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Simple Summary: Retrospective studies of common malignancies such as head and neck cancer
often report lower incidence and/or better outcomes for patients incidentally treated with statins,
the HMG-CoA reductase inhibitors commonly prescribed to reduce blood cholesterol and related
cardiovascular risks. Lipophilic statins have been proposed to both sensitize to therapy and spare
normal tissue, suggesting particular benefits in head and neck cancer, where treatment often incurs
major toxicities. While roles for statins in prevention remain controversial, rigorous laboratory
studies have confirmed the direct effects of statins on cells and tumors that enhance response to
chemotherapy, radiation, targeted agents and immunotherapy. This review surveys the literature
on mechanisms of action and features of tumors that may mediate the benefits of statins during and
following treatment for head and neck cancer. Statins may have their greatest impact on radiotherapy,
suggesting prospective studies of prolonged treatment in selected patients toward the long-term goal
of treatment de-intensification.

Abstract: Statins, a class of HMG-CoA reductase inhibitors best known for their cholesterol-reducing
and cardiovascular protective activity, have also demonstrated promise in cancer prevention and
treatment. This review focuses on their potential applications in head and neck cancer (HNC), a com-
mon malignancy for which established treatment often fails despite incurring debilitating adverse
effects. Preclinical and clinical studies have suggested that statins may enhance HNC sensitivity
to radiation and other conventional therapies while protecting normal tissue, but the underlying
mechanisms remain poorly defined, likely involving both cholesterol-dependent and -independent
effects on diverse cancer-related pathways. This review brings together recent discoveries concern-
ing the anticancer activity of statins relevant to HNC, highlighting their anti-inflammatory activity
and impacts on DNA-damage response. We also explore molecular targets and mechanisms and
discuss the potential to integrate statins into conventional HNC treatment regimens to improve
patient outcomes.
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1. Introduction

Cancer remains a global health challenge, accounting for some 10 million deaths per
year worldwide. Despite substantial advancements in prevention and treatment, cancer
remains one of the most common causes of mortality, particularly in older adults [1]. Head
and neck cancer (HNC) is a common malignancy that typically presents as a squamous cell
carcinoma (HNSCC) originating in the upper aerodigestive tract [2], with over a half million
new diagnoses each year worldwide [1]. HNC risk factors vary by site and may encompass
tobacco and alcohol use, human papillomavirus (HPV) infection and occupational and envi-
ronmental hazards [3]. Treatment options include surgery, radiation therapy, chemotherapy,
immunotherapy and targeted therapies. Typically, surgery and/or radiation are combined
with systemic therapies, depending on the stage and characteristics of the cancer [4]. As
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with many cancers, HNC diagnosis at an early stage and appropriate treatment selection
are associated with complete response and high overall survival, though significant acute
and long-term toxicities affect quality of life [5]. Nonetheless, many patients are diagnosed
at an advanced stage and/or recur after their initial therapy, the majority of whom will
eventually succumb to their disease. There is a critical, unmet need for more effective
primary therapies that can be integrated into current treatment regimens without increasing
adverse effects. Competitive inhibitors of the mevalonate pathway enzyme 3-hydroxy-3-
methylglutaryl-CoA (HMG-CoA) reductase, commonly known as statins, may represent
an opportunity to both enhance treatment efficacy and lower toxicity [6-8].

By inhibiting HMG-CoA reductase, statins can directly lower cholesterol levels as
a result of decreased flux in the mevalonate pathway and reduced formation of precursors
for cholesterol biosynthesis (Figure 1). However, the mevalonate pathway is also limiting
for production of isoprenoids, which serve key roles in cellular metabolism and signaling
such as isopentenyl diphosphate (IPP), farnesyl diphosphate (FPP) and geranylgeranyl
diphosphate (GGPP). Statins’ effects on serum cholesterol are both direct and indirect.
Decreased intracellular cholesterol levels can induce upregulation of the sterol regulatory
element-binding protein (SREBP). This transcription factor governs various genes involved
in lipid metabolism, leading to an increased presence of low-density lipoprotein (LDL)
receptors on the cell surface. This upregulation enhances the absorption of cholesterol-rich
LDL particles from the bloodstream, subsequently lowering plasma LDL-cholesterol levels.
Some statins also elevate high-density lipoprotein (HDL), or “good cholesterol”, potentially
decreasing the risk of cardiovascular disease [9].

Cholesterol plays vital roles in biological processes including cell membrane mainte-
nance, steroid hormone synthesis, vitamin D and bile acid production and the formation of
lipid rafts and caveolae that facilitate transport, signal transduction and cell polarization. In
addition, statins” impact on isoprenoid biosynthesis can produce diverse pleiotropic effects.
Isoprenoids serve as lipid anchors for intracellular signaling proteins such as Ras, Rac and
Rho, essential for cell growth, survival and differentiation. Modulating isoprenylation
can influence cellular signaling pathways, potentially contributing to statins’ therapeutic
benefits [7,8].

