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The majority of studies in the field of timing and time perception have generally focused
on sub- and supra-second time scales, specific behavioral processes, and/or discrete
neuronal circuits. In an attempt to find common elements of interval timing from a broader
perspective, we review the literature and highlight the need for cell and molecular studies
that can delineate the neural mechanisms underlying temporal processing. Moreover,
given the recent attention to the function of microtubule proteins and their potential
contributions to learning and memory consolidation/re-consolidation, we propose that
these proteins play key roles in coding temporal information in cerebellar Purkinje cells
(PCs) and striatal medium spiny neurons (MSNs). The presence of microtubules at
relevant neuronal sites, as well as their adaptability, dynamic structure, and longevity,
makes them a suitable candidate for neural plasticity at both intra- and inter-cellular
levels. As a consequence, microtubules appear capable of maintaining a temporal
code or engram and thereby regulate the firing patterns of PCs and MSNs known to
be involved in interval timing. This proposed mechanism would control the storage of
temporal information triggered by postsynaptic activation of mGluR7. This, in turn, leads
to alterations in microtubule dynamics through a “read-write” memory process involving
alterations in microtubule dynamics and their hexagonal lattice structures involved in the
molecular basis of temporal memory.

Keywords: interval timing, temporal memory, cerebellum, striatum, microtubule dynamics

INTRODUCTION

Studies of time perception and timed performance for sub- and supra-second durations
have frequently highlighted the involvement of cerebellar Purkinje cells (PCs) in the
absolute timing of single sub-second durations. In contrast, striatal MSNs are thought
to be involved primarily in the relative timing of beat-based sequences (e.g., Lusk et al.,
2016; for additional details, see Grube et al., 2010; Teki et al., 2011, 2012; Breska and Ivry,
2016, 2018). Although these networks have been designed to function in a coordinated
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manner in order to maximize the accuracy and precision of
timed behavior across their full range of coverage, they are
more typically studied separately by behavioral and cognitive
neuroscientists given the degree of specialization required to
disentangle the complex behavioral profiles and underlying
neural circuitry. As a consequence, temporal processing in
the cerebellum and basal ganglia are only now being widely
integrated into a coherent timing system (e.g., Teki et al.,
2012; Bostan et al., 2013; Petter et al., 2016; Bareš et al., 2019;
Caligiore et al., 2019).

Numerous circuit diagrams have been developed that specify
the primary ‘‘time cells’’ and their relation to the clock, memory,
and decision stages of temporal processing, as well as the extent
and locations of plasticity in the brain areas where temporal
learning and memory can co-occur. Interestingly, although
virtually all timing models make an attempt to explain how
time is measured and utilized (see Matell and Meck, 2000; Hass
and Durstewitz, 2016; Matthews and Meck, 2016) few of them
provide specific details for how target durations are encoded
and decoded within the proposed neural circuitry (Merchant
and de Lafuente, 2014). This means that the form and content
of temporal memory, or whether it is written and read at a
single-cell level or across a distributed network is typically left
unaddressed (Meck, 1983, 2002; Teki et al., 2017; Paton and
Buonomano, 2018).

Recent experimental evidence suggests that the metabotropic
glutamate receptor 7 (mGluR7) regulates glutamate-mediated
postsynaptic inhibition in cerebellar PCs (e.g., Phillips et al.,
1998; Johansson et al., 2015) and striatal medium spiny neurons
(MSNs; e.g., Borroto-Escuela et al., 2018; Briones et al., 2018),
thereby activating a biochemical-signaling cascade that results
in an intracellular form of temporal memory. In an attempt to
determine the relevancy of other components of these signaling
cascades in PCs and MSNs, we review the literature with the goal
of promoting further consideration of the potential functions
that cytoskeletal elements, such as microtubules, are able to
provide due to having the structural complexity, integrity, and
longevity necessary to support the sophistication of read-write
memory processes and temporal cognition.

Neural memory mechanisms are typically considered to
be responsible for maintaining a continuum of events in a
retrievable form. In this manner, read-write memory processes
allow neural networks to ‘‘recode past information in light
of current information’’ (Gallistel and Wilkes, 2016, p.12).
Although there’s been a veritable explosion in the last few
decades about our understanding of the complementary roles
of long-term potentiation (LTP) and long-term depression
(LTD) in terms of the strengthening and weakening of synapses
involved in learning and memory, there are still huge gaps in
our understanding of how memories are stored in the brain.
These gaps are such that there are even uncertainties as to
whether LTP plays a critical role in memory storage or is
perhaps better viewed as an enhanced form of attention that
leads to sustained information processing to support encoding
and decoding of memories (e.g., Shors and Matzel, 1997;
Gallistel and Balsam, 2014; Trettenbrein, 2016; Gallistel, 2017;
Queenan et al., 2017). Whether microtubules act as one of

the elements in the molecular signaling cascades that regulate
synaptic plasticity (e.g., studies discussed in Dent, 2017), or
is the main substrate for storing intracellular memories (e.g.,
Hameroff et al., 2010), remains to be addressed. Either way, it
is important to shed light on the importance of microtubules
in the formation and consolidation of temporal information in
future studies.

