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Simple Summary: Acyl-CoA thioesterase 7 (ACOT7) is important in regulating cell cycle, cell prolifer-
ation, and glucose metabolism. Research on the functions of ACOT7 are seldom, and comprehensive
pan-cancer analysis is lacking. We aimed to perform a pan-can analysis and validated the prognostic
value of ACOT7 in lung adenocarcinoma. ACOT7 was tightly associated with the tumor microenvi-
ronment. The downregulation of ACOT7 expression suppressed cell proliferation and the migration
of the PC9 cell line. ACOT7 is a novel oncogene and therapeutic target for lung adenocarcinoma.

Abstract: Background: Acyl-CoA thioesterase 7 (ACOT7) is of great significance in regulating cell
cycle, cell proliferation, and glucose metabolism. The function of ACOT7 in pan-cancer and its capac-
ity as a prognostic indicator in lung adenocarcinoma (LUAD) remains unknown. We intended to
perform a comprehensive pan-cancer analysis of ACOT7 and to validate its value in LUAD. Methods:
The expression levels, prognostic significance, molecular function, signaling pathways, and immune
infiltration pattern of ACOT7 in 33 cancers were explored via systematic bioinformatics analysis.
Multivariate Cox regression was applied to construct nomograms to predict patients’ prognoses.
Moreover, we conducted in vitro experiments including CCK8, scratch, Transwell, and Matrigel
assays to further explore the function of ACOT7 in LUAD. Results: Patients with high ACOT7
expression have notably poorer long-term survival in many cancer types, including LUAD. Further
enrichment analyses reveal that ACOT7 is involved in immune cells’ infiltration and is substan-
tially related to the cancer–immune microenvironment. ACOT7 could influence drug sensitivities,
including afatinib, gefitinib, ibrutinib, lapatinib, osimertinib, sapitinib, taselisib, and PLX-4720 (all
p < 0.01). A nomogram demonstrated a fair predictive value of ACOT7 in LUAD (C-index: 0.613,
95% CI: 0.568–0.658). The proliferation and migration of PC9 cells were significantly repressed when
ACOT7 expression was downregulated. Conclusion: As an oncogene, ACOT7 is critical in the tumor
microenvironment of pan-cancer and might be a novel therapeutic target for LUAD.
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1. Introduction

Acyl-CoA thioesterase 7 (ACOT7) is one of the most widely investigated isoforms of
the ACOT family [1], also termed ACT, ACH1, BACH, LACH, LACH1, and CTE-II. The
enzyme is localized in the cytoplasm and is expressed in various tissues, particularly in
brain tissue and testes [2,3]. Moreover, ACOT7 is involved in the hydrolysis process of
arachidonoyl-CoA and supplies sufficient arachidonic acid to synthesize prostaglandins [4].
As an essential precursor molecule for pro-inflammatory eicosanoids, arachidonic acid
is essential in regulating cell cycle, cell proliferation, and glucose metabolism [1,5]. For-
wood et al. reported that ACOT7 expression in macrophages is upregulated by lipostage-
landins [1]. ACOT7 has also been reported to be involved in cell cycle control as well as a
target for therapies in breast and lung cancer [6]. Although ACOT7 has been reported in
some types of cancer, there are still many gaps in the research across the cancer spectrum.

Cancer is a critical health burden worldwide, and lung cancer has the highest mortality
rate [7]. Unfortunately, there are still no effective therapies to cure cancer. In recent years, the
field of immunotherapy has emerged to be a powerful and promising therapy for treating
various cancer [8]. Many studies have been conducted to explore new immunotherapeutic
targets by integrating public data for pan-cancer expression and survival analysis [9].

The tumor microenvironment (TME) provides an indispensable function in cancer
progression [10]. The TME contains many cellular components and surrounding non-
cellular components closely related to tumor progression, and it has become a therapeutic
target [11]. Platelet- and tumor-associated macrophages can directly facilitate cancer growth,
migration, and metastasis [12,13]. The neutrophil-to-lymphocyte ratio in the TME is related
to lung cancer prognosis [14]. Currently, immunotherapy is a rapidly growing area of
cancer research. However, not all patients are sensitive to programmed death-1 (PD-1)
and programmed death ligand-1 (PD-L1) blockade therapies, and there are even patients
who are resistant to inhibitors [15,16], although this appears to be a promising strategy for
cancer immunotherapy [17–19]. Finding a novel therapeutic target to compensate for a
shortage of PD-1/PD-L1 antibodies might be a promising approach to reduce advanced
cancer recurrence.