The cellular impacts of statins are influenced by their chemical structures. Compared
to hydrophilic statins such as pravastatin and rosuvastatin that primarily suppress choles-
terol biosynthesis by the liver, the lipophilic statins, such as simvastatin, lovastatin and
atorvastatin, are more bioavailable in the periphery, providing the potential to impact
multiple targets of mevalonate metabolism in cancer cells [10,11]. Simvastatin, a semisyn-
thetic derivative of lovastatin, is the most commonly used statin among the greater than
one quarter of U.S. adults over 40 years of age prescribed statins to reduce serum cholesterol
levels and/or prevent cardiovascular disease [12]. As such, incidental use of lipophilic
statins is a common finding in any large study of cancer patients.

Population-based studies have yielded provocative findings that patients on statins
may display lower cancer rates and benefit from more favorable outcomes for cancer
treatment, implicating lower serum cholesterol or other effects of these agents in limiting
carcinogenesis and resistance [13-16]. Although specific mechanisms are still debated, there
is compelling evidence that statins can sensitize HNC to radiotherapy, chemotherapy and
immunotherapy while reducing adverse effects on normal tissue [6-8]. Rather than limit
the benefits to patients prescribed statins for other reasons, these and other results support
studies to evaluate treating HNC patients with statins alongside their cancer treatment
toward improving therapeutic outcomes.

This review provides a synopsis of current research on the use of statins in cancer
therapy, focusing on head and neck cancer. We conclude that while statins appear very
promising as new agents for the treatment of HNC, there remains an urgent need to establish
the value of these drugs by pursuing clinical studies beyond impacts of incidental use.
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Figure 1. Overview of the mevalonate pathway. Acetyl-CoA is condensed to form 3-hydroxy-3-
methylglutaryl-CoA (HMG-CoA). The rate-limiting step in the pathway involves the conversion
of HMG-CoA to mevalonate by HMG-CoA reductase (HMGCR). Mevalonate undergoes further
metabolism by mevalonate kinase (MVK), phosphomevalonate kinase (PMVK) and mevalonate
decarboxylase (MVD) to yield isopentenyl pyrophosphate (IPP). IPP is converted to farnesyl py-
rophosphate (FPP) by farnesyl diphosphate synthase (FDPS) and to geranyl geranyl pyrophosphate
(GGPP) by geranyl geranyl diphosphate synthase (GGPPS1), providing intermediates for protein
prenylation. Alternatively, two FPP molecules are linked by squalene synthase (SQS) to form the
C30 isoprenoid squalene, a rate-limiting precursor for cholesterol synthesis. FPP can be directly
added to biomolecules during the formation of ubiquinone (coenzyme Q10) and heme A of cy-
tochrome c oxidase, supporting mitochondrial metabolism. Not shown are pathways from IPP to
tRNA isopentenylation.

2. Cholesterol-Dependent Effects of Statins

Most discussion of cholesterol focuses on the deleterious effects of excess biosynthesis
and/or dietary uptake such as atherosclerosis [17]. Nonetheless, cholesterol is a critical
component of cell membranes, representing about half of the lipid in plasma membranes,
where its content is closely regulated to maintain membrane fluidity and other essential
properties in both normal and malignant cells [18]. Further, in cholesterol-rich membranes,
cholesterol may partition into rafts and form complexes with specific proteins [19]. As such,
decreased cholesterol levels upon inhibition of HMG-CoA reductase by statins would be
expected to compromise basic cellular functions. However, where cholesterol starvation
differentially impacts cancer cells, this may provide a route to increasing the therapeutic
index of cancer therapy.
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2.1. Membrane Rafts and Signal Transduction

Given the essential roles for cholesterol in maintaining tumor cell membrane function-
ality, strategies aimed at inhibiting cholesterol biosynthesis could restrict tumor growth and
metastasis [20]. As an example, the caveolae protein caveolin-1 (CAV1) has been found to
modulate the metastatic and invasive capabilities of oral squamous cell carcinoma (OSCC)
cells [21]. Elevated CAV1 expression in metastatic lymph nodes correlates with poor OSCC
prognosis. The link to mevalonate pathway metabolism and statins may come via a critical
role for cholesterol in lipid raft-dependent functions in cancer cells and tumors [22]. Lipid
rafts function as hubs for signaling proteins, selectively and dynamically regulating their
recruitment or exclusion in response to intracellular and extracellular stimuli [23]. Via con-
centrating raft-associated proteins and maintaining stable complexes, lipid rafts facilitate
signal transduction, a function mediated in part by CAV1. By disrupting rafts and caveolae,
statins can have indirect effects on CAV1 and other proteins, leading to CAV1 degradation
and altered cell signaling. Of particular significance, lipid raft integrity modulates survival
and cell death pathways [24], suggesting a relationship between lipid rafts and therapy
resistance [25]. Indeed, multiple cancer cell survival and proliferation-related signaling
pathways have been linked with lipid rafts [26]. Providing a potential mechanism for the
beneficial effects of statins, disrupting lipid rafts results in the inhibition of the PIK3/Akt
signaling pathway, leading to radiosensitization in HNSCC [27]. A complementary effect
may be to limit Akt-induced PD-L1 expression, allowing statins to potentiate anti-tumor
immune response [28].