As suggested above, studies aimed at elucidating the
behavioral and neural mechanisms that control the accuracy
and precision of timed eye-blink responses became highly
influential in the study of the representation of time for motor
learning. This was due, in part, to how elegantly-designed
and specific the cerebellar circuitry appeared to be (Medina
et al., 2000). So much so that the well-known neuroanatomist
David Marr suggested that cerebellum-dependent learning
highly relies on the synaptic plasticity between parallel
fibers and PCs (Marr, 1969):

‘‘The main test of the theory is whether or not the synapses
from parallel fibers to PCs are [modifiable]. . .. It is likely that no
other cerebellar synapses are modifiable. . .. Though it is difficult
to see how these predictions could be wrong, they might be: such
a disproof would be embarrassing but not catastrophic, since
something of the bones of the theory would remain.’’ (Marr,
1969; for additional details, see Carey and Lisberger, 2002;
Cheron et al., 2013).

This over-reliance on the supposedly ‘‘hard-wired’’ or
‘‘reflexive nature’’ of the cerebellar circuitry was to such an
extent that it was thought that only the PCs in the cerebellar
cortex are capable of plasticity mechanisms and learning
(e.g., Schneiderman and Gormezano, 1964; McCormick and
Thompson, 1984; Krupa et al., 1993). It has recently been
demonstrated that PCs acquire and maintain a temporal
code independent from the LTD of parallel fibers connected
to PC synapses or inhibitory inputs they receive from
parallel fibers or GABAergic interneurons. Moreover, these
observations have led to the proposal of an internalized
temporal memory in PCs linked to an intrinsic cellular
mechanism rather than a circuit-based pattern (Johansson
et al., 2014, 2018). Based on these provocative results,
PCs appear to be capable of learning temporal response
patterns without receiving external temporal input which
is a very challenging result for any theoretical account put
forth this point, except perhaps for the recently proposed
ICAT integrative timing model by Petter et al., 2016 (also
see Jirenhed et al., 2017; Bareš et al., 2019). Using various
glutamate receptor antagonists, it was determined that
metabotropic glutamate receptor 7 (mGluR7) facilitates this
internal temporal memory through glutamate-mediated
postsynaptic inhibition, a process that has been previously
reported in PCs (Inoue et al., 1992; Johansson et al.,
2015). It has been proposed that mGluR7 activation in PCs
initiates a biochemical-signaling cascade, that may support
the encoding of the temporal components of the evoked
conditioned response (Johansson et al., 2015, 2016). However,
the components of this biochemical-signaling cascade are
still largely unknown. Accordingly, the role mGluR7 in the
acquisition and extinction of conditioned responses has
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been extensively studied, and it has been indicated that
aversive learning and fear response is impaired in mGluR7
knock-out or deficient mice (e.g., Masugi et al., 1999; Cryan
et al., 2003; Callaerts-Vegh et al., 2006; Goddyn et al., 2008)
Moreover, mice show improved performance in a contextual
fear conditioning task as a result of mGluR7 potentiation
(Gogliotti et al., 2017).

CEREBELLAR TIMING CIRCUIT

Prospective timing involves learning the absolute and relative
durations of stimuli in order to anticipate the future occurrence
of significant events. Classical conditioning of the eyeblink
reflex is a commonly used task to study the acquisition and
retention of the temporal relation(s) between a conditioned
stimulus (CS) and an unconditioned stimulus (US). In order
to avoid the delivery of an aversive US to the eye (e.g., air
puff) the subject learns to utilize this temporal information in
order to make an anticipatory eyeblink, thereby minimizing
the negative impact of the US (e.g., Hesslow and Ivarsson,
1994; Christian and Thompson, 2003; Johansson et al., 2018).
Although the cerebellum has typically been viewed as being
specialized for the timing of sub-second durations in the
control of movement, a number of recent reports have also
implicated a role in the timing of supra-second durations in
support of cognition (e.g., Ohmae et al., 2017; Kunimatsu
et al., 2018). These studies emphasize the anatomical projections
from the cerebellar cortex to the dentate nucleus (DN), and
then beyond the cerebellum to thalamocortical-striatal circuits.
The current hypothesis is that the cerebellum is not strictly
limited to temporal processing in the millisecond range, but
also plays an important role in temporal processing in the
hundredths of milliseconds-to-minutes range as a result of its
coordination with cortico-striatal circuits (Merchant et al., 2013;
Petter et al., 2016).

Purkinje Cells
PCs are the primary cell type found throughout the cerebellar
cortex. PCs in the lateral cerebellar cortex are considered crucial
for predicting the temporal relation(s) between the CS and US in
eyeblink conditioning. Evidence for the role of PCs in temporal
prediction comes from the observation of conditioned and
adaptively timed pauses in spiking activity, which are acquired
as a function of repeated pairings of the CS and US (Jirenhed
et al., 2007; Jirenhed and Hesslow, 2011). Moreover, these pauses
in neural spiking responses have been shown to be sufficient for
eliciting changes in the temporal control of motor responses such
as eyeblinks (Heiney et al., 2014). Later findings suggest that PCs
do not simply receive timing input from upstream neural circuits,
but rather, that the timing of anticipatory responses by the
cerebellum is intrinsic to PCs controlling the duration of pauses
in firing activity (Johansson et al., 2016, 2018). Overall, these
observations support the hypothesis that an intrinsic memory
process in PCs encodes the details necessary for the temporal
control of eyeblink conditioning in a manner that is co-occurring
with and independent of the neural mechanisms typically
thought to support associative learning (e.g., LTP and LTD—see

Wilkes and Gallistel, 2017 for a discussion of information theory
and the role of interval timing in associative learning).

Deep Cerebellar Nuclei
The temporal information encoded in PCs allowing for the
control of the duration of pauses in firing is propagated
downstream until it reaches the deep cerebellar nuclei. Because
PC action potentials are regulated by GABA, these timed
pauses in PC spiking activity produce a form of disinhibition
in these deep cerebellar nuclei. Correlations between neural
ramping activity and eye movements have been observed in
the DN of monkeys performing a timed ballistic eye-movement
task for intervals in both sub- and supra-second ranges
(Ohmae et al., 2017).

