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Abstract
Background: Chronic Q fever is a zoonosis caused by the bacterium Coxiella burnetii which 
can manifest as infection of an abdominal aortic aneurysm (AAA). Antibiotic therapy often fails, 
resulting in severe morbidity and high mortality. Whereas previous studies have focused on inflam-
matory processes in blood, the aim of this study was to investigate local inflammation in aortic 
tissue.
Methods: Multiplex immunohistochemistry was used to investigate local inflammation in Q fever 
AAAs compared to atherosclerotic AAAs in aorta tissue specimen. Two six- plex panels were used to 
study both the innate and adaptive immune systems.
Results: Q fever AAAs and atherosclerotic AAAs contained similar numbers of CD68+ macrophages 
and CD3+ T cells. However, in Q fever AAAs, the number of CD68+CD206+ M2 macrophages 
was increased, while expression of GM- CSF was decreased compared to atherosclerotic AAAs. 
Furthermore, Q fever AAAs showed an increase in both the number of CD8+ cytotoxic T cells 
and CD3+CD8-FoxP3+ regulatory T cells. Finally, Q fever AAAs did not contain any well- defined 
granulomas.
Conclusions: These findings demonstrate that despite the presence of pro- inflammatory 
effector cells, persistent local infection with C. burnetii is associated with an immune- suppressed 
microenvironment.
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Editor's evaluation
This is a collaborative study of clinical centers that investigates tissue pathology and immune cell 
infiltration of aortic aneurysms from chronic Q fever patients. The combination of precious and rare 
human tissue samples with well- designed multiplex IHC panels for characterizing local immune 
responses within the spatial context is unique in the field of human infection immunology and has 
revealed unprecedented insight into the manifestation of this disease.

Introduction
Q fever is a zoonosis caused by the Gram- negative intracellular bacterium Coxiella burnetii (C. 
burnetii), with natural reservoirs in a wide range of wild and domestic animals. In infected animals 
(such as goats) milk, placenta, and birth fluids, can contain this microorganism, which may cause 
human infections via inhalation. Acute Q fever can present as pneumonia, hepatitis, and isolated 
fever, yet 60% of cases are asymptomatic (Maurin and Raoult, 1999). Progression to chronic Q fever 
occurs in approximately 5% of infected individuals Fournier et al., 1998; people at risk are older, 
suffer from aortic or iliac aneurysm, or renal insufficiency (Kampschreur et al., 2012), or previously 
underwent valvular or vascular prosthesis surgery (Kampschreur et al., 2012). Chronic Q fever mani-
fests as endocarditis or vascular Q fever, that is, infection of an abdominal aortic aneurysm (AAA) or 
vascular prosthesis (Wegdam- Blans et al., 2011; Botelho- Nevers et al., 2007; van Roeden et al., 
2019).

Vascular manifestations of Q fever can have severe clinical consequences. In a population of proven 
and probable vascular manifestations of Q fever patients according to the Dutch consensus guideline, 
a Dutch cohort study has described that complications had occurred in 61% of the cases. Of these, 
acute complications (i.e., rupture, dissection, endoleak, or symptomatic aneurysms) were most preva-
lent (35%), followed by abscesses (22%), and fistula (14%). Moreover, 25% of patients had a definitely 
or probably chronic Q fever related cause of death (van Roeden et al., 2019). In addition, serolog-
ical screening of 770 patients with aorto- iliac disease, for example, aneurysms or previous vascular 
reconstructions, demonstrated that 16.9% was seropositive for Q fever, of which 30.8% suffered from 
chronic Q fever. In this group, aneurysm- related acute complications were more common than in 
aneurysm patients without Q fever (Hagenaars et al., 2014b).

To elucidate the pathology underlying chronic Q fever, previous studies have mainly focussed on 
immune responses in peripheral blood. Blood mononuclear cells of patients with chronic Q fever, 
when exposed to C. burnetii in vitro, produce high amounts of Interferon- gamma (IFNg), the proin-
flammatory cytokine considered crucial for killing of the pathogen (Schoffelen et al., 2014; Schoffelen 
et al., 2017). In the infected tissues, C. burnetii resides and replicates in monocytes and macrophages 
(Ghigo et al., 2009). In vascular manifestations of Q fever, it is assumed that C. burnetii survives in 
resident macrophages in the vascular wall (Lepidi et al., 2009; Lepidi et al., 2003). In such patients, 
there is an apparent inability to effectively eradicate C. burnetii, despite the aforementioned IFNg 
response. In general, a pro- inflammatory response with granuloma formation and intracellular killing 
or control of the bacterium by activated ‘M1’ monocytes/macrophages is required to contain intra-
cellular infections like Q fever. Surprisingly, the apparent inability of chronic Q fever patients to kill C. 
burnetii has only been investigated in studies in vitro which showed suggestive roles for polarization 
to tolerogenic M2 macrophages and increased numbers of circulating regulatory T cells (Layez et al., 
2012; Benoit et al., 2008).