2.2. Cholesterol’s Influence on Cancer Cell Proliferation, Survival and Therapy Resistance

Cholesterol’s role in lipid rafts and caveolae in the plasma membrane may impact
cancer cell proliferation and survival via effects on signaling by receptors such as HER2 [29],
EGEFR [30] and CXCR4 [31], as well as transducers and effectors such as PI3K [32], SRC
family kinases [25] and NOX [33], along with other regulators [34]. However, maintain-
ing cholesterol at normal levels in other cellular membranes and subdomains impacts
a wide range of pathways important to cancer cell growth, proliferation and resistance.
Studies of cholesterol depletion by statins or cyclodextrins suggest that cholesterol helps
maintain secretory pathway function, regulates autophagy and supports mitochondrial
oxidative phosphorylation [17,35,36]. Other connections appear more indirect. ATAD3A,
a protein associated with a wide range of physiological and pathological responses, plays
a role in cholesterol metabolism [37]. Elevated ATAD3A expression has been observed
in various cancers, including HNSCC [38—40]. In HNSCC, ATAD3A operates as a mito-
chondrial oncoprotein that stimulates disease progression via the activation of mitochon-
drial ERK1/2 [41-43]. Notably, the ATAD3A-ERK1/2 signaling pathway links to voltage-
dependent anion channel 1 (VDAC1) [41]. VDAC1 promotes the transport of ERK1/2 to the
mitochondria, vital for the formation of the ATAD3A-ERK1/2 protein complex in HNSCC
cells. Thus, multiple mechanisms may link cholesterol levels to EGFR/PI3K/Akt/mTOR
signaling in HNSCC and other cancers [44—46].

The calcium-activated chloride channel TMEM16A, previously ANO1, is upregulated
in diverse cancers [47] and commonly overexpressed in HNSCC, which is associated with
poor outcomes [48,49], establishing it as a therapeutic target. Along with binding to EGFR
that may impact HNC proliferation, survival and expression of PD-L1 and thus immune
evasion [47,50], TMEM16A has been implicated in resistance to conventional therapy and
EGFR-targeted agents. TMEM16A upregulation can also suppress apoptosis and promote
cisplatin resistance [51]. Simvastatin impairs TMEM16A channel function—potentially due
to cholesterol depletion, though mevalonate-independent mechanisms may be involved—
and reduces OSCC cell proliferation in a TMEM16A-dependent manner [49], suggesting
statins as an alternative to TMEM16A inhibitors.
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2.3. Inflammation and Immune Response Modulation

The FDA has approved the anti-PD-1 immune checkpoint blockade (ICB) antibodies
nivolumab and pembrolizumab for cisplatin-resistant, relapsed or metastatic HNSCC
patients. Clinical trials and research studies have confirmed pembrolizumab’s efficacy
and safety, both as a standalone treatment and combined with chemotherapy for recurrent
or metastatic HNSCC [52,53]. For patients with PD-L1-positive, relapsed, or metastatic
HNSCC, pembrolizumab monotherapy is recommended as a first-line treatment [54].
Despite its potential benefits, ICB therapy faces multiple barriers including intrinsic and
acquired resistance and high rates of immune-related adverse events (irAEs). There is
considerable interest in combination therapies.

Statins have long been appreciated for their ability to reduce inflammation [55], and
part of this effect may be linked to reducing cellular cholesterol levels. Much like its effects
on cancer cells, cholesterol depletion may disrupt rafts and caveolae in immune cells,
dispersing receptors and transducers that mediate inflammatory signaling in innate and
adaptive immune cells [56,57]. As a consequence, a concern would be that lowering choles-
terol with statins might reinforce immunosuppression in the tumor microenvironment.
Nonetheless, an emerging theme from recent preclinical and patient studies in multiple
cancers is that statins potentiate anti-tumor immune responses and/or immunotherapy
(e.g., [58-61]). Multiple cholesterol-dependent mechanisms may be involved.

Nucleic acid detection in the cytoplasm, which activates the innate immune system,
occurs through pattern recognition receptors (PRRs). One such PRR is the cyclic GMP-AMP
synthase (cGAS)/stimulator of interferon genes (STING) pathway [62]. Activation of cGAS
by cytosolic DNA induces STING to phosphorylate and activate TBK1 and drive Type I
interferon (IFN) pathway activation, which has the potential to induce an effective anti-
tumor immune response [63]. As such, STING agonists are currently being evaluated in
multiple contexts as cancer therapeutics [64]. Along with other effects, Type I IFN signaling
may limit cholesterol synthesis, which may then further activate STING via depletion of
the ER membrane cholesterol pool [65]. Simply disturbing cholesterol metabolism as with
statins might be sufficient to induce this positive feedback loop.