Other lines of evidence suggest that the outputs from deep
cerebellar nuclei contribute to the fine-tuning of predictive
timing in both milli-second and multi-second time ranges
in humans, monkeys, and rats through the adjustment of
downstream neural circuits (e.g., Callu et al., 2009; Ohmae et al.,
2013, 2017; Broersen et al., 2016; Parker, 2016). The relevant
pathways include efferent outputs from the DN in primates
or the lateral cerebellar nucleus (LCN) in rodents, both of
which exhibit di-synaptic connections, via the thalamus, to the
cortico-striatal circuits that sub-serve timing in the seconds-
to-minutes range (e.g., Coull et al., 2011; Bostan et al., 2013;
Merchant et al., 2013). Importantly, stimulation of thalamic
terminals has been observed to facilitate LCN output to these
cortico-striatal circuits and enhance the precision of multi-
second timing (Parker et al., 2017). Furthermore, performance
in predictive timing tasks synchronizes ramping activity and
theta-frequency oscillations in the frontal cortex and cerebellum
(Parker, 2016). It is important to note, however, that although
‘‘ramping’’ may provide a useful description of the neural
activity observed during temporal processing, it is likely that
computational models incorporating stepping dynamics offer a
more complete account of the underlying timing mechanism(s)
than models utilizing ramping dynamics (e.g., Latimer et al.,
2015, 2017). Moreover, as cautioned by Kononowicz et al. (2018)
and Paton and Buonomano (2018), ramping activity (in contrast
to population clocks) is often best described as representing
activity in a brain area that is monitoring some unknown time
signal occurring elsewhere in the brain, rather than the locus of a
clock, i.e., generator of the time base.

STRIATAL TIMING CIRCUIT

Medium Spiny Neurons
MSNs are the dominant cell type within the dorsal striatum,
which receive extensive glutamatergic input from cortical areas
and thalamus, as well as dopaminergic input from the ventral
tegmental area (VTA) and substantia nigra pars compacta
(SNc; Cheng et al., 2006, 2007; Huerta-Ocampo et al., 2014;
Agostino and Cheng, 2016). Using two-photon microscopy,
and two-photon glutamate uncaging to examine sub-threshold
synaptic integration in MSNs, Carter et al. (2007) observed
that synaptic responses can summate sub-linearly, linearly,
or supra-linearly depending on the spatiotemporal pattern

Frontiers in Molecular Neuroscience | www.frontiersin.org 3 January 2020 | Volume 12 | Article 321

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Yousefzadeh et al. Internal Clocks, mGluR7 and Microtubules

of activity. Importantly, synaptic responses modulated by
N-methyl-D-aspartic acid receptors (NMDARs), which are
important for the induction of synaptic plasticity, summated
linearly as a function of repetitive activity (Carter et al., 2007).
Consequently, sub-threshold integration of electrical potentials
in MSNs is influenced by the arrangement of synaptic inputs
and the differential firing patterns of multiple postsynaptic
neurons with oscillatory properties while asynchronous
synaptic inputs to neighboring spines do not interact
(Carter et al., 2007). Overall, MSNs demonstrate an ability
to support high levels of integration at multiple modes as
determined by the spatial and temporal distributions of their
synaptic inputs and outputs. This makes them well-suited as
temporal integrators for the linear time dimension specified
by the scalar timing theory (Gibbon et al., 1984, 1997;
Matell et al., 2003).

Computational Properties of the Striatum
The main feature that makes cortico-striatal circuits well-suited
for accurate and precise timing, is the high level of connectivity
between the MSNs viaGABAergic interneurons, which results in
coordinated activation of MSN populations and a high signal to
noise ratio (Moyer et al., 2014). Moreover, dopamine-mediated
synaptic plasticity and spike-timing-dependent plasticity in this
region can greatly facilitate value assignment and learning of
target durations and timed behavior (e.g., Shen et al., 2008;
Xu and Baker, 2016). There are several reports indicating that
the glutamatergic input and the phasic dopamine bursts in the
striatum need to be paired with each other and occur in a very
precise temporal window for plasticity to happen (Yagishita et al.,
2014; Wieland et al., 2015). It is important to note that these
findings are most often obtained from MSNs in the ventral
striatum which although very similar to MSNs in the dorsal
striatum, are considered to be more involved in reward than in
temporal processing. Despite this potential confound, the current
view is that mechanisms of neural plasticity do not differ between
the MSNs in the ventral and dorsal striatum.

Although a comprehensive understanding of the cellular and
molecular basis of interval timing awaits further investigation,
the development of the striatal beat-frequency (SBF) model of
interval timing (Matell and Meck, 2000, 2004) continues to
serve as an important guidepost for directing future research
(e.g., Farrell, 2011; Oprisan and Buhusi, 2011; Soares et al.,
2016; Teki, 2016; Dallérac et al., 2017; Toda et al., 2017; Gu
et al., 2018). The main reason for this is that the SBF model
provides a neurobiologically plausible account of interval timing
within cortico-striatal circuits that can be extended and revised
as additional information becomes available. At present, its core
feature is the reliance on coincidence detection of oscillatory
inputs from the cortex and thalamus by MSNs in the dorsal
striatum. MSNs are trained over successive trials by synaptic
plasticity mechanisms to function as detectors of unique patterns
of input that are related to specific target durations paired with
reinforcement (Dallérac et al., 2017). A major strength of the
model is that it accounts for the scalar property which is the
hallmark of interval timing (Allman et al., 2014; Yin et al.,
2017). The first component of the scalar property requires that

