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Abstract: Parkinson’s disease is a neurodegenerative disorder, the motor symptoms of which are
associated classically with Lewy body formation and nigrostriatal degeneration. Neuroinflammation
has been implicated in the progression of this disease, by which microglia become chronically
activated in response to x-synuclein pathology and dying neurons, thereby acquiring dishomeostatic
phenotypes that are cytotoxic and can cause further neuronal death. Microglia have a functional
endocannabinoid signaling system, expressing the cannabinoid receptors in addition to being capable
of synthesizing and degrading endocannabinoids. Alterations in the cannabinoid system—particularly
an upregulation in the immunomodulatory CB, receptor—have been demonstrated to be related to
the microglial activation state and hence the microglial phenotype. This paper will review studies
that examine the relationship between the cannabinoid system and microglial activation, and how
this association could be manipulated for therapeutic benefit in Parkinson’s disease.
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1. Introduction

Microglia are the resident mononuclear phagocytes of the central nervous system (CNS) and are
found ubiquitously throughout the brain and spinal cord. Depending on the region, they comprise
5-12% of the total glial cells in the rodent brain [1], and 0.5-16.6% of glial cells in the human
brain [2]. Microglia play two primary roles in the brain and spinal cord: in immune defense, and in
maintenance of CNS homeostasis. As part of the innate immune system, microglia act as sentinels,
constantly scouring the environment of the CNS for the first signs of danger, such as pathogens or
tissue damage [3-6]. Detection of such signals initiates a cascade of responses that aim to resolve
the injury. However, if chronic microglial activation persists, it can have a detrimental effect on
the preservation of homeostasis in the CNS and can thus contribute to disease, as is the case with
age-related neurodegenerative disorders such as Parkinson’s disease (PD). Cannabinoid receptors
have been shown to be present on microglia and when activated can modulate the inflammatory
profile of these cells [7,8]. Therefore, in recent years there has been a piqued interest in the potential
of cannabinoids as a therapeutic tool to limit the detrimental effects of neuroinflammation and the
associated neuronal death in neurodegenerative diseases such as PD.
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2. Microglia

2.1. The Origin of Microglia: A Historical Perspective

Microglial cells were first observed in the central nervous system in the late 19th century, when
psychiatrist Frank Nissl noted the presence of rod cells or ‘stdabchenzellen” and described them as
reactive neuroglia with phagocytic and migratory potential [9]. Ramoén y Cajal later developed an
improved cell staining method using gold chloride sublimate, which he was able to use to excellently
stain astrocytes but which also poorly stained small adendritic cells that seemed devoid of processes.
He termed these cells the ‘third element’ of the central nervous system [10], recognizing them to be
different from neurons and astrocytes, the first and second elements respectively. However, it was Pio
del Rio-Hortega who built on Cajal’s work and introduced novel staining methods, which allowed him
to separate this ‘third element’ into two distinctive cell types: microglia and ‘interfascicular cells’, the
cells that we now know as oligodendrocytes [11]. Rio-Hortega is considered the father of microglia and
was the first one to use the term to describe these cells [12]. Many of his initial observations on microglia
are still relevant to this day. In four landmark papers in 1919 [13-16], he described the morphology of
microglia in normal tissue and reported their high phagocytic and migratory activity in conditions
where tissue damage had occurred. He also presented evidence that they transformed into the cells
that had previously been seen in pathological tissue but whose origin had been heavily debated. He
hypothesized that microglia were of mesodermal origin, contrary to the commonly held belief at the
time that all glial cells were of neuroectodermal origin [17]. The origin of microglial cells remained an
ongoing discussion over the ensuing decades, persisting until recent years. Two principal hypotheses
existed, supporting contrastingly the neuroectodermal and mesodermal origins of these cells.

The neuroectodermal origin hypothesis was based on the presumption that microglia shared
a common progenitor with oligodendrocytes and astrocytes, the other glial cells that exist in the
brain, a theory that subsequently gathered considerable evidence and support [18-20]. These cells
were all proposed to arise from free subependymal cells (glioblasts), which originated from the
neuroectoderm. Indeed, one ultrastructural study described the existence of cells with intermediate
features between a glioblast cell and a microglial cell [21]. Autoradiographic analyses also indicated that
microglia originated from glioblasts. Brain tissue from mice at various stages of postnatal development,
which had been injected with 3H-thymidine, showed that 91% of glial cells in the hippocampus
were produced after birth. The researchers observed a continuous morphological transition from
proliferating cells (which retained similar structural characteristics to glioblasts at late postnatal days)
to resting microglia [22]. Comparable results were also obtained using a similar technique in rats [23].