It is still unclear how C. burnetii survives and locally escapes the immune system in vascular mani-
festations of Q fever. To address this, we have investigated the local immune response in C. burnetii- 
infected AAAs (Q fever AAA), classical atherosclerotic AAA, acutely infected AAA, and control aorta 
tissue, applying multiplex immunohistochemistry (mIHC) on human patient tissues. We investigated 
both the adaptive and innate immune systems. We show that in vascular manifestations of Q fever 
numerous immune suppressive mechanisms appear to be present, including the absence of pro- 
inflammatory granulomas, increased numbers of regulatory T cells, polarization of macrophages into 
the tolerogenic M2 phenotype, and decreased expression of GM- CSF.

https://doi.org/10.7554/eLife.72486
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Materials and methods
Abdominal aorta tissue samples from patients with Q fever infected aneurysms and control groups 
(i.e., atherosclerotic AAAs, acutely infected AAAs, and non- aneurysmatic aortas) were investigated 
with a novel mIHC method to study the involvement of the innate and adaptive immune system in 
vascular manifestations of Q fever. The data underlying this article will be shared upon reasonable 
request to the corresponding author.

Patient samples
Tissue samples were collected from four groups of patients in two Dutch hospitals: Jeroen Bosch 
Hospitals in ‘s- Hertogenbosch and Radboud University Medical Center in Nijmegen. The first group 
consisted of patients diagnosed with C. burnetii infected AAA (Q fever AAA) according to the Dutch 
consensus guideline (Kampschreur et al., 2015): all patients had an abdominal aneurysm (AAA) and 
IgG phase I was at least 1:1024 in combination with a positive PCR of aortic tissue. The second 
group consisted of patients with atherosclerotic AAA without clinical suspicion of Q fever which were 
selected from our database at random. The third group consisted of patients with an acutely infected 
AAA, with the same definition of AAA in combination with positive cultures of Streptococcus pneu-
moniae and Streptococcus Agalactiae, respectively. In these three groups, AAA was defined as a 
CT- proven AAA with a diameter of at least 3.0 cm (Johnston et al., 1991). All aneurysmatic tissue 
samples were either obtained from patients undergoing elective surgical repair or emergency repair 
in case of aortic rupture. The fourth group consisted of abdominal aorta samples from patients under-
going kidney explantation surgery for transplantation purposes, with an aortic diameter smaller than 
3.0 cm. Due to the limited availability of acutely infected AAAs and non- aneurysmatic aortas, all avail-
able and eligible samples were selected. The samples from Jeroen Bosch Hospital were described in 
a previous study. (Hagenaars et al., 2014a).

Table 1. Overview of the used markers and clones per panel, including definition of each cell type as 
used for our analysis.

Adaptive immune system Innate immune system

Markers (clone) DAPI   DAPI   

  CD3 (SP7)   CD68 (PG- M1)   

  CD8 (CD8/144B)   CD206 (CL038+)   

  CD20 (L26)   CD15 (MMA)   

  CD1c (2F4)   CD31 (JC70A)   

  FoxP3 (236A/E7)   MMP9 (polyclonal)   

  CD45RO (UCHL- 1)   GM- CSF (polyclonal)   

  Autofluorescence   Autofluorescence   

          

Cell phenotype T cell CD3+ Macrophage CD68+

  Helper T cell CD3+ CD8− M1- like macrophage CD68+ CD206−

  Cytotoxic T cell CD3+ CD8+ M2- like macrophage CD68+ CD206+

  Regulatory T cell CD3+ CD8− FoxP3+ Neutrophil CD15+

  Memory T cell CD3+ CD45RO+ Endothelium CD31+

  B cell CD20+ MMP9+ cell MMP9+ CD15−

  Classic DC type 2 CD1c+ CD20− MMP9+ neutrophil MMP9+ CD15+

  DAPI Nucleus DAPI Nucleus

  Autofluorescence Elastin fibers Autofluorescence Elastin fibers

https://doi.org/10.7554/eLife.72486
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The medical ethics committees of the institutions approved the study, in line with the prin-
ciples outlined in the Declaration of Helsinki (Radboudumc: 2017- 3196; Jeroen Bosch Hospital: 
2019.05.02.01).

Tissue processing
During surgery, the ventral part of the abdominal aorta was removed. If necessary, adhering thrombi 
were gently removed from the tissue before further processing. Directly after collection, samples were 
fixed in buffered 4% formaldehyde for at least 24 hr and no longer than 72 hr. If large amounts of calci-
fication were present, samples were decalcified by storing them in EDTA solution for another 24 hr. 
Subsequently, samples were carefully embedded in paraffin in an attempt to include all aorta layers 
(formalin- fixed and paraffin- embedded [FFPE]). Of these tissues, full- thickness transverse sections of 
4 µm were mounted on silane- coated glass slides (New Silane III, MUTO PURE CHEMICALS, Japan).

Multiplex immunohistochemistry
Samples were stained with two mIHC panels, which enclosed the innate and adaptive immune system 
(Table 1). Optimization and validation of mIHC panels were performed as described previously (Gorris 
et al., 2018). Samples were stained with six consecutive tyramide signal amplification (TSA) stains 
followed by antigen stripping after every staining. This resulted in the fluorophore remaining on the 
target, thus enabling eight simultaneous colors on one slide (six markers, DAPI, and autofluores-
cence). Slides were stained automatically in a Leica Bond system (BOND- Rx Fully Automated IHC 
and ISH, Leica Biosystems). After positioning in the machine, slides were deparaffinized, rehydrated, 
and washed with demi water. After this, samples underwent heat- induced antigen retrieval (HIER) in 
BOND Epitope Retrieval 2 (AR9640, Leica Biosystems) or BOND Epitope Retrieval 1 (AR9961, Leica 
Biosystems) for 20  min for the adaptive and innate panel, respectively. Then, protein blocking in 
Akoya Antibody Diluent/Block (Akoya Biosciences, MA) took place for 10 min, followed by incubation 
with the first primary antibody for 1 hr, subsequently with the secondary antibody (Polymer HRP, Ms+ 
Rb [Akoya Biosciences, MA]) for 30 min and finally with an Opal fluorophore (Akoya Biosciences, MA) 
dissolved 1:50 in 1× Plus Amplification Diluent (Akoya Biosciences, MA) for 10 min. To facilitate multi-
plex staining with six markers, samples were heated for 10 min which enabled antigen stripping. After 
this staining cycle, this procedure was repeated for five different primary antibodies, the secondary 
antibody, and corresponding Opal fluorophores. Finally, DAPI was used as a nuclear counterstain and 
slides were mounted with Fluoromount- G (0100- 01; Southern Biotech, Birmingham, AL). All incu-
bations steps were performed at room temperature. Please see Supplementary file 1B for a more 
detailed overview of the used reagents.