the mean measures of the timed behavior vary linearly, and
usually accurately, with imposed temporal standards (i.e., target
durations). The second component is the scalar property of
variance, a form ofWeber’s law, which requires timing sensitivity
to remain constant as the target durations being timed vary.
Timing variance can be evaluated by taking the standard
deviation (σ - ‘‘sigma’’) and the mean (µ - ‘‘mu’’) of the timing
behavior for various target durations. This allows one to calculate
the coefficient of variation (CV) where CV = σ/µ, a Weber-
fraction measure. Consequently, the scalar property of variance
asserts that variations in the target duration do not alter the CV.
Conventionally, the scalar property of timing is typically stated
as the variability growing proportional to the mean of the target
duration(s) being timed (Gibbon et al., 1984, 1997). The SBF
model also accounts well for the anatomical, pharmacological,
and electrophysiological properties of interval timing (Buhusi
and Meck, 2005; Meck, 2006; Balci et al., 2008; Coull et al., 2011;
Merchant et al., 2013; Gu et al., 2015, 2018; Toda et al., 2017).

INTEGRATIVE MODELS OF TEMPORAL
PROCESSING

Initiation, Continuation, Adjustment, and
Termination
The contributions of PCs and deep cerebellar nuclei to the timing
of sub- and supra-second durations have been incorporated
into the Initiation, Continuation, Adjustment, and Termination
(ICAT) model of temporal processing (Petter et al., 2016; see
also Bareš et al., 2019; Caligiore et al., 2019). The ICAT model
was explicitly designed to support real-time interaction between
cerebellar and cortico-striatal circuits during sequential phases of
predictive timing for durations in the of milliseconds-to-minutes
range as diagrammed in Figure 1. The cellular architecture of the
cerebellum, with its parallel fibers bifurcating to form T-shaped
branches that provide temporal and motor learning information
to PCs through excitatory synapses, makes it ideal for supporting
the initiation and adjustment phases of the ICAT model with its
major impact being observed in the timing of discrete intervals as
opposed to continuous cyclic intervals (e.g., Spencer et al., 2003,
2005; Breska and Ivry, 2016). The ICAT model also accounts for
the central role that the cerebellum plays in the automatic timing
of reflexive motor behaviors (e.g., Rasmussen and Jirenhed,
2017). In contrast, cortico-thalamo-striatal circuits provide more
cognitively controlled regulation of the continuation phase for
the timing of both discrete and continuous cyclic movements
(Merchant and Yarrow, 2016). The ICATmodel is also congruent
with clinical observations of motor and timing deficits exhibited
by patients with cerebellar dysfunction (e.g., Schmahmann, 2004;
Bares et al., 2011; Lungu et al., 2016).

While the cerebellum has traditionally been studied in terms
of its role in motor control and the timing of movements
(e.g., saccades), it is now becoming recognized as contributing
to a broader range of temporal processes involved in attention,
language, and other types of cognition (Buckner, 2013).
Although adaptive pauses in PC spiking are sufficient for timing
sub-second intervals, cerebellar integration with cortical-striatal
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FIGURE 1 | The cerebellum’s contribution to the striatal beat frequency
(SBF) model of interval timing. (A) Cortical neurons oscillate at different
frequencies (typically distributed between 5 and 15 Hz). These oscillations are
synchronized by phasic dopamine (DA) release mostly from the ventral
tegmental area (VTA). Each tick mark represents the peak excitatory phase of
an oscillatory input onto a medium spiny neuron (MSN). (B) At the duration to
be timed, cortical-striatal synapses that are active, as indicated by a peak
phase of oscillatory input, will experience long-term potentiation (LTP) due to
the presence of DA. (C) Cerebellar Purkinje cells (PC) are conditioned to
pause firing at trained durations in order to produce accurately timed
anticipatory responses. These pauses in PC firing regulate neural activity
primarily in the dentate nucleus (DN). (D) Disinhibition of the DN then
proceeds to the thalamus, thus supporting the regulation of timing in
cortical-striatal circuits. In this manner, the ICAT model provides an integrated
framework for integrating cerebellar and striatal support for interval timing in
both sub and supra-second ranges. In this model, Initiation refers to the
“start” of interval timing signaled by the onset of endogenous or exogenous
stimuli. Initiation deficits contribute to decreased accuracy in the temporal
control of behavior. Continuation refers to the maintenance of the internal
timing process during the target duration. Adjustment refers to the real-time
monitoring and fine-tuning of the internal timing process in order to increase
precision through feedback and error correction. Termination refers to the
“stop” of internal timing following the cessation of the to-be-timed stimulus.
Adapted from Petter et al. (2016) and Bareš et al. (2019).

circuits is necessary for timing supra-second intervals. In this
instance, the cerebellum monitors the timing of supra-second
intervals and provides error-detection for fine-tuning the signal
in cortico-striatal circuits. Consequently, the cerebellum’s role in
temporal processing should be viewed within the context of a
global timing network that includes cerebellar-cortical, cortico-
striatal, and the hippocampal cortical circuits (e.g., Meck et al.,
2013; MacDonald et al., 2014; Lungu et al., 2016; Lusk et al., 2016;
Petter et al., 2016, 2018; Raghavan et al., 2016; Bareš et al., 2019;
Caligiore et al., 2019).