The mesodermal origin hypothesis was based on the clear phenotypic similarities of microglia to
peripheral monocytes/macrophages, and a number of studies using various techniques did conclude
that microglia were derived from bone marrow stem cells [24-26]. Immunohistochemical studies
determined that microglia expressed specific macrophage markers, such as MAC-1, F4/80 and the
Fc receptor in mouse microglia [27], and FcyRI and CD11b in human microglial cells [28]. However,
a large number of members of the scientific community believed that microglia were derived from
circulating monocytes. This belief was supported by studies that showed engraftment of the CNS
by CCR?** monocytes after myeloablation using irradiation [29,30]. However, irradiation severely
impacts the viability of microglia, so this may not accurately demonstrate microglial turnover in
homeostatic conditions [31]. In the mature adult brain, although there is varying recruitment of bone
marrow progenitors in disease states [32-34], in normal, healthy conditions the microglial population
can be replenished by self-renewal in a stochastic process, rather than from de novo hematopoietic
progenitors [17,35-37].

The concept that microglia develop from the embryonic yolk sac was first suggested in the 1990s
by Cuadros and co-workers [38], whose study in avian embryos showed that primitive myeloid
cells entered the brain rudiment during development, and that these cells were of yolk sac origin.
Alliot and colleagues [39] provided further evidence to support this hypothesis, as they showed
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microglial progenitors to be present in the yolk sac of the developing mouse embryo, and later in
the brain rudiment from embryonic day 8. In 2010 yet more definitive evidence was provided by
Ginhoux et al. [40], who used in vivo fate mapping in mice to show that adult microglia are derived
from primitive macrophages, which arise from the embryonic yolk sac during development, and
enter the brain rudiment via the circulatory system. Another group that likewise used fate-mapping
techniques in mice also confirmed the results suggesting that the origin of these cells is from the yolk
sac [41]. It is now generally accepted by the scientific community that microglial cells do indeed
arise from the embryonic yolk sac. The first wave of production of early primitive macrophages and
erythrocytes occurs at embryonic day 8.5 (E8.5) in the murine yolk sac and has been described as
part of a transient process termed ‘primitive hematopoiesis” differentiating it from a second wave
of production of definitive hematopoietic stem cells (HSCs), which occurs around E10.5, known as
‘definitive hematopoiesis’. These HSCs are generated in an area surrounding the dorsal aorta of the
embryo, termed the aorta-gonad-mesonephros (AGM) region, and then migrate to the fetal liver and
bone marrow to differentiate into all hematopoietic lineages [42—45]. This is in contrast to microglia
that originate from the first wave of primitive myeloid progenitors and colonize the brain.

Blood circulation is critical for the seeding of the central nervous system by the microglial
progenitors, which is demonstrated by the absence of microglia in mice devoid of a heartbeat and
therefore functional circulation due to a sodium calcium exchanger 1 deficiency [40]. In mice, formation
and remodeling of blood vessels occur between embryonic days 8 and 10 [46], at which time the
vasculature changes from a simple loop into a complex three-dimensional organ. Initial gradual
infiltration of the microglial progenitors into the neuroepithelium of mice begins from E§-E14, followed
by a rapid infiltration with a massive increase in microglia from E14-E16. This is followed by
another gradual infiltration stage, lasting until E17.5, during which the progenitors are also dispersing
throughout the brain [47].

During neonatal development, microglial progenitors do not resemble microglia found in the
healthy adult brain. They proliferate and gain the highly ramified processes typical of mature resting
microglial cells through a series of developmental steps. Interestingly, considerable sex differences
have been found with regards to microglia before and after development including their number and
morphology; the long-term consequences of these differences on the immunological function has not
been fully elucidated [48]. Once adult ramified microglia are spread throughout the CNS, a number
of factors contribute to their self-renewal, ensuring maintenance of microglial cell numbers and thus
maintenance of CNS homeostasis [49].