Imaging, multispectral unmixing, and analysis
After staining, image acquisition and immune cell quantification were performed using an automated 
approach. First, the PerkinElmer Vectra (Vectra 3.0.3; PerkinElmer, MA) scanned whole slides at 4× 
magnification and 20× magnification, allowing precise cell segmentation incorporating the entire 
sample. The average 20× views per slide was 283 resulting in an average tissue area of 59.0±32.6 
mm2, and this high number substantially reduces the chance of sampling bias. Spectral libraries and 
inForm Advanced Image Analysis software (inForm 2.4.8; Akoya Biosciences, MA) unmixed these 
multispectral images (Figures 1A and 2A).

Subsequently, inForm Advance Imaging Analysis software was used for segmentation of tissue and 
cells. For tissue segmentation, tissue slides were divided into tissue, infiltrate, thrombus, blood, and 
background (Figure 1C). This segmentation was based on DAPI, autofluorescence and, if present, also 
CD20 and CD3. For single- cell segmentation, cells were identified with DAPI and autofluorescence, 
and, depending on the panel, with membrane markers CD20 and CD3 (Figure 1B) or CD68, CD206, 
and CD15. Requiring DAPI for cell segmentation ensured the exclusion of artifact staining, in which 
DAPI is absent. The output of the software was 20× magnification images and cell data (localization, 
tissue, phenotype, and marker) per slide. Images were combined into single flow cytometry standard 
(fcs) files, allowing analysis in FlowJo (FlowJo 10.0.7, Becton Dickinson, NJ). In FlowJo, only cells in 
tissue and infiltrate were analyzed and gates were drawn as shown in Figure 1E for the adaptive 
panel and Figure 2B for the innate panel by two observers with excellent interobserver correlation 
(Figures 1D and 2D).

https://doi.org/10.7554/eLife.72486
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Figure 1. Analysis of adaptive immune system panel. (A) Composite image and separate channels. (B) Composite image and cell segmentation tool. 
(C) Tissue segmentation tool (upper image) and overlay with staining, which shows overlay in segmented and actual stained infiltrate. (D) Interobserver 
agreement with high intraclass coefficients, supporting our robust method. (E) Representative FACS plots for drawing cell populations.

https://doi.org/10.7554/eLife.72486
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These clear distinct positive cell populations were not found for CD45RO and MMP9 as their 
expression is gradual (Booth et al., 2010). For that matter, the gates for these markers were drawn 
in negative populations, namely non- T cells and non- neutrophils, respectively. Following this, these 
gates were copied to populations that could express these markers. GM- CSF fcs files did not show 
distinct positive and negative populations although they were visible in the microscopy images. There-
fore, inForm Advance Imaging Analysis software was used for automatic thresholding for GM- CSF per 
sample, providing the number of GM- CSF positive pixels per sample (Figure 2C).

Figure 2. Analysis of innate immune system panel. (A) Composite image and separate channels. (B) Representative FACS plots for drawing cell 
populations. (C) inForm threshold analysis of GM- CSF expression. Upper image: GM- CSF channel. Lower image: GM- CSF signal above threshold. (D) 
Interobserver agreement with high intraclass coefficients.

https://doi.org/10.7554/eLife.72486
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Histology
To study vessel wall architecture, tissue samples were stained with hematoxylin- eosin (HE) and Elastin 
von Gieson (EVG).

Quantification of tertiary lymphoid structures
Based on HE staining, a TLS was defined as a nodular structure consisting of at least 50 B and T 
lymphocytes. These structures are fluent and in case of constriction, split in multiple TLS.

Statistical analysis
SPSS for Windows (IBM Corp, 2017. IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: 
IBM Corp) was used for statistical analysis. PRISM 8.0.2 (Graphpad, GSL Biotech LLC, CA) was used 
for visualization of results. Continuous data were expressed as mean ± standard deviation (SD), or in 
case of non- Gaussian distribution, as median (interquartile range; IQR). Kruskal- Wallis test adjusted 
with Bonferroni correction for multiple testing was used for testing continuous variables between 
four groups. Binary variables were tested for differences using the Fisher exact test. Interobserver 
variability was calculated with the intraclass correlation coefficient. Correlations between contin-
uous non- Gaussian distributed variables were studied with Kendall’s tau because of low numbers per 
group. p<0.05 was considered statistically significant. Principal component analysis was performed in 
RStudio 1.2.5033 (RStudio, Inc Boston, MA) and R (R Foundation for Statistical Computing, Vienna, 
Austria) using singular value decomposition and the tidyverse (Wickham et al., 2019) and factoextra 
packages (Alboukadel Kassambara, 2020).