Some research has reported ACOT7’s role in specific tumors. Pan-cancer analysis
on the role of ACOT7 is lacking. Therefore, we aimed to explore the expression level,
prognostic significance, molecular function, signaling pathways, and immune infiltration
pattern of ACOT7 in 33 types of cancer via systematic bioinformatics analysis and perform
functional experimental validation in LUAD.

2. Materials and Methods
2.1. Differential Expression of ACOT7 in Pan-Cancer

The Cancer Genome Atlas (TCGA, https://tcga-data.nci.nih.gov/tcga/, accessed on
5 March 2021) is a publicly accessible, web-based database that offers gene expression,
copy number, mutation, and clinical information [20,21]. The Genotype-Tissue Expression
Project (GTEx, accessed on 5 March 2021) [22] has nearly 1000 individuals with 53 normal
tissue loci for RNA sequencing, and RNA-seq data can be obtained from the University
of California, Santa Cruz Xena (UCSC Xena, accessed on 5 March 2021) [23]. The Cancer
Cell Line Encyclopedia (CCLE, accessed on 5 March 2021) [24] was applied to obtain the
expression level data for cell lines. Data from the TCGA, GTEx, and CCLE databases
were combined using the “limma” (version 4.1) package of R software (version 4.0.2,
https://www.R-project.org, 1 July 2020, The Comprehensive R Archive Network, open
source). ACOT7 expression was assessed in 33 cancers, 31 normal tissues, and 31 tumor cell
lines using the downloaded data. Expression data were Log2 transformed. The expression
levels of ACOT7 were compared between cancer samples and matched standard samples
in 33 cancers using two sets of t-tests, with p < 0.05 indicating significant differential
expression between tumor and normal tissues. The Human Protein Atlas (HPA, https:
//www.proteinatlas.org/, accessed on 5 March 2021) [25,26] was applied for the analysis

https://tcga-data.nci.nih.gov/tcga/
https://www.R-project.org
https://www.proteinatlas.org/
https://www.proteinatlas.org/
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of the protein expression of ACOT7 in human tissue and cells via immunohistochemical
images.

2.2. ACOT7 and Prognosis Analyses in Pan-Cancer

The relationship between ACOT7 expression and long-term survival in cancers was
explored using TCGA. The expression of ACOT7 was divided into two groups according to
the optimal cutoff value via X-tile 3.6.1 software. Kaplan–Meier curves based on univariate
Cox analyses were applied when assessing the prognostic value of ACOT7. The log-rank
test was applied to compare the differences between groups. Forest plots were used to
visualize the relationship between ACOT7 and overall survival (OS), disease-free interval
(DFI), disease-specific survival (DSS), and progression-free interval (PFI) in different cancers
based on “survival” (version 3.3) and “forestplot” (version 3.6) packages of R software.

2.3. Construction of Nomogram in LUAD

To better predict the prognosis of patients with LUAD, we further obtained clinical
features of patients from the TCGA database [27]. Multivariate Cox regression analysis was
conducted using the enter method. Important variables, including gender, age, smoking
status, and race, which were reported as risk factors for the worse survival of patients with
lung cancer, were included in the regression model [28–32]. The potential multicollinearity
of the model was estimated via the variance inflation factor (VIF), with VIF ≥ 5 indicating
significant multicollinearity. Then, the predictive model was visualized using a nomogram.
The C-index and calibration plots were applied to evaluate the predictive accuracy of the
nomogram. The C-index ranges from 0 to 1.0, with 1.0 indicating perfect predictive accuracy,
0.8–1.0 indicating excellent accuracy, and 0.6–0.8 indicating fair accuracy. Patients were
placed into low- or high-risk groups based on the scores calculated from the nomogram. The
optimal cutoff values of ACOT7 expression and scores were identified via X-tile 3.6.1 [33].

2.4. Genetic Alteration Analysis of ACOT7

The cBioPortal database (www.cbioportal.org, accessed on 5 March 2021) [34,35] was
applied to obtain copy number alteration (CNA) and mutation data of ACOT7 and to
analyze the genomic alterations pattern of ACOT7 in tumors. The Person’s correlation
between CNA, DNA methylation levels, and ACOT7 expression was further analyzed.

2.5. Correlation between ACOT7 Expression and TME

Gene sets with significant impact were selected using gene set enrichment analysis
(GSEA) at a false discovery rate less than 0.05 and ranked using normalized enrichment
scores. Gene set variation analysis (GSVA) using the MSigDB database (v 7.1, accessed on
12 March 2021) [36] was also performed to further explore the immune-cell-related path-
ways which ACOT7 correlated with. Then, we applied CIBERSORT [37], a bioinformatic
algorithm, to calculate the composition of immune cells and to assess immune infiltration
patterns. TISIDB, an integrated repository portal for tumor-immune system interactions,
was utilized to analyze the relationship between ACOT7 expression and immune-related
genes using heatmaps [38]. Relationships between ACOT7 expression and tumor muta-
tional burden (TMB), microsatellite instability (MSI), and immune-checkpoint-associated
genes were also investigated using Pearson’s correlation analyses.