2.2. Microglial Phenotypes and Activation

Microglia execute a variety of crucial functions in the CNS. They play critical roles in the
maintenance of synaptic plasticity, especially postnatally and in early adulthood. Paolicelli and
colleagues showed that they play an important role in remodeling neural circuits postnatally in mice,
as they actively engulf synaptic material and undertake synaptic pruning [50]. They also regulate adult
neurogenesis [51,52], promote learning-dependent synapse formation [53], phagocytose dead or dying
cells and debris [54,55], and maintain myelin homeostasis [56-58]. In addition to their housekeeping
functions, microglia are imperative to the immune response, mediating host defense against invading
pathogens and injurious self-stimuli.

A ‘resting’ or quiescent microglial cell has a very small cell soma with elongated ramified processes.
The term surveillant is now considered to be a more accurate term to describe the state of a microglial cell
in non-pathological conditions, as the microglia are not dormant, but are rather constantly monitoring
and sampling the CNS environment. Under normal conditions, the radial processes are highly motile
and are constantly extending and retracting, while the soma remains relatively stationary [3,4]. These
processes do not overlap with the processes of adjacent cells, and the system is so fine-tuned that it is
suggested that the entire brain volume is scanned by the microglia every few hours [3]. This surveying
phenotype of microglia is maintained by a delicate balance between ‘stimulatory” and “inhibitory’
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signals. This includes numerous interactions between neurons and microglia. One such example is
the interaction between CX3-chemokine ligand 1 (CX3CL-1, also known as fractalkine or neurotactin),
which is produced by neurons, and its receptor CX3CR1, which is expressed on microglia [59]. CD200 is
a surface molecule that is widely expressed on neurons, as well as astrocytes and oligodendrocytes [60].
Its receptor, CD200R, is found exclusively on microglia in the CNS and interaction between the two
molecules also assists in keeping microglia in their quiescent state [61,62]. The quiescent state of
microglia is not only regulated by exogenous signals, but also by endogenous transcription factors
including runt-related transcription factor 1 (Runx1) and interferon regulatory factor 8 (Irf8) [63-65].

In response to an immune challenge, pathogen, or injury, these ramified surveilling microglial
cells undergo an intricate, multi-stage activation process and their morphology is rapidly changed
to an ‘activated’ microglial cell with an amoeboid form. These macrophage-like cells have retracted
processes, are spherical in shape with an enlarged cell body, and contain phagocytic vacuoles [47,66].
Chemotactic reorientations of the microglial processes towards the pathological stimulus can occur
within minutes. The processes form an area of containment around the site of injury, separating
the injured tissue from the healthy tissue, suggesting that microglia may be the first line of defense
following injury [4]. Activated microglia are virtually indistinguishable from macrophages not only in
their morphology, but also with regards to their surface markers and function. Microglia-expressed
macrophage-associated markers include CD11b, Ibal, and EGF-like module-containing mucin-like
hormone receptor-like 1 (EMRI, also known as F4/80) [67]. Contributing further evidence of the
similarity of microglia to macrophages, mice lacking the PU.1 transcription factor, which is a crucial
transcription factor in the differentiation of many myeloid cells including macrophages, do not have
microglia present in the CNS [68,69]. In recent years more specific markers of microglia have been
identified, which allow microglia to be distinguished from infiltrating monocytes or CNS macrophages,
including transmembrane protein 119 (TMEM 119) [70], and the purinergic G-protein coupled receptor
P2RY12 [71]. However, microglia can shift activation states in a context-dependent manner causing
them to lose their microglia-specific markers, rendering it more difficult to distinguish between
infiltrating myeloid cells [72,73]. For example, t-SNE (t-distributed stochastic neighbor embedding)
analysis identified clusters of microglia with low to negative levels of TMEM119 and P2RY12 from
brain samples of patients with multiple sclerosis compared to homeostatic healthy controls that are
enriched for those genes [73].

