In a mouse model of sepsis, mtDNA-triggered STING-
mediated IFN production interferes with autophagy by
preventing lysosomal acidification and thus worsens pathology
(152). STING-dependent autophagy upregulation observed in
the striatum of HD patients favors brain damage (127).
Radiotherapy-induced mtDNA release facilitates cGAS/STING
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activation and type I IFN-mediated antitumor responses and
autophagy induction limits this effect (153). Patients with breast
cancer showing increased genetic autophagy signature in the
tumor microenvironment display slightly decreased survival
prognostic, inversely correlating with mitochondrial abundance
and type I IFN signaling (153).

CGAS/STING and Cell Death
There is a finely regulated and context-dependent cross-talk
between several cell death processes and the cGAS/STING
pathway. The latter is often inhibited during apoptotic
processes to limit inflammation. During cell intrinsic
apoptosis, mitochondrial outer membrane permeabilization
(MOMP) leads to mtDNA release but concomitantly to
caspase-9 and caspase-3 which display immunosuppressive
function by repressing the cGAS/STING/type I IFN pathway
(154, 155). It was recently shown that caspase-9 and caspase-3
directly cleave cGAS and IRF3 to limit STING activation and
deleterious inflammation (156). In contrast, cGAS-STING
pathway initiates certain form of programmed cell death.
Nucleosomes competitively inhibit DNA-dependent cGAS
activation during regular mitotic processes. However, during
mitotic arrest limited cGAS activation leads to mild STING-
dependent IRF3 phosphorylation triggering mitotic aberrations
and transcription-independent induction of apoptosis (157). In
addition, host restriction factor SAMHD1 limits human T cell
leukemia virus type 1 infection of monocytes via STING-
mediated apoptosis and viral products interact with STING to
trigger an IRF3-Bax complex leading to apoptosis (158).
Noteworthy, T lymphocytes exhibit an intensified STING
response predisposing them to apoptosis (34). This effect
does not appear to occur in other cell types including
dendritic cells and macrophages, presumably owing higher
STING expression and signaling in T cells as compared to
other cell subsets (34).

Gaidt et al. showed that STING traffics through the Golgi and
then through late endosomes and lysosomes (33). The precise
location of STING, e.g. at the outer lysosomal membrane or
within multivesicular bodies, remains to be determined. STING
in lysosomes induces lysosomal membrane destabilization
leading to the release of proteases such as cathepsins triggering
lysosomal cell death (LCD) (33, 159), however the mechanism
involved remains to be established. Furthermore, it appears that
the main function of STING targeting to the lysosome is its
degradation to limit its activity (160). Necroptosis is a regulated
form of necrotic cell death governed by RIP1/RIP3-mediated
activation of MLKL. During necroptosis, the proapoptotic BH3-
only BCL-2 family member PUMA is transcriptionally activated
in an RIP3/MLKL-dependent manner. PUMA promotes the
cytosolic release of mtDNA which activates DAI/Zbp1 and
STING leading to enhanced RIP3 and MLKL phosphorylation
in a positive feedback loop and thus amplifies necroptosis (35).
Interestingly, basal cytosolic DNA sensing by the cGAS/STING
pathway is important for constitutive type I IFN production and
signaling, maintaining baseline ISG induction. It was shown that
this phenomenon is critical to reach a critical threshold of MLKL
for LPS-dependent necroptosis (161).
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CGAS/STING and Chromosomal
Instability/Senescence
Chromosomal instability is a hallmark of cancer in human,
associated with poor prognosis, metastasis, and therapeutic
failure (129). It results from errors in chromosome segregation
during mitosis and can cause micronuclei formation in the
cytoplasm. During metazoan cell division, the nuclear
envelope is ruptured and if the exposed chromatin is not
entirely contained within the daughter cells nuclei, it can be
encapsulated within independent structures cal led
micronuclei. Micronuclei rupture leads to cytosolic self-DNA
release and cGAS activation (17, 48). DNA damage induced by
monogenic autoinflammation (e.g. Rnaseh2b deficiency) or
exogenous DNA damage (e.g. ionizing radiation) leads to
micronuclei formation which rupture activates cGAS leading
to ISG expression (17). This pathway is also involved in the
context of genotoxic cancer therapy where STING-dependent
responses display antitumor activities (48). A recent article
showed that chromosomal instability leads to increased
numbers of micronuclei and cytosolic DNA, which activate
the cGAS-STING pathway (162). Rather than engaging type I
IFN or canonical NF-kB pathways, STING activates
noncanonical NF-kB signaling linked to the upregulation of
epithelial-mesenchymal transition (EMT) and inflammatory
genes, therefore enhancing cell migratory capacity and
metastasis (162).

cGAS has been shown to be a critical inducer of cellular
senescence, a form of terminal cell-cycle arrest associated with
pro-inflammatory response which prevents tumorigenesis and
participates to the antitumor effects of radio- and chemo-
therapies (163). cGAS binds to cytosolic chromatin fragments
in senescent cells and induces STING-dependent production of
senescence-associated secretory phenotype (SASP) inflammatory
mediators promoting paracrine senescence (164). Cytoplasmic
chromatin fragments are pinched off intact nuclei during
senescence to activate the cGAS-STING pathway (165).

Progeria, or Hutchinson-Gilford progeria syndrome (HGPS),
is a rare autosomal dominant condition beginning in childhood
with striking phenotypic features of premature aging. It is caused
by a truncated lamin A protein (progerin) inducing nuclear
envelope fragility and genomic instability and fatal senescence.
Progerin-mediated DNA release leads to the upregulation of the
cGAS/STING pathway and pathogenic type IFN response (166).

STING and Inflammasome
Cytosolic DNA-mediated cGAS/STING activation leads to STING
trafficking to the lysosome, where it triggers membrane
permeabilization and potassium efflux which activate the NLRP3
inflammasome (33). Non-canonical functions of cGAMP in
regulating both priming and activation steps of the
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inflammasome have been reported. cGAS-derived cGAMP
induces type I IFN induction via STING leading to increased
expression of inflammasome components and cGAMP also favors
inflammasome activity by promoting complexes containing both
NLRP3 and AIM2 (167). Using protein overexpression assays, it
was recently shown that Herpes Simplex Virus-1 (HSV-1)
infection or cytosolic DNA stimulation triggers STING binding
to NLRP3, promoting both NLRP3 localization in the ER and
attenuating NLRP3 polyubiquitination and degradation (168). In
addition, IL-1b signaling on human myeloid, fibroblast, and
epithelial cells induce mtDNA release to activate innate immune
signaling via cGAS-STING (169) and mtDNA-driven cGAS
activation triggers age-related macular degeneration through
STING-mediated non-canonical inflammasome pathway
involving IFN-b (170).
CONCLUSION

Our understanding of the mechanisms of danger signal release
and sensing has evolved considerably over the last years. It now
becomes clear that misplaced self-DNA is a potent trigger of
immune activation through various DNA sensing machinery.
Among them, the cGAS/STING pathway has emerged as an
important source of type I and type III interferons as well as a
critical regulator of cellular processes such as autophagy and
programmed cell death. Targeting the STING pathway may offer
tremendous therapeutic opportunities, not only in response to
infection as recently illustrated with SARS-CoV-2 infection (171,
172) but also in inflammatory conditions and cancer settings. In
addition, natural and synthetic CDNs are used as adjuvants to
enhance protective humoral and CD4+ and CD8+ T cells
responses in a STING-dependent manner (173–176).
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