Other benefits of statins may be to reduce the suppressive influence of excess choles-
terol on immune function. Class II major histocompatibility complex (MHC II) molecules
are raft-associated proteins expressed on antigen presenting cells such as dendritic cells
(DCs) and serve a key role in presenting processed tumor antigen peptides to effector cells,
thereby eliciting anti-tumor responses [66]. Tumor cells can downregulate DC functionality
by raising cholesterol levels [67]. Oxysterol secretion by tumor cells impairs DC migration
to lymph nodes and reduces T cell priming [68].

Cholesterol may also contribute to T cell dysfunction directly via immune checkpoint
activation and CD8" T cell exhaustion. Membrane cholesterol serves a direct role in sta-
bilizing PD-L1 through its interaction with cholesterol-binding CRAC motifs [69]. This
suggests that reducing cholesterol might be sufficient to interrupt immune checkpoint sig-
naling and/or potentiate immune checkpoint blockade immunotherapy. High cholesterol
exposure in the tumor microenvironment is also associated with elevated PD-1 expression
by infiltrating CD8" T cells [70] and CD8* T cell exhaustion [71].

Multiple indirect effects of statins can be ascribed to the decreased cholesterol biosyn-
thesis. Intracellular cholesterol depletion may promote cleavage and nuclear localization of
sterol regulatory element (SRE)-binding proteins (SREBPs [72]) that bind SREs, leading to
compensatory expression of sterol pathway and coregulated genes. Along with inducing
expression of HMGCR and other mevalonate pathway enzymes, SREBPs increase the
expression of enzymes for cholesterol biosynthesis (via SREBP-2) and fatty acid and triglyc-
eride biosynthesis (via SREBP-1) as well as the LDL receptor and diverse other proteins
linked to lipid metabolism and transport. Insofar as SREBPs are cancer targets [73,74],
this effect of statins may well be counterproductive beyond simply restoring mevalonate
pathway activity. Along these lines, one of the SREBP-dependent proteins induced by
statins is the LDL receptor negative regulatory factor PCSK9 [75,76]. PCSK9 has emerged as
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an alternate target for lipid lowering therapy, insofar as inhibiting PCSK9 with antibodies
(alirocumab, evolocumab) or siRNA (inclisiran) leads to increased LDLR recycling rather
than degradation and greater liver uptake of LDL, lowering circulating cholesterol [77].
Significantly, PCSK9 has a similar effect on MHC I, leading to its lysosomal transport and
downregulation [78]. Targeting PCSK9 increased tumor cell MHC I expression, promoted
CD8" T cell tumor infiltration and cytotoxicity and potentiated the effects of PD-1/PD-L1
checkpoint blockade. Effects on CD8" T cells may also be direct, as blocking PCSK9 can
enhance T cell receptor (TCR) signaling via stabilizing LDLR [79]. While arguing for target-
ing PCSKO9 in cancer immunotherapy [80], these considerations also raise the concern that
statins have the potential to interfere with immune checkpoint blockade via activation of
SREBP and upregulation of PCSK9.

3. Non-Canonical Effects of Statins

Statins appear to exert pleiotropic effects independent of their lipid-lowering prop-
erties that may underlie some of their beneficial effects on cardiovascular disease, inflam-
mation and cancer (Figure 2) [81]. Beyond lowering cholesterol, suppressing mevalonate
biosynthesis limits formation of isoprenoids and thus reduces protein farnesylation and
geranylgeranylation, affecting small GTPases and other modified proteins. Similarly, statins
restrict synthesis of ubiquinone (coenzyme Q10) and heme A in cytochrome C oxidase,
potentially impairing mitochondrial electron transport chain function. In turn, statins may
mediate some of their effects independently of mevalonate pathway inhibition. Physio-
logical consequences of reduced protein prenylation and/or off-target activities constitute
non-canonical effects of statins and can have significant impacts on cancer cells.

Signal Cell Inflammation
transduction proliferation Immune response
t $ $
a 2\
CHOLESTEROL-DEPENDENT
EFFECTS

NON-CANONICAL

L EFFECTS
Anti <« Mitochondrial
proliferative g dysfunction
. o v
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Figure 2. Schematic of cholesterol-dependent and non-canonical effects of statins that may impact
response to cancer treatment in head and neck cancer.