2.6. Drug Screening of ACOT7

Genomics of Drug Sensitivity in Cancer (GDSC, version 2, https://www.cancerrxgene.
org/, accessed on 20 March 2021) [39] was used to explore the relationship between ACOT7
expression and the half maximal inhibitory concentrations (IC50s) of 198 compounds using
Spearman’s correlation analyses [40]. In addition, the difference in IC50 concentrations
between the high and low ACOT7 expression groups was determined using t-test.

www.cbioportal.org
https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
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2.7. Cell Culture and siRNAs Transfection

Human bronchial epithelial (HBE) cells and lung cancer cell lines, including PC-9
(RRID: CVCL_B260), A-549 (RRID: CVCL_0023), and NCI-H1975 (RRID: CVCL_1511), were
purchased from Shanghai Institutes of Biological Sciences, China. Cells were all cultured in
DMEM (KeyGene, Nanjing, China) and maintained in a humidified incubator at 37 ◦C with
5% CO2. The PC9 cell line was transfected by siRNAs (RiboBio, Guangzhou, China) using
Lipofectamine RNAiMAX (Invitrogen, Carlsbad, CA, USA). The sequences of siRNAs
targeting ACOT7 were 5′-AGACCGAGGACGAGAAGAADTDT-3′ (si1-ACOT7) and 5′-
GUGCAGGUCAACGUGAUGUDTDT-3′ (si2-ACOT7). The negative control (NC) siRNA
sequence was: 5′-GCACCCAGTCCGCCCTGAGCAAATTCAAGAGATTTGCTCAGGGCG
GACTGGGTGCTTTTT-3′.

2.8. RNA Extraction

Trizol reagents (Invitrogen) were used to extract total RNA from PC9 cells. ACOT7
expression was measured via qRT-PCR using the SYBR Select Master Mix (Applied Biosys-
tems, Cat: 4472908). Reverse transcription was performed to generate cDNA using a
Reverse Transcription Kit (Takara, Cat: RR036A, KeyGEN). qPCR conditions were as
follows: 10 min at 95 ◦C followed by 35–40 cycles at 95 ◦C for 15 s and 60 ◦C for 34 s,
followed by a plate read after each cycle. Relative RNA levels were calculated using the
comparative 2-∆∆CT method with GAPDH as an endogenous control [41]. The primer
sequences of GAPDH were as follows: forward: 5′-ATGGGGAAGGTGAAGGTCG-3′; re-
verse: 5′-CTCCACGACGTACTCAGCG-3′. The primer sequences of ACOT7 were: forward:
5′-TCTCCCATGTGCATCGGTG-3′; reverse: 5′-TTTTCGGACATCACGTTGACC-3′. RNA
concentrations were determined using a microplate reader (Oy spectrophotometer 1510,
Thermo Fisher Scientific). qPCR was performed on an Applied Biosystems 7900 qRT-PCR
machine (Applied Biosystems, ThermoFisher Scientific, Foster City, CA, USA).

2.9. Cell Proliferation and Migration/Invasion Assays

PC9 cells were transfected with siRNAs overnight using 96-well plates at the control
density (2000 cells per well) and incubated for 2 h with CCK-8 (10 µL/well) in each well.
The reaction products were measured at 450 nm. A scratch wound-healing migration assay
was performed. When the cells reached 90–100% confluence in the 6-well plate, the tip of a
sterile plastic pipette was scraped in each culture well, washed twice with PBS to remove
cell debris, and then, the cells were placed in serum-free medium for 24 h. Images were
captured via fluorescence microscopy using an inverted microscope (Nikon Eclipse 2000,
Nikon, Tokyo, Japan). We inoculated 5 × 104 cells onto Transwell kits (8 mm PET, 24-well
Millicell) or matrix-coated inserts (BD Biosciences, Bedford, MA, USA) and incubated them
for 24 h or 48 h. Cells were counted under an inverted microscope after being fixed in
methanol and stained with 0.1% crystal violet.