Results
Baseline characteristics
This study includes 10 Q fever AAAs (with C. burnetii PCR positive on aortic tissue), 12 classical 
atherosclerotic AAAs, 2 acutely infected AAAs (with positive cultures of Streptococcus species), and 5 
normal abdominal aorta tissues. Table 2 presents baseline characteristics of the cohort, showing that 
the majority of patients in all groups were males of older age (median 71 years old in Q fever group), 
and cardiovascular risk factors were common, including hypertension, diabetes mellitus, hypercholes-
terolemia, and smoking. Additionally, the aortic diameter was similar amongst the groups.

Immune cell activation in Q fever, atherosclerotic, and acutely infected 
AAAs compared to normal aortas
Our mIHC technique reveals activation of both the innate and the adaptive immune systems in Q 
fever, atherosclerotic, and acutely infected AAAs compared to normal abdominal aortas (Figure 3). 
In contrast to normal abdominal aortas, all Q fever AAAs, atherosclerotic AAAs, and acutely infected 
AAAs showed impressive lymphocyte accumulation and proliferation with very large tertiary lymphoid 
structures (TLS) present in the adventitial layer (Figure  3F, J and N) (20% vs. 100% vs. 100% vs. 
100%, respectively; p=0.000). Importantly, well- defined granulomas were neither observed in any 
of the Q fever AAAs, nor in the other groups. In Q fever AAA, elevated numbers of CD3+ T cells 
(p=0.010) and CD20+ B cells (p=0.012) were observed compared to normal aortas. Atherosclerotic 
AAAs revealed increased numbers of CD3+ T cells (p=0.005), CD20+ B cells (p=0.003), and CD15+ 
neutrophils (p=0.023) compared to control. There were no significant differences in the numbers of 
cells between Q fever AAA and atherosclerotic AAA. As expected, acutely infected AAAs showed an 
increase in neutrophils compared to normal aortas (p=0.026). Numbers of CD1c+ classical dendritic 
cell type 2 (cDC2) and CD68+ macrophages were similar among all groups.

The principal component analysis (PCA) demonstrated when using these markers, a clear distinct 
population with normal aorta samples is formed, whilst the atherosclerotic and Q fever popula-
tion completely overlapped (Figure  4A). Therefore, we aimed to investigate which markers differ 
between these two groups. If we add cell subset markers for macrophages and T cells, this overlap 
has completely disappeared, indicating these subset markers differentiate these groups (Figure 4B). 
Below, we will elucidate the differences in cell subsets between atherosclerotic AAA and Q fever AAA.

https://doi.org/10.7554/eLife.72486
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Figure 3. Immune cell activation in atherosclerotic, Q fever infected, and acutely infected AAAs. All scale bars represent 50 µm. (A–P): Adaptive (A, B, 
E, F, I, J, M, N) and innate (C, D, G, H, K, L, O, P) immune cells in a representative normal abdominal aorta, atherosclerotic AAA, Q fever AAA, and 
acutely infected AAA. Arrows with corresponding colors indicate the presence of immune cells with red for CD3+ T cells, cyan for CD1c+ cDC2, and 
green for CD20+ B cells in the adaptive panel (A, B, E, F, I, J, M, N); and red for CD68+ macrophages and cyan for CD15+ neutrophils in the innate panel 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.72486
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Q fever AAAs show a shift toward M2 macrophages
To investigate whether there are differences in innate immune system activation between athero-
sclerotic AAA and Q fever AAA, we used mIHC for description of macrophage subset populations 
based on CD68+CD206− (M1 macrophages) and CD68+CD206+ (M2 macrophages) and for expres-
sion of matrix metalloproteinase- 9 (MMP9) and Granulocyte Macrophage Colony Stimulating Factor 
(GM- CSF). As demonstrated in Figure 5, CD206 expression colocalized with CD68 in M2 macro-
phages. We found that in Q fever AAAs, the number of CD206+ M2 macrophages was higher than 
in atherosclerotic aortas (p=0.005) (Figure 5J). These aortas also revealed lower levels of the pro- 
inflammatory cytokine GM- CSF when corrected for the percentage of macrophages and CD206+ M2 
macrophages (p=0.033 and p=0.007, respectively) (Figure 6). On the other hand, atherosclerotic 
AAAs showed a larger amount of the more pro- inflammatory CD206− M1 subset compared to Q 
fever AAAs (p=0.005) (Figure 5J), combined with a higher expression of GM- CSF per macrophage 
(p=0.033) (Figure  6E). Additionally, we observed a larger MMP9+ proportion of macrophages in 
atherosclerotic AAAs than in Q fever AAAs (p=0.04). These findings are compatible with extensive 
chronic inflammation but an immune- suppressed environment in Q fever AAAs in contrast to athero-
sclerotic AAAs.

(C, D, G, H, K, L, O, P). (Q): quantification of percentages of different types of immune cells in the whole tissue sections, showing the increases in T and 
B cells in atherosclerotic AAA and Q fever AAA compared to normal and increase in neutrophils in acute infection and atherosclerotic AAA compared 
to normal. Note that there are no differences between atherosclerotic AAA and Q fever AAA. * Represents p≤0.05. Source data can be found in Figure 
3—source data 1.