Due to the striking similarities in their morphologies, an early concept emerged to classify the
microglial activation states in a similar manner as used for peripheral macrophages: the classically
activated (M1-type) state and the alternatively activated (M2-type) state. This concept was based on
the ability of a stimulus to induce cytokines that are either pro-inflammatory (M1) or anti-inflammatory
(M2), and parallels the Th1l and Th2 terminology used for T cells. However, in more recent years,
single-cell transcriptome studies have identified microglia signatures that overlap with both M1-like
and M2-like profiles, suggesting they do not follow the same polarization model as peripheral
macrophages [74,75]. Moreover, the M1/M2 polarization paradigm of microglia was helpful when
conceptualizing the behavior of microglia in vitro, yet the phenotypic bias is rarely seen in vivo. To add
to the complexity, microglial signatures are sensitive to regional distribution and specific to the local
environment, which can change under different conditions such as during neurodegeneration or
aging [76]. In an elegant study, McColl and colleagues described discrete microglia transcriptional
profiles from purified microglia in the cortex/striatum, hippocampus, and cerebellum of young adult
mice [72]. Enrichment analysis of these microglia revealed regional expression profiles that correlated
with distinct biological processes. The hippocampal microglia genes were associated with energy
production and the cerebellar and cortical microglia genes were associated with immunoregulatory
pathways. Notably, aging resulted in non-uniform transcriptome changes across regions with aged,
22 month old hippocampal microglia suppressing genes involved in immune function such as
cell-adhesion (CD36 and CD93) and antigen processing (MHC-II genes H2-Aa and H2-Ab1) compared
to microglia from young 4 month old mice.
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Despite its common usage in the literature, this M1/M2 paradigm to describe the two contrary facets
of the inflammatory response of microglia is no longer accurate. In reality, the microglial population in
the brain is not all polarized to one extreme or the other at a particular point in time, but instead has
varying transcriptional profiles dependent on the local microenvironment. With increasing technology
and single-cell analysis, the field will need to consider new terminology to define microglial phenotypes,
but currently the issue is unresolved.

2.3. Microglial Role in Acute Neuroinflammation

Classically, inflammation involves redness, swelling, heat, pain, and loss of function [77].
However, when referring to inflammation in the brain, this historical description is transcended
as the inflammatory response is occurring on a cellular basis and therefore the classical definition is
not relevant to the inflammatory processes occurring in the CNS. Neuroinflammation is thus simply
characterized as an inflammatory response within the brain or spinal cord. Before neuroinflammation
became part of the scientific vernacular, researchers used to term ‘reactive gliosis’ to describe the
response of the CNS to injury, referring to the presence of enlarged glia cells in the vicinity immediately
after the insult occurred. Since the first mention of neuroinflammation in a publication in 1995 [78],
the number of papers on the topic on PubMed has exploded to over 17,000 as of 2019.

Activation of an inflammatory response after CNS injury, such as trauma, ischemia, or infection,
is a necessary response to curtail injury and to repair damage. Acute neuroinflammation in retort to
such an insult should be of a relatively short duration and graded in relation to the stimulus intensity,
and should result in elimination of the offending cells or damage and initiation of a tissue repair
response. Mediators such as chemokines, cytokines, and reactive oxygen species (ROS) produced
by CNS cells transmit messages to manage this inflammatory response [79]. In normal conditions,
the immune response is fine-tuned and balanced in order to achieve this goal, but in pathological
conditions, the responses can become skewed. As the factors produced in the inflammatory response
are themselves capable of inducing tissue damage, if this imbalance occurs they can upset the fragile
homeostasis of the CNS and thus cause cell dysfunction or cell loss.