2.10. Statistical Analysis

Gene expression data were normalized by log2 transformation. The Shapiro–Wilk
test was used to test the normality of data. When comparing gene expression between
normal and cancer tissues, the t-test or Wilcoxon test was used as appropriate. Multivariate
Cox analysis was used to construct the nomograms. The survival difference between the
groups was visualized via Kaplan–Meier curves. Pearson’s or Spearman’s test was used to
assess the strength of the correlations between variables, as appropriate. The means with
standard deviation (SD) were used to compare the relative expression level of ACOT7 in
groups when analyzing the results of the in vitro experiments. R software (version 4.0.2,
https://www.R-project.org, 1 July 2020, The Comprehensive R Archive Network, open
source) and GraphPad Prism (version 8.0.2, GraphPad Software, Inc., San Diego, CA, USA)
were used for statistical analysis and visualization. A two-sided p < 0.05 was a statistical
threshold.

https://www.R-project.org
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3. Results
3.1. Expression Levels of ACOT7 in Pan-Cancer

ACOT7 expression in 33 cancers was systematically analyzed (Figure 1A). Table S1
summarizes information regarding the characteristics of the 33 cancers. ACOT7 was highly
expressed in 25 cancers. As presented in Figure 1B, ACOT7 was expressed in all tumors,
with the highest expression level being in SKCM and the lowest expression level being
in KICH. ACOT7 was relatively highly expressed in key physiological tissues such as
pituitary, brain, bone marrow, and testis tissue (Figure 1C). In addition, CCLE analysis
suggested that ACOT7 was expressed in all tumor cell lines (Figure 1D). Moreover, the
HPA database verified that ACOT7 protein expression levels and mRNA expression were
consistent (Figure S1A–E). Collectively, the above results demonstrated that ACOT7 is
aberrantly expressed in various cancers.
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ACOT7 expression in tumor cells from CCLE dataset. ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns: not
significant.

3.2. ACOT7 as a Prognostic Indicator in Cancers

ACOT7 expression was related to the tumor node metastasis (TNM) stage in six
cancers: HNS, KIRC, KIRP, LIHC, LUAD, and THCA (Figure S2A–F). Moreover, compared
with paired adjacent normal tissue, ACOT7 was highly expressed in BLCA, BRCA, HNSC,
KIRC, LIHC, LUSC, STAD, and THCA and significantly decreased in KICH and KIRP
(Figure S2G–P).

The correlation between long-term survival and ACOT7 mRNA expression in pan-
cancer was explored. ACOT7 expression correlates with patients’ OS in 10 cancers, includ-
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ing ACC (hazard ratio (HR) = 1.624, 95% confidence interval (CI): 1.190–2.216, p = 0.002),
BLCA (HR = 1.189, 95% CI: 1.012–1.396, p = 0.035), GBM (HR = 1.294, 95% CI: 1.033–1.620,
p = 0.025), KIRP (HR = 1.297, 95% CI: 1.012–1.661, p = 0.040), LAML (HR = 1.481, 95% CI:
1.156–1.896, p = 0.002), LIHC (HR = 1.530, 95% CI: 1.239–1.889, p = 0.001), LUAD (HR = 1.296,
95% CI: 1.077–1.560, p = 0.006), LUSC (HR = 1.199, 95% CI: 1.003–1.433, p = 0.046), MESO
(HR = 2.007, 95% CI: 1.452–2.772, p < 0.001), and OV (HR = 0.882, 95% CI: 0.792–0.982,
p = 0.022) (Figures 2A and S3). In addition, ACOT7 expression was closely related to DSS
(Figure 2B), DFI (Figure 2C), and PFI (Figure 2D) in several cancers, especially lung cancer.
Collectively, ACOT7 is a prognostic biomarker in various cancers, especially in ACC, KIRP,
LIHC, LUSC, and MESO.
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A total of 515 patients with LUAD from the TCGA database were extracted to verify
the value of ACOT7. Table 1 shows the results of the Cox regression models. A nomogram
including ACOT7 expression, race, gender, T stage, N stage, and prior malignancy was
developed to predict the OS (Figure 3A). Age was not included in the final model due
to the multicollinearity. The calibration plots demonstrated a fair predictive accuracy for
predicting OS with a C-index of 0.613 (95% CI: 0.568–0.658) (Figure 3B). The high-risk group
(score > 225) demonstrated a dramatically poorer OS (HR = 2.10, 95% confidence interval
(CI): 1.54–2.87, p < 0.001) (Figure 3C).
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Figure 3. Nomogram based on multivariate Cox regression model to predict overall survival of
LUAD patients using TCGA dataset. (A) Nomogram; (B) calibration plots of 1-, 3-, and 5-year overall
survival; (C) Kaplan–Meier curve of patients in different risk groups (high-risk: score > 225; low-risk:
score ≤ 225). Abbreviations: ACOT7, Acyl-CoA thioesterase 7; LUAD, lung adenocarcinoma.