3.1. Anti-Proliferative Effect

Statins have shown growth inhibitory effects on multiple human tumor cell lines
including glioma, neuroblastoma, lung and breast cancer cells that appear to be indepen-
dent of cellular cholesterol but can be partially reversed by FPP and GGPP, indicating
the critical role of prenylation [82]. Like Ras and other related small GTPases [83], Rho
proteins (Rho, Rac, Cdc42) are prenylated, enabling their membrane association, where
they function as conformational switches, transitioning between a GDP-bound inactive
state and a GTP-bound active state. Activation of Rho proteins and their effector molecules
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regulate multiple cancer-relevant pathways including cytoskeletal organization, vesicle
trafficking, gene expression, cell signaling, cell cycle, motility and cell survival, supporting
tumor initiation, growth, metastasis and therapy resistance [84]. Thereby, the broad reliance
on Rho proteins and their requirement for prenylation may serve as an Achilles heel that
has the potential to enhance response to therapy or even directly promote cancer cell death
such as via activating the intrinsic apoptosis pathway [82]. Indeed, prenylation defects may
underlie statins enhancing responses to a wide range of anticancer drugs including EGFR
targeted agents [85-87].

Regarding Rho protein’s roles in proliferation and survival, in the context of HNC,
in vitro experiments have demonstrated that atorvastatin inhibits RhoC function, reducing
ERK1/2 and STAT3 phosphorylation. This results in reduced cell motility, invasion and
colony formation in HNSCC cell lines [88]. In addition, simvastatin has been shown to
downregulate integrin beta-1, inhibit stress fiber formation and suppress cell proliferation.
Furthermore, simvastatin upregulates cell cycle regulators p21 and p27 [89]. Reduction in
tongue squamous cancer cell proliferation and growth were observed upon silencing RhoA,
ascribed to altered cyclin D levels and increased p21 and p27 [90]. Statins have been found
to stimulate membrane FasL expression and lymphocyte apoptosis via the RhoA /Rho-
associated protein kinase (ROCK) pathway in murine melanoma cells [91]. Lovastatin has
similarly been observed to inhibit cell proliferation and induce apoptosis in human breast
carcinoma cells, potentially through upregulation of p21 and downregulation of cyclin D1
and survivin levels [92]. Treatment with lovastatin or simvastatin in prostate cancer led to
RhoA inactivation, inducing cancer cell apoptosis and causing cell cycle arrest in the G1
phase [93]. Considering the pro-proliferative and anti-apoptotic effects of RhoA mediated
by activation of ERK1/2, as previously reported [94,95], statin treatment might be expected
to reduce ERK1/2 and mTOR phosphorylation levels. This would result in an increase
in Bim expression, leading to apoptosis [96]. Supporting this concept, statin-induced
apoptosis has been confirmed in both human colon cancer cells and xenografts, as well as
in breast cancer [97,98]. Another effector in HNSCC may be the p21-activated kinase PAK2,
which is an effector of Rho GTPases involved in chromatin remodeling, cell proliferation
and apoptosis. PAK2 overexpression has been positively correlated with chemoresistance
and linked to adverse clinical outcomes in HNSCC patients. Upregulation of c-Myc
expression by PAK2, leading to transcriptional activation and induction of pyruvate kinase
M2 (PKM2) expression, has been identified as resulting in the diminished aerobic glycolysis,
proliferation and chemotherapeutic resistance of HNSCC cells [99].

Racl, a multifunctional protein in endothelial cells, plays various roles including
cellular differentiation, adhesion, angiogenesis, migration, vascular permeability and
redox signaling. Prenylation is essential for Racl’s proper subcellular localization [100].
The primary causes of mortality in HNSCC are local invasion and distant metastasis of
cancer cells. Persistent Racl activation has been reported in HNSCC, with the EGFR/Vav2
axis implicated in cell invasion [101]. Recent work suggested a potential collaboration
between Racl and the CCL2-CCR4 axis in promoting cell migration and cancer metastasis,
emphasizing the potential significance of statins in reducing Racl prenylation and thereby
function toward enhancing HNSCC treatment outcomes [102].

HNSCC is characterized by dysregulation of the autophagy-lysosome pathway, specif-
ically the p62/SQSTM1 protein and overexpression of fibronectin 1 (FN1), which has
been associated with poorer prognosis and higher tumor pathological grade in HNSCC
patients. Lovastatin is suggested to suppress the expression of FN1 and Rho family small
GTP-binding proteins, which are known to contribute to tumor aggressiveness through
promoting cellular plasticity [103]. This finding is further supported by another study
emphasizing the significant role of statins in regulating fibronectin expression [104]. Col-
lectively, these findings suggest a potential therapeutic role of statins in cancer treatment
mediated by impaired function of Rho GTPases.