The online version of this article includes the following source data for figure 3:

Source data 1. Immune cell activation in atherosclerotic, Q fever infected, and acutely infected AAAs.

Figure 3 continued

Figure 4. Principal Component Analyses. (A) Principal component analysis (PCA) including CD3, CD20, CD68, CD15, and CD1c. There is a clear distinct 
population consisting of normal abdominal aortas. There are two data points for acute infection, resulting in a line. Intriguingly, atherosclerotic AAA 
and Q fever infected AAA are completely overlapping. This indicates that these populations are similar when testing for these cell markers. (B): PCA 
including all markers (CD68, CD15, MMP9, GMCSF, CD31, CD206, CD3, CD1c, CD8, FoxP3, CD45RO, and CD20). Note the difference with (A): here all 
groups form separate populations, indicating that the newly added markers including subset markers describe the differences between atherosclerotic 
and Q fever AAA. See Supplementary file 1A for loadings of both PCAs.

https://doi.org/10.7554/eLife.72486
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Increased cytotoxic T cells and regulatory T cells in Q fever AAAs
To study the involvement of the adaptive immune system in both groups, tissues were stained with 
antibodies against CD8 for cytotoxic T cells, FoxP3 for regulatory T cells, and CD45RO for memory T 
cells. Helper T cells were defined as CD3+ T cells without CD8 expression.

Whereas the number of CD3+ T cells is equal among vascular manifestations of Q fever and athero-
sclerotic AAA samples, samples from patients with vascular manifestations of Q fever exhibited larger 
numbers of CD3+CD8+ cytotoxic T cells (p=0.000), coinciding with a decrease of CD3+CD8− helper T 
cells (p=0.000) and CD3+CD45RO+ memory T cells (p=0.023)(Figure 7G). Infiltrates were formed, as 
depicted by the strong correlation between T- and B- cells (correlation coefficient 0.6 [CI 0.404–0.788], 
p=0.000).

When correcting numbers of T cell subsets for infiltrate area, we found an increase in the number of 
CD3+CD8+ cytotoxic T cells in Q fever AAA compared to atherosclerotic AAA (p=0.013) (Figure 7H). If 
the number of T cell subsets is calculated per mm2 tissue (defined as entire sample area minus infiltrate 

Figure 5. Phenotype shift in macrophages in Q fever AAA towards M2. (A): Overview photo of atherosclerotic AAA, upper portion is intima layer, lower 
portion adventitia. (B): Composite of CD68 and CD206 with majority CD68. (C, D): Separated channels for CD68 and CD206, respectively. (E): Overview 
of Q fever infected AAA, with the same orientation as (A). (F): Composite of CD68 and CD206, with mostly CD206+ cells which also express CD68, as 
supported by separated channels in (G) and (H). (I, J): Quantification of percentages of macrophages in entire tissue sections (I) and of proportions of 
M1 and M2 macrophages in these macrophages (J), showing the phenotype switch in Q fever AAAs toward M2. * Represents p≤0.05. Source data can 
be found in Figure 5—source data 1.

The online version of this article includes the following source data for figure 5:

Source data 1. Phenotype shift in macrophages in Q fever AAA towards M2.

https://doi.org/10.7554/eLife.72486
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Figure 6. Q fever infected AAAs express lower levels of GM- CSF. (A–D): Representative composite image of atherosclerotic AAA (A) and Q fever AAA 
(C) and corresponding GM- CSF channels (B, D). (E): The expressed levels of GM- CSF corrected for the number of macrophages and M2 macrophages 
are lower in Q fever infected AAAs, suggesting an immune- suppressed environment. Source data can be found in Figure 6—source data 1.

Figure 6 continued on next page

https://doi.org/10.7554/eLife.72486
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area), the numbers of both CD3+CD8+ cytotoxic T cells and CD3+CD8−FoxP3+ regulatory T cells are 
increased in Q fever AAA (p=0.043 and p=0.036, respectively) (Figure 7I).

Ruptured and non-ruptured aneurysms exhibit similar immune 
responses
Strikingly, only Q fever AAAs ruptured while the median diameter (60 mm) did not differ from the 
diameter in the atherosclerotic AAA group (57 mm) (p=0.887). To investigate whether these patients 
could be included in our analyses, we tested for differences between ruptured (N=3) and non- 
ruptured (N=21) aneurysms. Although signs of acute inflammation could be expected, no differ-
ences were found in the number of CD3+ T cells (p=0.206), CD20+ B cells (p=0.407), CD1c+ cDC2 
(p=0.150), CD15+ neutrophils (p=0.275), and CD68+ macrophages (p=0.176). Also, when testing for 
cell subsets, ruptured and non- ruptured aneurysms exhibited similar numbers of CD68+CD206− M1 
and CD68+CD206+ M2 macrophages (p=0.206), CD3+CD8+ cytotoxic T cells (p=0.329), CD3+CD8−

FoxP3+ regulatory T cells (p=0.206), and CD3+CD45RO+ memory T cells (p=0.176). The similarity of 
the results between both groups may be explained by the sampling method; all samples were taken 
from the ventral side of the aneurysm and the rupture side was unknown or not registered at the time.