MOLECULAR MECHANISMS OF
TEMPORAL MEMORY

Potential Role(s) of Microtubules and
mGluR7 in Temporal Memory
As an additional element to the previous findings regarding
temporal processing mechanisms in PCs, we propose a

specific role for microtubules in the molecular mechanisms
that follow mGluR7 activation in PCs. Microtubules are
dynamic cytoskeletal structures composed of αβ-tubulin
heterodimers. They are involved in synapse-to-cell-body
trafficking, chromosome segregation, and morphogenesis (Aher
and Akhmanova, 2018). Numerous empirical studies have
identified a relationship between microtubules and memory
processes (e.g., Fanara et al., 2010; Barten et al., 2012; Dent and
Baas, 2014; Uchida et al., 2014; Atarod et al., 2015; Smythies,
2015; Uchida and Shumyatsky, 2015, 2018; Martel et al., 2016;
Dent, 2017; Yousefzadeh et al., in press). Additionally, various
characteristics of Alzheimer’s disease (AD) are correlated with
changes in the structure and dynamics of microtubules through
both tau-dependent and tau-independent mechanisms (Brandt
and Bakota, 2017).

It has been demonstrated that α-tubulin directly interacts
with mGluR7 (Saugstad et al., 2002), and mGluR7 activation
leads to the activation of the mitogen-activated protein kinase
pathway (MAPK) leading to microtubule stabilization (Jiang
et al., 2006; Gu et al., 2012, 2014). Consequently, we propose
that postsynaptic activation of mGluR7 leads to alterations
in microtubule dynamics, which could transiently inhibit PC
firings. Thus, PCs are capable of maintaining a temporal code
through the time-specific pauses that occur in their spike
patterns in the millisecond range. A similar process occurring
in striatal MSNs would allow for changes in the speed of
temporal integration and the coincidence detection of specific
target durations in the seconds-to-minutes range. With all of
this taken into account, it is realistic to consider the possibility
that microtubules play a key role in the biochemical-signaling
cascade that encodes the durations of events in single cells on
individual trials, thus providing PCs and MSNs the possibility
of serving as independent ‘‘time cells.’’ This provides a unique
opportunity for investigators to search for the temporal engram
andwhether there are different varieties of these time cells even in
the same brain structure. As Randy Gallistel has so aptly put it on
more than one occasion, ‘‘It is much easier to formulate a coding
hypothesis if the engram is realized by a cell-intrinsic molecular
mechanism’’ (Gallistel, 2017, p. 498).

Microtubules in Dendritic Spines
Microtubules are one of the most fundamental elements in
establishing the structure and function of neurons. The intrinsic
polarity and dynamic structure of microtubules makes them
suitable for organizing neuronal morphogenesis, including
neural migration, neuritogenesis, neurite outgrowth, branching,
and retraction (Fukushima, 2011; Baas et al., 2016). Moreover,
microtubules are involved in axonal and dendritic cargo
transport (Maday et al., 2014; Hirokawa and Tanaka, 2015),
spike transduction (Friesen et al., 2015), and synapse modulation
(Jaworski et al., 2009). Although microtubules are far more
abundant in the cell bodies and along the axons of neurons, the
first location they interact with receptors and ion channels is at
dendritic spines (Gardiner et al., 2011). Originally, it was believed
that the only cytoskeletal elements available in dendritic spines
were actin filaments, whereas microtubules and microtubule-
associated proteins (MAPs) are only present in dendritic shafts,
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and do not enter dendritic spines (Kaech et al., 2001). Studies
conducted by Gu et al. (2008), Hu et al. (2008), Mitsuyama
et al. (2008) and Jaworski et al. (2009) however, challenged this
notion. It was shown that brain-derived neurotrophic factor
(BDNF), a molecule critically involved in learning and memory,
induces the entry of dynamic microtubules into dendritic spines
as a function of neuronal firing (Hu et al., 2008). Through
interaction with actin filaments, these dynamic microtubules
contribute to regulating the morphology of dendritic spines
and, as a consequence, synaptic plasticity (Jaworski et al., 2009;
Coles and Bradke, 2015; Peris et al., 2018). Formation of
mushroom-shaped spines and spine enlargement happens as a
result of dynamic microtubule entry, both of which accelerate
synaptic strength (Hoogenraad and Bradke, 2009; Kapitein and
Hoogenraad, 2015). Moreover, dynamic microtubule entry into
synaptic spines contributes to NMDAR-dependent synaptic
plasticity (Kapitein et al., 2011; Merriam et al., 2011).

There have also been reports of learning-induced
changes in microtubule dynamics that are regulated by the
phosphorylation status of stathmin, a microtubule-destabilizing
phosphoprotein. At synaptic sites in the dentate gyrus of the
hippocampus, stathmin undergoes steps of dephosphorylated
and phosphorylated states causing biphasic shifts in microtubule
dynamics, which modulates AMPA receptor trafficking (Kim
and Lisman, 2001; Uchida et al., 2014; Uchida and Shumyatsky,
2015; Kaganovsky and Wang, 2016; Martel et al., 2016).
Stathmin phosphorylation also regulates dendritic arborization
in cerebellar PCs and its overexpression in these cells leads to
motor discoordination (Ohkawa et al., 2007a,b). Moreover,
significant correlations among irregularities in stathmin,
microtubule dynamics, and memory impairments have been
observed in aged animals (Uchida et al., 2014). Similarly,
stathmin deficient mice exhibit impairments in spike-timing-
dependent plasticity in the lateral amygdala which is associated
with deficiencies in parental and social behavior as well as
in recognizing innate and learned fear (Shumyatsky et al.,
2005; Martel et al., 2008). Other studies have demonstrated a
need for this regulatory protein in the maintenance of axonal
microtubules (Duncan et al., 2013).