3.3. Genetic Alteration Analyses of ACOT7

Genetic and epigenetic changes have an important effect in modulating cancer prolifer-
ation and progression as well as immune resistance. We analyzed the association between
ACOT7 expression and mutations and CNA via cBioPortal [34,35]. As shown in Figure 4A,
the mutation status of ACOT7 in different tumors was evaluated. The deep deletion and
amplification of the ACOT7 gene represent one of the critical factors leading to mutations,
especially in ovarian epithelial tumors, esophagogastric adenocarcinoma, PAAD, SARC,
and ESCA. In these cancers, the trend of ACOT7 gene alteration was consistent with its
mRNA expression level. In addition, ACOT7 expression was positively correlated with
CNA in 25 of 33 cancers except CHOL, DLBC, LAML, PCPG, THYM, THCA, LGG, and
KIRP (Figure 4B).



Cancers 2022, 14, 4522 8 of 19

Table 1. Univariate and multivariate Cox regression analyses of ACOT7 and clinical characteristics in
LUAD from TCGA database.

Variables
Univariate Multivariate

HR with 95% CI p Value HR (95%) p Value

ACOT7 (high vs. low) 1.59 (1.07–2.36) 0.021 1.72 (1.17–2.60) 0.007
Race

White Reference Reference
Black 1.22 (0.75–2.00) 0.422 1.39 (0.82–2.30) 0.197

Others 0.87 (0.54–1.39) 0.552 0.79 (0.48–1.30) 0.363
Age (≥65 vs. <65, y) 0.89 (0.67–1.21) 0.475

Gender (male vs. female) 1.17 (0.87–1.57) 0.291 1.11 (0.81–1.52) 0.526
T stage (T3–T4 vs. T1–T2) 1.85 (1.26–2.72) 0.002 1.71 (1.12–2.13) 0.013

N stage (N2–N3 vs. N0–N1) 1.57 (1.09–2.42) 0.014 1.46 (0.99–2.13) 0.052
M stage (M1 vs. M0) 1.10 (0.64–1.88) 0.732

Prior malignancy 1.56 (1.04–2.33) 0.031 1.75 (1.15–2.66) 0.009
Smoking 1.05 (0.77–1.43) 0.772 1.16 (0.83–1.62) 0.390

Abbreviations: ACOT7, Acyl-CoA thioesterase 7; LUAD, lung adenocarcinoma; TCGA, the Cancer Genome Atlas;
HR, hazard ratio; CI, confidence interval.
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from cBioPortol dataset; (B) Pearson’s correlation between ACOT7 expression and CNA from TCGA
dataset; (C) Pearson’s correlation between ACOT7 mRNA expression and DNA methylation from
TCGA dataset; (D–M) comparison of promoter DNA methylation status of ACOT7 between cancer
and adjacent normal tissues in (D) UCEC, (E)BLCA, (F) BRCA, (G) CESC, (H) COAD, (I) LIHC,
(J) LUAD, (K) LUSC, (L) PCPG, and (M) READ. Abbreviations: ACOT7, Acyl-CoA thioesterase 7;
LUAD, lung adenocarcinoma; CNA, copy number alteration.
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DNA methylation can control gene expression without altering the genome sequence [42].
In the present study, ACOT7 expression negatively correlates with the DNA methylation
level in 28 of 33 cancers, except OV, DLBC, LAML, GBM, and CHOL (Figure 4C). In
addition, the DNA methylation level of the ACOT7 promoter was lower in UCEC, BLCA,
BRCA, CESC, COAD, LIHC, LUAD, LUSC, PCPG, and READ compared to adjacent normal
tissues (Figure 4D–M). Thus, the abnormal increase in ACOT7 mRNA expression might be
associated with genetic alterations and reduced DNA methylation levels.