Q fever aortas reveal extensive fibrosis
All above- mentioned features are signs of chronic inflammation and long- existing disease. This was 
supported by HE- and Elastin Van Gieson (EVG) stainings, which demonstrated destruction of elastin 
fibers and fibrosis. Both atherosclerotic AAAs and Q fever AAAs exhibited extensive atherosclerotic 
plaque formation. However, there were large differences in vessel architecture as demonstrated in 
Figure  8. Earlier studies have extensively described that aortic aneurysms show fragmentation of 
elastin fibers indicating media degeneration (Jana et al., 2019; Coady et al., 1999). In our series, 
the number of elastin fibers was even more decreased in many Q fever AAAs than in atherosclerotic 
AAAs with a similar diameter (marked with black arrows in Figure 8). In addition, the tunica adven-
titia showed extensive fibrosis in Q fever AAAs (marked with asterisks in Figure 8I and L). These 
changes indicate the (more pronounced) disrupted architecture in Q fever AAAs, which can attribute 
to ongoing inflammation.

Discussion
We are the first to introduce mIHC in vascular manifestations of Q fever to study ongoing local inflam-
mation. This sophisticated mIHC method enabled us to quantify immune cells in large sections of 
tissue which minimized sampling bias. First, we showed that granulomas are absent in Q fever AAAs. 
Second, atherosclerotic and Q fever AAAs were similar when comparing the numbers of immune cells. 
However, there were striking differences in the composition of macrophage- and T cell- phenotypes 
between AAAs and Q fever AAAs, leading to new insights into the pathogenesis of vascular manifes-
tations of Q fever and its complications and possibly with therapeutic consequences.

Our first observation, the absence of well- formed granuloma formation in our cohort of Q fever 
AAAs is an important one, since it suggests that the local immune landscape lacks an adequate pro- 
inflammatory response. In our series, we could not find any well- formed granuloma similar to how 
they are described in acute Q fever. In acute Q fever manifesting in non- vascular tissue, so- called 
doughnut granulomas are reported: granulomas with a central clear space and a fibrin ring within or 
at its periphery (Maurin and Raoult, 1999; Faugaret et al., 2014), for example, in liver biopsies in 
case of hepatitis (Pellegrin et al., 1980). Here, granuloma is a feature of active defense against the 
pathogen. However, we should take into account that our group of acute aortitis with Streptococcus 
species did not show granulomas either. In chronic Q fever granulomas have not been described 
before (Faugaret et al., 2014; Raoult et al., 2005). In particular, Lepidi described that resected valve 
specimens of patients with Q fever endocarditis lacked well- formed granulomas (Lepidi et al., 2003). 

The online version of this article includes the following source data for figure 6:

Source data 1. Q fever infected AAAs express lower levels of GM- CSF.

Figure 6 continued

https://doi.org/10.7554/eLife.72486
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Figure 7. Q fever AAAs exhibit both pro- inflammatory and anti- inflammatory T cell subsets. Arrows with corresponding colors indicate the presence of 
immune cells, with orange for memory T cells, yellow for T helper cells, and cyan for cytotoxic T cells. (A–F): Overview of atherosclerotic AAA (A) and 
Q fever AAA with zoomed photos of tissue (B, E) and tertiary lymphoid structures (TLS) (C, F). In both (A) and (B), the upper side of the photo is the 
intima layer. Note all the FoxP3+ (yellow) cells in Q fever infected tissue. (G): Percentage of T cells of all cells and T cells subsets out of T cells; (G, H, I): 

Figure 7 continued on next page

https://doi.org/10.7554/eLife.72486
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In vascular Q fever, granulomatous responses consisting of histiocytes surrounding necrotic areas 
have been reported in Q fever AAAs, however, well- formed granulomas were not found (Hagenaars 
et al., 2014a). Thus, we would interpret the absence of organized granulomas as the first clue for an 
immune- suppressed environment in AAA of Q fever patients that allows persisting infection after the 
acute phase.

Second, our results demonstrate some similarities between Q fever AAAs and AAAs. Percentages 
of CD3+ T cells, CD20+ B cells, CD1c+ cDC2, CD15+ neutrophils, and CD68+ macrophages are similar 
between the groups with atherosclerotic AAA and Q fever AAA. This finding is supported by the 
PCA, which shows overlapping populations of atherosclerotic and Q fever AAAs when entering these 
inflammatory cell markers. This does not come as a surprise since there are suggestions that vascular 
manifestations of Q fever develop in preexisting atherosclerotic aneurysms (Botelho- Nevers et al., 
2007; Hagenaars et al., 2014b; Hagenaars et al., 2014a; Broos et al., 2015; Eldin et al., 2017).

Quantification shows a shift in cytotoxic/helper T cell ratio and decrease in memory T cells in Q fever AAAs. Q fever AAAs show increased numbers of 
cytotoxic and regulatory T cells, indicating both immune activation and suppression. Source data can be found in Figure 7—source data 1.

The online version of this article includes the following source data for figure 7:

Source data 1. Q fever AAAs exhibit both pro- inflammatory and anti- inflammatory T cell subsets.