Some connections to Rho protein prenylation may be less direct. A critical role for the
mevalonate pathway, mediated by Rho GTPases, has been established for the mechanosen-
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sitive transcription coactivators YAP and TAZ [105], whose activity is mediated by TEAD
transcription factors. Surveys of cancer-associated mutations have highlighted YAP and
TAZ as oncogenic drivers in a range of malignancies, including HNSCC [106]. Multiple
pathways impact YAP/TAZ signaling and thereby limit expression of its targets which
include cell proliferation, growth, stress response, immune evasion and survival genes
that if deregulated, may help drive cancer initiation, growth, dissemination and therapy
resistance [107-110]. Of particular relevance to ICB immunotherapy, YAP/TAZ regulates
expression of PD-L1 in a statin-dependent manner [111,112]. As such, YAP/TAZ and
TEAD have emerged as important cancer targets [110]. Blocking Rho prenylation may have
multiple effects leading to reduced YAP/TAZ nuclear localization [105] and thus impaired
transcription regulation. Statins have also been found to modulate YAP via a mechanism
depending on the long noncoding RNA SNGH29 [111].

Given the high incidence of mutations deregulating YAP/TAZ in HNC [113], an at-
tractive model is that beneficial effects of statins in HNC may be mediated by reduced
YAP/TAZ activity. Indeed, a genome-wide CRISPR-Cas9-based inactivation screen in
OSCC cells led to identifying YAP or TAZ dependency in the majority of HNSCC cell
lines [114], validating targeting this pathway. Suggesting an opportunity to combine statins
with other agents, YAP1 collaborates with the targetable epigenetic regulator BRD4 [115] to
regulate the chromatin accessibility of many genes, which influences their expression and
contributes to the malignant properties of HNSCC [116].

3.2. Chemotherapy Sensitization

While HNSCC is increasingly likely to be treated with ICB immunotherapy, most
patients are initially treated with multimodality therapy including surgery, radiation and
chemotherapy. Chemoradiotherapy may combine multiple genotoxic agents, such as
cisplatin or carboplatin and 5-fluorouracil, along with a targeted agent such as the anti-
EGFR antibody cetuximab [117]. Added to radiation, systemic therapy improves local
control and overall survival, however, many patients experience severe adverse events
during treatment and debilitating long-term toxicities, raising interest in de-escalation,
particularly for HPV* disease [118]. Statins may offer the opportunity to reduce the
intensity of treatment and/or eliminate the need for radiation or chemotherapy, given their
potential to improve the benefits and reduce toxicity [119]. Indeed, several retrospective
studies have reported that incidental statin use is associated with improved outcomes in
HNSCC [120-122].

A caveat is that any apparent beneficial effects of combining statins and chemother-
apy agents may depend on secondary effects of prolonged statin therapy and/or specific
features of each tumor insofar as randomized controlled trials examining adding statins
to chemotherapy in several cancers have failed to reveal improved outcomes [6]. In vitro,
combining statins with chemotherapy agents has yielded divergent results from sensitiza-
tion to protection. In a study using breast cancer cells, the combination of simvastatin and
doxorubicin increased the amount of cancer cell death when compared to treatment with
doxorubicin alone [123]. On the other hand, a different result may arise from the protective
effect on healthy cells and tissues, which can mitigate the toxic side effects of chemotherapy.
Recently, it has been reported that atorvastatin can reduce intestinal epithelial damage
caused by 5-fluorouracil, leading to increased therapeutic index in a mouse model [124].

Unfortunately, mechanistic insights into how statins might impact DNA repair and
thereby sensitize HNSCC to chemotherapy are generally lacking beyond the expectation
that benefits may be linked to mitochondrial dysfunction and altered tolerance for oxidative
stress or due to reduced protein prenylation and function [8]. RhoB is a likely target
as it is DNA damage-inducible and enhances DNA double strand break (DSB) repair
via activating PP2A in cells treated with camptothecin [125,126]. While knockdown or
deletion of RhoB slows DNA repair and induces genomic instability [127], increased
expression and accumulation of unprenylated RhoB upon statin treatment may or may
not have a similar impact. The synergy of fluvastatin with temozolomide in glioblastoma
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is ascribed to reduced prenylation limiting Ras activation [128,129]. Regarding small cell
lung cancer (SCLC), several human chemoresistant xenograft models exposed to long-term
intermittent chemotherapy displayed improved outcomes upon statin treatment. The study
revealed that statins can induce oxidative stress and apoptosis via the GGPP synthase-
RAB7A-autophagy axis. Furthermore, a negative correlation was observed between GGPS1
expression and patient survival. Notably, combined statin and chemotherapy treatment has
resulted in prolonged responses in relapsed SCLC patients who had previously undergone
chemotherapy [130].

3.3. Radiation Sensitization

Like chemotherapy, radiotherapy produces chromosomal DNA damage as part of its
therapeutic effects, but its localized delivery is advantageous in potentially concentrating
damage in tumors while sparing normal tissue. Unfortunately, the anatomy of the upper
aerodigestive tract and the surrounding sensitive tissues of the head and neck confound
efforts to limit exposure of normal tissues to toxic radiation doses. Intrinsic and acquired
radiotherapy resistance also presents a significant challenge [131]. Co-treatment with
chemotherapy to sensitize HNC to radiotherapy exacerbates adverse effects as genotoxic
agents can magnify radiation effects in both malignant and normal tissue [132]. As an alter-
native, we have suggested the mevalonate pathway as a potential target for augmenting
radiation sensitivity in HNC without incurring increased normal tissue toxicity [133].