3.4. Relationship between ACOT7 Expression and TME

To investigate the potential functions and pathways of ACOT7, we conducted GSEA
analysis. The data indicated that ACOT7 was notably related to cell cycle and immune
regulation pathways, especially in BLCA, PAAD, CESC, COAD, BRCA, PRAD, SKCM,
TGCT, and UVM (Figure 5).
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To investigate the biological functions of ACOT7, we further performed GSVA analysis.
Figure 6 shows the pathways that were positively or negatively correlated with ACOT7.
It showed that ACOT7 was closely associated with CD4 T cells, CD8 T cells, and other
pathways, suggesting that ACOT7 may serve a significant role in the TME.
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There is accumulating evidence that TMEs are critically involved in tumor occurrence
and development [43]. To identify the relationship between the TME and ACOT7, we
analyzed RNA-seq data from multiple solid tumors in the TCGA database. It suggested
that in most cancer types, except UCC, ACOT7 mRNA expression is significantly associated
with TME pathways, especially with DNA damage, repair, and TME score A pathways
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(Figure 7A). We then analyzed the relationship between ACOT7 and the infiltration levels
of 25 immune cells (Figure 7B), with the highest relevant levels in BLCA (n = 18), BRCA
(n = 17), HNSC (n = 15), KIRC (n = 20), LUAD (n = 15), STAD (n = 15), THCA (n = 24), and
THYM (n = 17) (Table S2).
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We further conducted an analysis of ACOT7 expression and immune-related genes, as
described in Charoentong’s study [44]. Major histocompatibility complex (MHC), immune
activation, immune-suppressive, chemokine, and chemokine receptor genes were collected
and analyzed based on the TISIDB database. The heatmaps of immune-related gene expres-
sion patterns revealed that these genes were closely associated with ACOT7 expression in
most tumor types (p < 0.05) (Figure 8). Collectively, ACOT7 may have a critical function in
co-regulating the TME.
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Figure 8. Heatmaps of ACOT7 and immune-related gene co-expression. (A) Major histocompatibility
complex (MHC) genes, (B) immune activation genes, (C) immune suppressive genes, (D) chemokine
genes, (E) chemokine receptor genes. * p < 0.05, ** p < 0.01, *** p < 0.001 **** p < 0.0001.

TMB and MSI are considered as indicators of immunotherapy response and prognosis.
In the present study, ACOT7 expression correlated with TMB and MSI in multiple cancers,
although all observed correlations are actually negligible according to Mukaka’s study [45].
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ACOT7 expression was positively correlated with TMB in COAD (r = 0.14, p = 0.021),
LIHC (r = 0.11, p = 0.045), PRAD (r = 0.13, p = 0.005), SKCM (r = 0.11, p = 0.018), STAD
(r = 0.14, p = 0.004), and UCEC (r = 0.27, p < 0.001), while negatively correlated with TMB
in LAML (r = −0.19, p = 0.037) (Figure 9A). In addition, ACOT7 expression was positively
correlated with MSI in CESC (r = 0.12, p = 0.042), COAD (r = 0.17, p = 0.005), GBM (r = 0.19,
p = 0.023), LIHC (r = 0.11, p = 0.038), LUSC (r = 0.09, p = 0.044), STAD (r = 0.17, p < 0.001),
UCEC (r = 0.21, p = 0.005), and UVM (r = 0.23, p = 0.05) (Figure 9B). It is well known
that immune-checkpoint-related genes are of great significance in immune escape [19];
we thus hypothesized that the expression of ACOT7 correlates with these genes. The
findings support our speculation. ACOT7 expression was closely associated with most
immune-checkpoint-associated genes, especially in BLCA, COAD, KICH, LIHC, and THCA
(Figure 9C).

Cancers 2022, 14, x  14 of 21 
 

 

TMB and MSI are considered as indicators of immunotherapy response and progno-
sis. In the present study, ACOT7 expression correlated with TMB and MSI in multiple 
cancers, although all observed correlations are actually negligible according to Mukaka’s 
study [45]. ACOT7 expression was positively correlated with TMB in COAD (r = 0.14, p = 
0.021), LIHC (r = 0.11, p = 0.045), PRAD (r = 0.13, p = 0.005), SKCM (r = 0.11, p = 0.018), 
STAD (r = 0.14, p = 0.004), and UCEC (r = 0.27, p < 0.001), while negatively correlated with 
TMB in LAML (r = −0.19, p = 0.037) (Figure 9A). In addition, ACOT7 expression was posi-
tively correlated with MSI in CESC (r = 0.12, p = 0.042), COAD (r = 0.17, p = 0.005), GBM (r 
= 0.19, p = 0.023), LIHC (r = 0.11, p = 0.038), LUSC (r = 0.09, p = 0.044), STAD (r = 0.17, p < 
0.001), UCEC (r = 0.21, p = 0.005), and UVM (r = 0.23, p = 0.05) (Figure 9B). It is well known 
that immune-checkpoint-related genes are of great significance in immune escape [19]; we 
thus hypothesized that the expression of ACOT7 correlates with these genes. The findings 
support our speculation. ACOT7 expression was closely associated with most immune-
checkpoint-associated genes, especially in BLCA, COAD, KICH, LIHC, and THCA (Fig-
ure 9C). 

 
Figure 9. Pearson’s correlation between ACOT7 expression and (A) TMB and (B) MSI. (C) The 
heatmaps to show the relationship between ACOT7 expression and immune-checkpoint-associated 
genes. * p < 0.05, ** p < 0.01, *** p < 0.001. 