As described by Gardiner et al. (2011), there appears to
be a bidirectional interaction between neurotransmitters and
microtubules. On one hand, neurotransmitters are capable
of activating signaling pathways that regulate microtubule
dynamics or expression levels. They are also involved in
enforcing various post-translational modifications on tubulins.
On the other hand, microtubules can influence receptor
concentration in the postsynaptic neuron. They can also facilitate
electrical current transduction, leading to the regulation of
neurotransmission (Gardiner et al., 2011).

Microtubules and mGluR7
As mentioned earlier, mGluR7 is a G-protein coupled receptor,
and one of the members of type III metabotropic glutamate
receptors. This protein has been attributed to cognitive functions
including learning, memory, and emotion regulation. Although
mGluR7 typically operates as a pre-synaptic auto-receptor
and constrains glutamate release from pre-synaptic terminals,

there are reports of post-synaptic mGluR7 functions as well
(for review, see Palazzo et al., 2016; Tassin et al., 2016).
Studies on the regulatory effects of postsynaptic mGluR7 on
NMDA receptors have indicated that mGluR7 activates the
MAPK pathway in the basal forebrain cholinergic neurons
and prefrontal cortex pyramidal neurons, which in turn
causes increased cofilin activity and actin depolymerization
(Gu et al., 2012, 2014). The MAPK signaling pathway has
been implicated in synaptic plasticity mechanisms and thereby
learning and memory (for a review of the MAPK pathway,
see Thomas and Huganir, 2004). Studies have indicated that
MAP kinases are colocalized with microtubules in neuronal
processes (Fiore et al., 1993) and regulate microtubule dynamics
(Reszka et al., 1995; Pei et al., 2002; Pullikuth and Catling,
2007). Such negative regulation of the MAPK pathway results
in the activation of stathmin, which promotes microtubule
destabilization (Jeanneteau et al., 2010). Other than the MAPK
pathway, mGluR7 also acts through other signaling cascades,
including the inhibition of cAMP-dependent pathway and the
modulation of PI-3-K pathway (Iacovelli et al., 2002, 2014).
Moreover, mGluR7 directly interacts with α-tubulin via its
C-terminus domain (Saugstad et al., 2002). This dynamic
interaction is negatively regulated by receptor activation,
i.e., mGluR7 activation reduces its binding affinity for α-
tubulin. Because the C-terminus domain of this receptor binds
to many other regulatory molecules (including calmodulin,
PICK1, PKC, etc.), the interaction between mGluR7 and α-
tubulin can be involved in controlling how these regulatory
molecules access mGluR7, thereby directing signal transduction
mechanisms (Saugstad et al., 2002). Although the specifics
on the function of mGluR7/α-tubulin interaction are not as
yet determined, Jiang et al. (2006) explicated an association
between type III mGluRs and Parkinson’s disease (PD).
The findings from this article demonstrated that type III
mGluR activation is able to attenuate the toxic effects of
rotenone on dopaminergic neurons through the MAPK pathway
activation, and thus microtubule stabilization. Using type
III mGluR agonists, MAPK pathway was activated, resulting
in microtubule stabilization, which hindered the effects of
rotenone on dopaminergic neurons and ameliorated the PD-like
symptoms (Jiang et al., 2006). Putting the studies mentioned
above together, it is possible to propose a similar mechanism
that accounts for encoding an internal temporal memory in
PCs, i.e., mGluR7 activation modulates microtubule dynamics
through the MAPK pathway, thereby promoting time-specific
pauses in PC firing.

CONCLUSIONS

We now know that microtubule destabilization leads to
impairments in neurogenesis, spinogenesis, the acquisition
and retrieval of contextual fear memory, and learning-induced
CREB-mediated gene transcription (Fanara et al., 2010;
Martel et al., 2016). Moreover, microtubule dynamics
contribute to the formation of spatial and object memory
in rats (Yousefzadeh et al., in press). Meanwhile, paclitaxel-
induced microtubule hyperacetylation and stabilization induces
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learning and memory deficits in rats (Dowdy et al., 2006;
You et al., 2018). Emphasizing the importance of microtubule
dynamics in memory encoding, microtubule’s initial instability
immediately following training and microtubule’s hyperstability
about 8 h later appears to be a key component of memory
consolidation: in a contextual fear conditioning paradigm
in mice, paclitaxel injected in the dentate gyrus immediately
after training inhibited memory formation, but the same
drug-enhanced memory when injected 8 h after training
(Uchida et al., 2014). All of these studies support the
notion that microtubule dynamics equilibrium is directly
involved in learning and memory processes. Moreover, using
molecular mechanics modeling and electrostatic profiling,
Craddock et al. (2014) suggested that information is encoded
in microtubules through their interaction with calcium-
calmodulin dependent kinase II. This interaction modulates
a specific phosphorylation pattern on microtubules and
stathmin which can be considered ‘‘neural plasticity at the
molecular level’’ (Craddock et al., 2012). The microtubule
code originated from post-translational modifications and
expression of diverse α- and β-tubulin isoforms regulates
synaptic transmission and neural plasticity, and as a result
facilitates memory formation and maintenance (Janke and
Kneussel, 2010; Gadadhar et al., 2017; Magiera et al., 2018a;
Magiera et al., 2018b).