Radiosensitive and radioresistant cell line analysis revealed that the dysregulated
mevalonate pathway activity was linked not only to radioresistance but also to increased
statin sensitivity. This correlation was substantiated by a decrease in proliferation and
viability, along with increased senescence, which aided in sensitizing these cells to ionizing
radiation [133]. Examining a series of HNSCC patients undergoing radiotherapy as primary
treatment, incidental statin use was found to be significantly associated with improved
local tumor control but not on distant sites. While this finding might suggest statins can
induce direct sensitization of tumor cells to radiation, there is no consistent pattern in the
preclinical literature regarding enhanced effects of ionizing radiation following HmG-CoA
reductase inhibition. Our work [134] showed that statin treatment, resulting in loss of
protein prenylation, delays repair of chromosomal DSBs following radiation exposure.
A repair defect might be indirectly linked to coenzyme Q10 and heme A depletion and
mitochondrial dysfunction. However, multiple prenylated proteins may be critical for DSB
repair, with Rho GTPases as prominent candidates based on repair defects observed in
RhoA and RhoB deficient cells [135]. In pancreatic cancer, activation of a RhoA /ROCK2-
YAP/TAZ signaling pathway may mediate radiation resistance [136], potentially inducing
expression of DNA damage repair factors. In glioma cells, RhoA-dependent responses
to irradiation such as activating DNA damage signaling, formation of ionizing radiation
induced foci and DSB repair all depended on wildtype p53 [137]. A potential mechanism
may be that RhoA activation increases actin dynamics, releasing G actin that binds p53 and
promotes nuclear localization to accelerate DSB repair.

A consideration here is that while p53 is often wildtype in HPV* HNSCC, mutant
p53 is typical for tobacco and alcohol abuse-related cancer and is also linked to radiation
resistance [138,139]. As such, p53-independent mechanisms are likely to determine much
of the radiosensitization by statins that has been observed. One such mechanism might be
via a pathway whereby lovastatin directly binds to and activates the tyrosine phosphatase
SHP2 [140,141]. Oncogenic functions of SHP2 have long driven development of targeted
inhibitors [142], but among the consequences of SHP?2 activation is the dephosphorylation
of poly-ADP ribose polymerase 1 (PARP1) [141], thereby reversing the c-Met-mediated
activating phosphorylation at Tyr907 [143]. By inhibiting PARP1, statins might slow the
repair of multiple forms of radiation-induced DNA damage [144], with the potential to
preferentially impact tumor tissue [145].

Among factors limiting HNSCC radiosensitivity, recent evidence points to expression
of immune checkpoint proteins, limited antigen presentation and T cell dysfunction [146],
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suggesting concomitant treatment with ICB as a strategy to improve HNSCC radiation
response. Nonetheless, multiple clinical trials have failed to offer strong evidence for
synergy [147-149]. Besides its direct cytotoxic effects, radiation can modulate inflamma-
tion in the tumor microenvironment associated with immunogenic cell death, activated
lymphocytic infiltrates and increased antigen presentation. One potential mediator of
these effects is increased cytosolic DNA. This leads to cGAS-STING pathway activation
and type I interferon (IFNo/ ) production, which may potentiate CD8* T cell-mediated
tumor destruction [150]. Whether combined with genotoxic therapy or provided on their
own, STING agonists have the potential to enhance antitumor responses [151] and have
demonstrated encouraging activity in HNSCC [152-157], including in HPV* tumors where
STING may be targeted by the E7 viral protein [158]. A potential role for statins may be via
delaying DSB repair, leading to increased cytosolic DNA that can further stimulate cGAS
and STING [140,141]. A caveat is that STING-induced IFNw/ 3 can also be sensed by the
tumor cells themselves to drive expression of PD-L1 and promote immune evasion [159].
The additional statin effect of limiting YAP/TAZ activity and thereby reducing PD-L1
expression might help offset this autocrine pathway.

3.4. Effects of Mevalonate Pathway Inhibition on Cellular Plasticity and Tumor Microenvironment

Cellular plasticity, such as via the epithelial-to-mesenchymal transition (EMT) [160],
contributes to the malignancy of cancer cells by facilitating adaptation to stress, local
invasion and metastatic spread. Metastatic potential of pancreatic cancer cells is suppressed
by fluvastatin in a dose-dependent manner, associated with significant changes in cell
morphology [161]. Similar patterns have been observed in prostate cancer cells treated
with rosuvastatin [162]. A possible mechanism involves the inhibition of Akt, which plays
multiple roles in regulating cytoskeletal remodeling, cell adhesion and EMT [163] and, as
noted above, can be targeted by statins via impacts on lipid rafts or other mechanisms [164].
The Akt pathway is commonly activated in HNSCC, making it an attractive target [165].
Lovastatin, in particular, appears to be a promising candidate to be combined with other
therapies to achieve tumor sensitization [166]. Complementary effects may be mediated
via inhibiting prenylation of the Rho GTPases, which play critical roles in regulating EMT,
migration and invasion along with other cancer hallmarks [84,167].