3.5. Drug Screening of ACOT7 in the GDSC Database 
In addition to checkpoint blockade therapy, we tried to explore the correlation be-

tween ACOT7 and the sensitivity, risk, and efficacy of commonly used targeted therapeu-
tic agents through the GDSC database. With the increased expression of ACOT7, the IC50 
concentrations of targeted therapeutics, including afatinib (p < 0.001), gefitinib (p < 0.001), 
ibrutinib (p < 0.001), lapatinib (p = 0.0021), osimertinib (p < 0.001), lapatinib (p < 0.001), and 
taseletinib (p < 0.001), increased, while the IC50 concentration of PLX-4720 (p < 0.001) de-
creased (Figure 10). These results suggest that ACOT7 may be a potential predictive bi-
omarker of targeted therapy sensitivity. 

Figure 9. Pearson’s correlation between ACOT7 expression and (A) TMB and (B) MSI. (C) The
heatmaps to show the relationship between ACOT7 expression and immune-checkpoint-associated
genes. * p < 0.05, ** p < 0.01, *** p < 0.001.

3.5. Drug Screening of ACOT7 in the GDSC Database

In addition to checkpoint blockade therapy, we tried to explore the correlation between
ACOT7 and the sensitivity, risk, and efficacy of commonly used targeted therapeutic
agents through the GDSC database. With the increased expression of ACOT7, the IC50
concentrations of targeted therapeutics, including afatinib (p < 0.001), gefitinib (p < 0.001),
ibrutinib (p < 0.001), lapatinib (p = 0.0021), osimertinib (p < 0.001), lapatinib (p < 0.001),
and taseletinib (p < 0.001), increased, while the IC50 concentration of PLX-4720 (p < 0.001)
decreased (Figure 10). These results suggest that ACOT7 may be a potential predictive
biomarker of targeted therapy sensitivity.
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3.6. Knockdown of ACOT7 Inhibits Proliferation and Progression of Lung Cancer Cells

To further explore the role of ACOT7 in lung cancer, we performed cell function
assays. The analysis of the CCLE database showed that ACOT7 expression was high
in non-small-cell lung cancer (NSCLC) cells, including LUAD and LUSC (Figure 11A).
According to the qRT-PCR assay, ACOT7 expression was higher in PC-9, A-549, and NCI-
H1975 cell lines than in HBE cells, with the highest expression in PC-9 cells (Figure 11B).
Therefore, the PC9 cell line were selected for further experimental validation. The expres-
sion level of ACOT7 was significantly suppressed when transfected with siRNA-ACOT7
(Figure 11C). In addition, the scratch assay indicated that the migratory capacity was re-
duced (Figure 11D), and the CCK8 assay showed the proliferation rate of PC9 cells was
dramatically reduced (Figure 11E). In addition, Transwell and Matrigel experiments con-
firmed that the downregulation of ACOT7 significantly reduced the migration and invasion
of PC9 cells (Figure 11F).
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(A) ACOT7 expression in cancer cells via CCLE. (B) The expression level of ACOT7 in HBE and
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efficacy was verified via qRT-PCR. (D) Scratch assays. (E) CCK-8 assays. (F) Transwell and Matrigel
assays. ** p < 0.01, *** p < 0.001.

4. Discussion

Recently, immune checkpoint therapy has become quite popular, given its efficacy
in many cancers [46]. However, a tiny percentage of patients are sensitive to immune
checkpoint inhibitor therapy, and drug resistance and relapse are common [47]. Hence,
further exploration is warranted to identify predictive biomarkers for immune checkpoint
inhibitors. Pan-cancer analysis can indicate the regulation characteristics of molecular
targets and provide insights into cancer diagnosis and therapy [48].

An increasing number of pan-cancer analyses have revealed that cancer driver genes,
mutations, and RNA alterations are associated with tumorigenesis and development [49–51].
ACOT7 is a neuron-enzyme-regulating fatty acid metabolism, which plays a role in mesial
lobe epilepsy [52]. However, the role of ACOT7 in pan-cancer and whether ACOT7 could
be a prognostic indicator in lung cancer are still unknown. To date, studies investigating
the role of ACOT7 in cancers are seldom. Xie et al. have reported that ACOT7 is activated
by KLF13 and promotes the progression of hepatocellular carcinoma [53]. Research by
Feng et al. has shown that gastric cancer patients with high ACOT7 expression have a
lower survival rate [54]. In our study, ACOT7 was aberrantly expressed in various cancers
through TCGA and HPA databases. High ACOT7 expression was significantly correlated
with poorer prognoses of various cancers. GSEA analysis showed that ACOT7 was notably
related to the cell cycle and TME pathway. In addition, functional experiments revealed
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that the downregulation of ACOT7 dramatically inhibited the proliferation, invasion, and
metastasis ability of PC9 cells.