Considering the well-established role of microtubules in
hippocampal memory encoding (e.g., Woolf et al., 1999;
Cavallaro et al., 2002; Uchida et al., 2014), it seems reasonable

to assume that these cytoskeletal structures are also involved
in the formation of a ‘‘temporal map’’ with instructions
and/or an operators manual residing in cerebellar PCs. This
temporal map plays a critical role in eye-blink conditioning,
which influences PCs’ spike patterns. The pauses that normally
occur in PC firings during the inter-stimulus interval (ISI),
disinhibits the downstream neurons, triggering the conditioned
eye-blink response. It has been shown that mGluR7 activation
in postsynaptic PCs contributes to these spike patterns through
the activation of biochemical signaling cascades that result in
glutamate-mediated postsynaptic inhibition (Johansson et al.,
2015). Since it has been shown that mGluR7 activates the
MAPK signaling pathway and stabilize microtubules (Jiang
et al., 2006; Jeanneteau et al., 2010; Gu et al., 2012, 2014),
one can easily extend the same mechanism to temporal coding
in PCs during eye-blink conditioning in rodents (Figure 2A).
As a result of microtubule stabilization, the rate of dynamic
microtubule entry into the dendritic spines of PCs declines,
which leads to spine shrinkage, followed by LTD of the
parallel fiber projections to the PCs. This process is similar
to what has previously been described in the hippocampus
due to NMDA receptor activation in postsynaptic neurons
(Kapitein et al., 2011). This alteration in microtubule dynamics
could further ameliorate synapse-to-nucleus transportation
of synaptically-localized transcriptional regulators, such as
CREB-mediated transcriptional coactivators (CRTC1), histone
deacetylase 4 (HDAC4), and NF-κB, which are essential elements
in synaptic plasticity (Figure 2B). The translocation of these

FIGURE 2 | Interval timing at the sub-cellular level in PCs (A) mGluR7 mediated plasticity in cerebellar PCs is facilitated through the activation of mitogen-activated
protein kinase pathway (MAPK) and PI-3-k pathways. These signaling cascades, directly and indirectly, lead to microtubule stabilization and contribute to precisely
timed pauses in PCs firings in various ways including down-regulation of AMPA receptor distribution. (B) Moreover, microtubule stabilization as a result of
postsynaptic mGluR7 activation in PCs can cause spine shrinkage and synapse-to-nucleus transcription regulator transport (Glu, glutamate; mGluR7, metabotropic
glutamate receptor 7; AMPAR, AMPA receptor; NMDAR, NMDA receptor; PI3K, phosphoinositide 3-kinase; Akt, protein kinase B; mTOR, mechanistic target of
rapamycin; MEK, MAPK/ERK Kinase; MAPK, mitogen-activated protein kinase; MAP, microtubule-associated protein; CBP, CREB-binding protein; CREB, cAMP
response element-binding protein; CaRF, calcium responsive transcription factor; Red filled circles with P inside indicate protein phosphorylation).
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synaptically-localized transcriptional regulators modulates gene
transcription and advances memory formation, consolidation,
and reconsolidation (e.g., Uchida and Shumyatsky, 2018;
Yousefzadeh et al., in press).

Hameroff et al. (2010) proposed a neural basis for a
long-sought form of ‘‘read-write’’ memory in the brain.
Using molecular modeling, they were able to identify the
spatial attributes of Ca2/calmodulin-dependent protein kinase
II (CaMKII) domains that can accurately match those of
microtubule hexagonal lattice neighborhoods, thus identifying
potential phosphorylation mechanisms. The interaction between
CaMKII and microtubules provides a testable framework for
the molecular encoding of durations (Craddock et al., 2012).
In this proposed interaction, tubulin dimers serve as memory
bytes that can be written on by CAMKII, a protein that binds
to these bytes and writes data on them. Dam1 would then serve
as a ‘‘read’’ mechanism for the information encoded in the
microtubule lattices. A primer for beginning this process might
start with 6-tubulin memory bytes in the shape of blocks circling
in a coil that makes up the microtubules. The idea for 6-tubulin
memory blocks supports the proposal that Dam1 complexes
could function as the ‘‘read’’ mechanism able to handle six or
so blocks every step, and slide along the microtubule structure
while rotating, reading from the lattice with every turn it
does, a rotating array of read-heads. This mechanism considers
microtubules as a substrate necessary for encoding information
independent from mechanisms of neural plasticity, and supports
proposals that do not rely on LTP/LTD as the major form of
learning (e.g., Gallistel and Balsam, 2014).

One needs to keep in mind, however, that the types of
molecular memory processes reviewed here are unlikely to
be limited to any particular time range (e.g., sub- vs. supra-
second timing—see Rammsayer and Troche, 2014). As a
consequence, the emerging view in the field is that although
the timing processes governed by cortical-striatal circuits
are distinct from the timing processes governed by cortico-
cerebellar circuits, there is considerable room for integration
of behavioral, systems, cellular, and molecular mechanisms.
As a consequence, the proposed ICAT model (Petter et al.,
2016) assumes that these circuits work in synchrony, and
contribute to distinct components of virtually all timing tasks
(see Allman et al., 2014; Ohmae et al., 2017; Bareš et al., 2019;
Caligiore et al., 2019).

In summary, as described above, cerebellar PCs are capable
of maintaining a temporal code through the time-specific pauses
that occur in their millisecond spike patterns. A similar process,
if verified in striatal MSNs would allow for changes in the speed
of temporal integration and the coincidence detection of specific
target durations in the seconds-to-minutes range (Figure 3).
The proposal is that an intrinsic cellular mechanism based on
microtubule dynamics (in both cerebellar and striatal ‘‘time
cells’’) encodes the relevant temporal information (e.g., target
duration and response thresholds) and can possibly be more
effective as a read-write memory system than a circuit-based
system with anatomically distinct temporal processing stages
(e.g., clock, memory, and decision) as outlined by Gallistel and
King (2010), Allman et al. (2014) and van Rijn et al. (2014).