The tumor microenvironment, including metabolism and inflammatory signaling,
are important determinants of cell plasticity and EMT in cancer cells. As such, multiple
effects of statins on the TME may impact tumor resistance, recurrence and metastasis. The
combination of celecoxib and simvastatin has been shown to significantly reduce HNSCC
proliferation [168]. These effects extend to potentiating anti-tumor immune response.
Statins influence TME metabolism in lung cancer and thereby enhance immune checkpoint
blockade [169]. Similarly, combining statins with cisplatin creates a TME favorable for
immunotherapy in HNSCC [170].

4. Protective Effects of Statins

Regarding prevention, while multiple studies have suggested reduced risk of cancer,
including HNC with long-term statin use, this is not a strong effect, and a recent case-
control study found that prior exposure to statins in HNC patients is not associated with
lower cancer risk [171]. Meta-analyses have revealed statin use may contribute to lowering
the incidence of specific cancers such as hepatocellular carcinoma (HCC) [172], though
umbrella reviews surveying multiple cancer types identified overall weak evidence for
benefits on incidence [173] or survival [174], pointing to considerable variability among
cancer sites. As such, use of lipophilic statins as cancer-preventative agents may only
be relevant to specific high-risk populations. However, there appears to be a stronger
argument that continued use of statins during and then after treatment may be beneficial
in protecting patients with HNSCC—especially those with HPV* disease—from adverse
outcomes of therapy [119-122].
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Chemoradiation therapy is particularly associated with significant acute and late
toxicities, which may increase non-cancer-related mortality. Statins may protect against
anthracycline cardiotoxicity, but this has yet to be confirmed by RCT [175], and these
agents are not typically used in HNC. Statins appear to have a protective effect that can
limit inflammation and normal tissue damage after radiation in preclinical models [176],
with effects on tissues with direct relevance to HNC including those of the lung [177] and
salivary glands [178]. These effects may be mediated by both cholesterol and prenylation-
dependent mechanisms.

Statins have shown the ability to alleviate some treatment-related toxicities that can
have a detrimental impact on the quality of life among individuals who have survived
cancer. Ototoxicity caused by cisplatin appears to be lower with incidental statin use [179].
Pravastatin has been found to reduce the thickness and severity of radiation-induced
fibrosis in patients with HNSCC [145].

Successfully treated HNC patients remain at high risk of both secondary cancers
and non-cancer causes of death [180]. Cardiovascular disease and stroke appear to be
particularly increased in treated HNC patients [181]. Although the advanced age and
history of smoking typical of HNC patients may be most responsible, there is a specific
risk of stroke that has been linked to vascular injury during radiotherapy [182]. Given
these considerations, it is not surprising that statins may offer significant protection against
the increased rates of stroke and other vascular events after irradiation of the head and
neck [183,184].

5. Conclusions

Head and neck cancer remains a considerable challenge, associated with the difficult
anatomy and intrinsic resistance of the tumors to therapy. Statins have long been proposed
as safe and effective agents with the potential to improve treatment outcomes for these
patients. In particular, blocking mevalonate biosynthesis and thereby limiting protein
prenylation appears to have a significant impact on the response to radiation by slowing
DNA repair. A recent advance has been to implicate statins in potentiating anti-tumor
immune responses. Among the contributing mechanisms, lowering cholesterol levels
in the tumor microenvironment may promote antigen presentation and T cell effector
function, while reduced protein prenylation may impact DNA repair, and the resulting
accumulation of cytosolic DNA may drive cGAS/STING signaling. These and other effects
may contribute to an overall benefit from statin treatment.

Given the evidence from retrospective studies and the strong rationale provided
by laboratory studies in cells and tumor models, there is a compelling argument for
randomized trials of concomitant treatment with lipophilic statins and radiotherapy in
head and neck cancer, selecting patients with no history of treatment with statins for
cardiovascular disease. To obtain the full benefits of statins, initiating treatment upon
cancer diagnosis and then continuing for a prolonged course may be necessary. This
may have the dual advantage of increasing the efficacy of radiotherapy but also reducing
late side effects such as increased stroke risk. Looking forward, if statins are indeed
able to increase the therapeutic ratio of head and neck radiotherapy, they might find their
greatest value in reducing the need for genotoxic chemotherapy as a radiosensitizer, thereby
facilitating treatment de-intensification, particularly in HPV* patients.
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