Figure 7 continued

Figure 8. HE and Elastin von Gieson (EVG) stainings demonstrate the disrupted architecture of Q fever infected AAAs. Representative images of HE 
staining of AAA with 22× zoomed- in sections (A–C) and EVG staining of adjacent slide (D–F) demonstrate the atherosclerotic plaque, immune cells, and 
infiltrates with relatively preserved vessel architecture as shown by presence of elastin fibers (black arrows pointing at black lines). (HE) (G–I) and EVG 
(J–L) of adjacent Q fever AAAs slides reveal pronounced atherosclerosis and immune cell infiltration, and loss of elastin fibers in the media layer (K). In 
the adventitia (I, L), tissue is replaced by large amounts of fibrosis, indicated with asterisks.

https://doi.org/10.7554/eLife.72486
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Despite the similarities, we discovered that atherosclerotic and Q fever AAAs do have important 
differences, which emerge when investigating macrophage and T cell subset markers. Macrophages in 
Q fever AAAs were found to be polarized into the less inflammatory M2 phenotype, which is ‘tolero-
genic’ and poorly microbicidal, in contrast to the M1 phenotype that possesses a machinery that can 
clear an infection. Interestingly, in the AAAs, we found less M2 polarization based on the presence of 
CD206. This would either indicate that macrophages polarize toward M2 in response to C. burnetii 
infection, or that the presence of M2 polarization is a prerequisite for C. burnetii persistence. Previous 
studies have demonstrated that C. burnetii inhabits and proliferates in monocytes and macrophages, 
and more specifically, in resident vascular wall macrophages in case of vascular Q fever (Ghigo et al., 
2009; Lepidi et  al., 2003). It has been shown by Benoit et  al., 2008 that C. burnetii stimulates 
an atypical M2 activation program in monocyte- derived macrophages in vitro (Benoit et al., 2008). 
M2 polarization of macrophages was also observed in C. burnetii infected transgenic mice consti-
tutively expressing IL- 10 in macrophage lineage, a mouse model for chronic Q fever pathogenesis 
(Meghari et al., 2008). Spleens and livers of these mice showed increased expression of arginase- 1 
and mannose receptor (CD206) and decreased expression of iNOS, IL- 12, and IL- 23 in bone marrow- 
derived macrophages after infection with C. burnettii compared to C. burnetii- infected wild- type 
mice. These previous findings suggested that chronic Q fever is associated with M2 polarization 
of macrophages, but direct evidence in chronic Q fever patients was lacking. Our findings estab-
lish that outgrowth and persistence of C. burnetii in AAAs is associated with the predominance of 
CD68+CD206+ M2 macrophages.

There are several possible explanations for the lack of macrophage activation. First, our results 
demonstrate decreased expression of GM- CSF in Q fever AAAs compared to AAAs. GM- CSF is a 
pro- inflammatory cytokine that activates granulocytes and macrophages (Hercus et  al., 2012). Its 
decreased expression in Q fever AAAs may contribute to the immune- suppressive environment in Q 
fever AAA. The role of GM- CSF in the context of aneurysm formation has been investigated previ-
ously (Son et al., 2015). Strikingly, Son et al. described the increased occurrence of aortic dissection 
and intramural hematoma in wild- type mice subjected to aortic inflammation (CaCl2+ Ang II adminis-
tration) when also receiving GM- CSF. Only administrating GM- CSF, without the prerequisite of aortic 
inflammation, did not result in aortic dissection or intramural hematoma. Its potential clinical relevance 
was confirmed in human blood: GM- CSF serum levels of patients suffering from acute dissection 
were higher than controls with coronary artery disease, aortic aneurysms or healthy volunteers (Son 
et  al., 2015). Additionally, in our cohort, we found that Q fever AAAs ruptured at smaller diam-
eter compared to atherosclerotic AAA. This finding, combined with the GM- CSF paradox, suggests 
that the development of Q fever AAAs and atherosclerotic AAAs follow different pathways, however 
strictly hypothetically.

Second, a key cytokine in activation is IFNg, a T- helper (Th)- 1 cytokine that activates macrophages 
and makes them more microbicidal. Previous studies from our group have demonstrated that periph-
eral blood mononuclear cells from patients with chronic Q fever exhibit an abundant production of 
IFNg when exposed to C. burnetii antigens (Schoffelen et al., 2014; Schoffelen et al., 2017). These 
findings were enigmatic since there is an apparent inability of the patient’s immune system to kill C. 
burnetii at the infected sites. The current findings would be compatible with a downregulated IFNg 
response at the infected site.

In addition to differences in macrophage subsets, differences in T cell subsets were also observed. 
Numerous T cells were observed both in tissue and in TLS, of which the latter are known ectopic 
lymphoid tissues at inflammation sites, including infections and auto- immune diseases such as athero-
sclerosis (Akhavanpoor et al., 2014; Akhavanpoor et al., 2018; Jing and Choi, 2016). These struc-
tures are important inductive sites for T cells and antibody production (Jing and Choi, 2016; Polverino 
et al., 2016; Humby et al., 2009). The first difference is the number of CD3+CD8+ cytotoxic T cells, 
which increased in both infiltrate and surrounding tissue of Q fever AAA compared to AAA. Although 
the numbers of cytotoxic T cells were high, their function might be compromised, resulting in defec-
tive elimination of C. burnetii. The increased numbers of CD3+CD8−FoxP3+ regulatory T cells we 
found in Q fever AAAs may play a role here. An increased number of circulating regulatory T cells has 
also been shown by Layez et al., 2012 in Q fever endocarditis patients and in acute Q fever patients 
(Layez et al., 2012). Regulatory T cells can inhibit cytotoxic T cells directly or indirectly (Joosten and 
Ottenhoff, 2008), with a possible role for IL- 10 produced by this T cell subset. An important role of 