Increasing evidence supported TMB as a new and promising prognostic marker for
cancers [55,56]. These studies demonstrated that a high TMB was related to an immuno-
genic TME and increased expression of neo-antigens, which can activate immune cells and
further enhance the clinical response to immunotherapy. Interaction between tumor cells
and the TME offers a new direction in anti-cancer immunotherapy. TME characteristics can
be used as an indicator for the evaluation of the response of tumor cells to immunotherapy
and are undergoing preclinical and clinical development [57]. In this study, ACOT7 mRNA
expression was significantly related to DNA damage and repair pathways. Moreover,
according to ESTIMATE scores, ACOT7 was involved in immune cell infiltration in most
cancers. A TME with an infiltrating immune and extracellular matrix undergoes substantial
changes that can impact tumor occurrence and development [58,59]. Our findings also
suggested that ACOT7 was significantly associated with genes encoding tumor immunity
factors. Previous studies reported that the viability and function of cancer cells and immune
cells depend on the cellular metabolism, which is heavily influenced by the TME [60–62].
ACOT7 might alter the metabolism of cancer cells by regulating TME-related pathways.
These results altogether clarify that ACOT7 has more vast applicability in pan-cancer and
confirms that ACOT7 is a new therapeutic target for developing immunosuppressants.

An opposite trend was observed in the correlation between the expression of ACOT7
and the expression of many immune activation/suppression/MHC genes in some tumors.
The activation of the tumor immune microenvironment can simultaneously inhibit its
occurrence.. Some studies have confirmed that the level of infiltration of cancer-promoting
immune cells and cancer-suppressing immune cells is significantly and positively correlated
in tumor tissues [63]. The detailed mechanism needs to be further investigated.

Drug sensitivity has always been the focus of clinical discussion, and acquired drug
resistance often leads to treatment failure and disease progression. To date, more than three
generations of epidermal growth factor receptor–tyrosine kinase inhibitors (EGFR-TKIs)
have been invented and applied in clinical practice. A meta-analysis of nine randomized
clinical trials indicated that adjuvant EGFR-TKIs could improve the DFI of patients with
EGFR-mutant NSCLC [64]. Despite their effectiveness, the management of acquired resis-
tance to EGFR-TKIs remains a significant challenge [65]. In our study, ACOT7 expression
was positively correlated with cellular sensitivity to EGFR-TKIs, and therefore, ACOT7 is
potentially a powerful predictive indicator.

We successfully evaluated the role of ACOT7 from the pan-cancer perspective and
further investigated the biological function of ACOT7 in LUAD. This is the first study
regarding this topic, but on the other hand, the function of ACOT7 in more cancers needs
to be further verified.

5. Conclusions

Taken together, our study first unveiled a complicated role of ACOT7-aberrant expres-
sion in clinical prognosis, immune cell infiltration, TMB, or MSI in pan-cancer. ACOT7
might act as an oncogene and potential therapeutic target in LUAD. As this is a preliminary
study, further in vitro and in vivo experiments on the function of ACOT7 are needed.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers14184522/s1, Figure S1: Comparison of ACOT7 expression
between normal and tumor tissues with corresponding immunohistochemistry images. (A) Breast.
(B) Cervix. (C) Liver. (D) Thyroid. (E) Lung. * p < 0.05, ** p < 0.01, *** p < 0.001; Figure S2: ACOT7
mRNA expression in pan-cancer. Association between ACOT7 expression and TNM stage in (A)
HNSC, (B) KIRC, (C) KIRP, (D) LIHC, (E) LUAD, and (F) THCA; difference in ACOT7 expression
in paired normal and tumor tissues in (G) BLCA, (H) BRCA, (I) HNSC, (J) KICH, (K) KIRC, (L)
KIRP, (M) LIHC, (N) LUSC, (O) STAD, and (P) THCA. * p < 0.05, ** p < 0.01, *** p < 0.001; Figure S3.
Kaplan–Meier curves of patients with different ACOT7 expression in 10 cancers including (A) ACC,
(B) BLCA, (C) GBM, (D) KIRP, (E) LAML, (F) LIHC, (G) LUAD, (H) LUSC, (I)MESO, and (J) OV.
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Table S1: Characteristic information of 33 cancers; Table S2: Correlation between ACOT7 expression
and immune cell infiltration in eight cancers.
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