FIGURE 3 | Interval timing at the sub-cellular level in striatal MSNs. In
accordance with the SBF model of interval timing, dopamine-dependent LTP
leads to the encoding of both sub and supra-second target durations.
Activation of dopamine receptors can potentially lead to the up-regulation of
brain-derived neurotrophic factor (BDNF), which promotes microtubule
dynamics. Upon the entry of dynamic microtubules into the dendritic spines,
bigger and mushroom-shaped spines emerge which support the acquisition
and maintenance of LTP (DA, dopamine; D1R, D1-type receptor; D2R,
D2-type receptor; AC, adenylyl cyclase; cAMP, cyclic adenosine
monophosphate; PKA, protein kinase A; DARPP-32,dopamine- and
cAMP-regulated neuronal phosphoprotein; PLC, phospholipase C; PIP2,
phosphatidylinositol 4, 5-bisphosphate; IP3, inositol trisphosphate; DAG,
diacylglycerol; CaMKII, Ca2+/calmodulin-dependent protein kinase II; CBP,
CREB binding protein; CREB, cAMP response element-binding protein;
MECP2, methyl CpG-binding protein 2; CaRF, calcium responsive
transcription factor; Red filled circles with P inside indicate protein
phosphorylation).

FUTURE DIRECTIONS

Several lines of inquiry are required to further examine
the cellular and molecular mechanisms of interval timing
proposed here. In particular, the analysis of the signaling
cascades coupled with mGluR7 in PCs is of great importance
and should be a high priority. Since it is believed that
cAMP, MAPK, and PI-3-K pathways are usually affected
by mGluR7 activation, the contribution of each of them
in temporal processing should be given a high priority
for examination. Using immunoassay studies, region-
specific changes in actin and microtubule dynamics should
be monitored as a consequence of mGluR7 activation.
Subsequently, the alterations in dendritic spines morphology
should also be investigated. Additionally, the long-term
effects of microtubule-stabilizing/destabilizing chemotherapy
agents commonly given to cancer patients (e.g., paclitaxel
and nocodazole) on PC’s firing patterns during eye-blink
conditioning should be investigated in conjunction with
the role of microtubules in the formation of intracellular
temporal memories. Similar studies in the striatum would
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also be important for the establishment of the molecular
mechanisms involved in both sub- and supra-second timing
(Lusk et al., 2019).

The analysis of PC and MSN firing properties as a function
of what, whether, when, and how often are becoming more
amendable to study given the increase in the availability
of online databases where the behavioral, pharmacological,
and recording data can be reanalyzed in order to pursue
new relations/interpretations while also trying to determine
the value of placing older, less precise data in the context
of new analysis tools that are rapidly becoming available.
This will be especially important in the case of multiplexing
the multiple lines of information contained in an individual
neuron’s signal that is being combined with millions of other
neuronal signals and propagated through various networks
with the goal of determining time epochs of coincidence
and extracting those data points of interest at specific
nodes (e.g., Gallistel and King, 2010; Gu et al., 2015;
Caruso et al., 2018).

Given the depth and breadth of the events and responses
to be timed, as well as the vastness of the stimuli used and
their diverse modalities, intensities, and patterns of presentation,
it is not very surprising to discover that there is an extensive
array of computational models of interval timing competing
for our attention. Addyman et al. (2017) have been able
to categorize competing models as a function of their core
timing process, e.g., the speeds and types of variability of
their pacemaker—accumulator, multiple oscillators, memory
decay, climbing activations, random process and contextual
change—with numerous implementations. Integrative concepts
like the ICAT model, in particular, are only beginning to be
investigated and understood at the neurobiological level as well
as in practical, everyday terms (van Rijn, 2014; see Hartcher-
O’Brien et al., 2016).

The SBF model of interval timing proposed by Matell and
Meck (2000, 2004), attributes interval timing and temporal

processing to the oscillatory input provided by cortical and
thalamic projections to the striatal MSNs. Hence, corticostriatal
synapses are responsible for encoding temporal memory in
striato-thalamocortical circuits as described for a variety of
different situations (e.g., Matell et al., 2003; Buhusi and Meck,
2005; Coull et al., 2011; Allman and Meck, 2012; and Merchant
et al., 2013). It is also possible to consider the dynamic state
of microtubules as an intracellular coincidence detector that
regulates MSN spikes in accordance with the oscillatory patterns
attained from cortical inputs (Buhusi et al., 2016). We have
some insight into the contribution of BDNF in modulating
glutamatergic and dopaminergic activity in cortico-striatal
circuits, thereby regulating clock speed and the acquisition of
timed response thresholds centered around a remembered target
duration (e.g., MacDonald et al., 2012; Agostino et al., 2013;
Lake and Meck, 2013). Moreover, histone deacetylase (HDAC)
inhibition facilitates the acquisition of response thresholds in
a peak-interval procedure through chromatin remodeling and
microtubule stabilization (Yousefzadeh et al., 2018). Our current
hypothesis is that all timingmechanisms are potentially regulated
by coincidence detection at some level, i.e., molecular, cellular,
or circuit levels (Agostino et al., 2011; Buhusi et al., 2016).
Therefore, we propose that microtubule dynamics may be
a viable candidate to serve as a fundamental constituent of
temporal processing and information storage at the molecular
level in both the cerebellar and striatal timing circuits. We
also emphasize the need for conducting cell and molecular
experiments to further elucidate the role of microtubule
proteins in processing temporal and non-temporal information
through synaptic plasticity-dependent or synaptic plasticity-
independent manners.
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