https://doi.org/10.7554/eLife.72486
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IL- 10 in chronic development of Q fever has been postulated based on converging evidence from a 
series of in vitro studies. IL- 10 production by peripheral blood mononuclear cells from patients with 
Q fever endocarditis and Q fever with valvulopathy who were at risk for developing chronic Q fever 
was high, compared to control individuals (Capo et al., 1996; Honstettre et al., 2003). Moreover, 
IL- 10 specifically increases C. burnetii replication in naive monocytes (Ghigo et al., 2001) possibly by 
downregulating IFNg. Finally, low IL- 10 production in monocytes from patients with acute Q fever was 
associated with C. burnetii elimination, whereas C. burnetii replicated in monocytes from patients with 
chronic Q fever and high IL- 10 production. The microbicidal activity of monocytes from patients with 
chronic Q fever was restored by neutralizing IL- 10 (Ghigo et al., 2004). The murine model of chronic 
Q fever mentioned above, also confirmed a key role for IL- 10 in bacterial persistence. C. burnetii 
infection is persistent in mice that overexpress IL- 10 in the macrophage compartment (Meghari et al., 
2008). Thus, IL- 10 could play a crucial role in this immune- suppressed environment.

The last major difference between Q fever AAA and atherosclerotic AAA is the extent of damage to 
the vascular wall architecture in Q fever AAAs. This is demonstrated by extensive loss of elastin fibers 
and increase of fibrosis present in the vascular wall. Fragmentation of elastin fibers has been described 
for AAAs previously (Coady et al., 1999); however, we found the loss of elastin fibers more evident 
in the lesions from Q fever AAAs than atherosclerotic AAAs. Fibrosis is characterized by replacement 
of normal tissue by excessive connective tissue and usually follows chronic inflammation. Presence of 
fibrosis is a sign of a type 2 immune response (Gieseck et al., 2018), which we also demonstrated in 
our cohort with the abundance of M2 macrophages. This may be the effect of persistent presence 
of growth factors, proteolytic enzymes, angiogenic factors, and profibrotic cytokines (Wynn, 2008; 
Wynn, 2007). Previously, fibrosis was also observed in chronic Q fever endocarditis in humans and 
cows (Lepidi et al., 2003; Agerholm et al., 2017; Brouqui et al., 1994; De Biase et al., 2018). This 
indicates that our Q fever AAA cohort suffered from more destructive disease than our AAA cohort.

These novel insights could lead to new clues for novel treatments and thus developments for 
clinical care. Currently, Q fever AAA still leads to significant morbidity and mortality rates despite 
antibiotic and surgical treatment. Epidemiological studies demonstrate the similar risk profile of Q 
fever and non- Q fever infected AAAs, yet the risk of complications is higher in the Q fever infected 
group (Hagenaars et al., 2014b), even up to 61% (van Roeden et al., 2019), and 25% of patients 
suffering from Q fever AAA had deceased with a definitely/probably chronic Q fever related cause of 
death (van Roeden et al., 2019). Here, we confirm that in vascular manifestations of Q fever, the local 
immune response is skewed toward an immunotolerant state. Hypothetically, the decreased expres-
sion of GM- CSF suggests a possible role for immunomodulating treatment, for example, with admin-
istration of recombinant GM- CSF. This is already approved for neutropenia due to myelosuppression 
(Dougan et al., 2019), and has been suggested for treatment for pulmonary tuberculosis (Damiani 
et al., 2020). There might be a role for immunomodulating adjuvant therapies in patients with Q fever 
AAA in whom treatment failure is observed with antibiotics alone.

Our study was the first to use mIHC in Q fever AAA and thereby to gain information about the 
number and proportion of immune cells, and simultaneously obtain spatial information. This powerful 
technique and the access to rare Q fever AAA tissue are strengths of this study. While other studies 
have tested for immune cell activation and recruitment in peripheral blood, we were able to study 
the actual infected tissue. Interpreting our results in context of previous observations enables us to 
increase our understanding of the pathophysiology of Q fever AAA. Still, several limitations should 
be noted. First, our sample size is limited with only 10 vascular manifestations of Q fever samples. 
However, this is still the largest study investigating local immune responses in Q fever AAA in humans. 
In addition, in our quantification method, we include entire slides up to 238 20× views per patient, 
which minimizes the effects of the small sample size. Second, consistent with IHC studies in general, we 
can only describe the immune cells we observe, without answering mechanistic questions. Although 
epidemiological studies suggest that Q fever AAA is the result of C. burnetii infected AAAs, our 
study did not support causation. Moreover, our study lacks direct IHC identification of C. burnetii in 
Q fever AAA, however, all samples were proven PCR positive. Additionally, elastin (breakdown) and 
fibrosis were not quantified. Finally, it should be emphasized that these results and interpretations are 
based on tissue samples from patients with indication for surgery. Nevertheless, when interpreting our 
results in light of the current literature, we can reasonably formulate hypotheses about the pathophys-
iology and test these in further research.

https://doi.org/10.7554/eLife.72486
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Taken together, this leads to the following hypothesis with a prominent role for immune suppres-
sion. First, macrophages that harbor C. burnetii are not effectively killing the micro- organisms, 
probably due to a lack of activation by proinflammatory cytokines like GM- CSF and IFN- g in a micro-
environment with excess IL- 10. Second, effector T cells that attempt to eliminate the intracellular 
bacterium residing in monocytes and macrophages, are hindered by regulatory T cells that are prom-
inent IL- 10 producers. Third, there is a lack of microbicidal M1 macrophages, instead macrophages 
are polarized into the tolerogenic M2 phenotype, which leads to insufficient attack of the pathogen, 
enabling persistent infection.
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