Both the innate and adaptive immune systems are involved in the inflammatory response, which
involves an immense number of cells and factors. Microglia, as the intrinsic immune cells of the
CNS, play an inherent role in neuroinflammation, as they perform the primary immune surveillance
and defense functions of the CNS. Astrocytes, endothelial cells, and peripherally derived immune
cells also contribute to the response. However, due to the crucial role microglial cells have, they are
often the focal point of any discussion of neuroinflammation. They are constantly surveying the CNS,
rapidly expanding and retracting their processes as they palpate their microenvironment [3]. They
are also extremely sensitive to minute changes in the environment of the CNS, such as alterations
in ion homeostasis and can become activated in response to such changes even before pathological
damage is detectable [80]. Microglia have a unique set of membrane channels and it is thought that
these channels, particularly the inwardly rectifying potassium channels, may be responsible for this
responsiveness [81,82]. Pattern recognition receptors (PRRs) are found on the surface of microglia,
and recognize pathogen-associated molecular pattern molecules (PAMPs) and damage-associated
molecular pattern molecules (DAMPs). These PRRs, which include Toll-like receptors (TLRs) and
Nod-like receptors (NLRs) among others, are crucial to the immune response, and are thought to
be among the first responders to CNS injury (reviewed in [83,84]). In addition, microglial cells also
express a number of receptors including those for ATP [85], the neurotransmitters acetylcholine and
noradrenaline [86], and calcitonin gene-related peptide (CGRP) [87]. Activation of these receptors can
rapidly induce large quantities of genes necessary for the appropriate immune response [87].

Once activated, microglia change their morphology and also alter the self-expression of numerous
markers. Microglia turn on expression of the major histocompatibility complex class II (MHC class
II), which is important in antigen presentation and activation of naive T cells [88]. It has been
proposed that the specialized CNS lymphatic system plays a role in waste clearance and drainage of
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macromolecules, immune cells and intra-cerebrally injected antigens into the cervical lymph nodes
in the neck ([89-91], reviewed in [92]). Draining CNS-derived antigens initiates a T cell response to
extravasate into the brain parenchyma. Migration out of the cerebrovasculature occurs following
chemokine signaling from the endothelial cells, which is mediated by the interaction of leukocyte
integrins such as leukocyte function-associated molecule 1 (LFA-1) and adhesion molecules such as
intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion protein 1 (VCAM-1) (reviewed
in [93]). Once across the brain-blood barrier (BBB), T cells are restimulated by local antigen-presenting
cells from antigens presented on MHC class II [88,94]. A host of interacting molecules engage between
microglia and the antigen-specific T cells to perform multiple functions including the maintenance
of tolerance toward self-proteins and prevention of auto-immunity. Early evidence highlights a role
of microglia in the process of T cell migration and activation in the CNS. Following axonal injury,
microglia acutely upregulate adhesion molecules such as thrombospondin and ICAM-1, which are
known to be important components of a T cell mediated adaptive immune response [88,95]. The exact
ability of the microglia to present to naive T cells compared to other antigen-presenting cells in the
CNS (e.g., perivascular macrophages and astrocytes [88]) is not fully known, although this evidence
combined does suggest that the microglia play a role in the initiation of the adaptive immune response.

The activation of microglia in the CNS after acute injury such as spinal cord injury, ischemic
stroke or traumatic brain injury has been intensely studied. In a mouse model of ischemic stroke,
Hu et al. [96] found that local microglia, as well as newly recruited macrophages, assumed a protective
phenotype in the early stages following ischemia, peaking at 5 days post-injury, and this seems to
be protective of the neurons. However, this gradually transitions to be dominated by a cytotoxic
phenotype, perhaps primed by the ischemic neurons. A similar pattern was also seen in a model of
traumatic brain injury [97]. In another study, the ablation of proliferating microglial cells increased
the size of the infarction following ischemic injury, suggesting that the proliferating cells have a
neuroprotective role [98]. The microglial response to acute brain injuries can persist for many months.
After experimental focal brain jury in rats, microgliosis was observed 3 months after injury, alongside
increased synthesis of pro-inflammatory cytokines such as TNF-« and IL-13 [99]. In humans, elevated
numbers of microglia were seen up to four years after head injury [100]. However, if the cytotoxic
microglial response persists in this fashion for an extended period of time after acute injury, the
inflammatory response may become destructive rather than beneficial.

2.4. Microglial Role in Chronic Neuroinflammation and Neurodegeneration

Neuroinflammation was first suggested to have a role in neurodegenerative disease as early as
the beginning of the 20th century. In 1907, the same year Alzheimer published his seminal paper
first describing the disease that was to become his namesake [101], Oskar Fischer described plaque
formation in patients with senile dementia. Fischer later stated that the plaque deposition was a result
of an inflammatory reaction, but could not find the morphological characteristics of an inflammatory
reaction [102,103]. Thus, the idea of inflammation playing a role largely lost favor as it was a widespread
belief at the time that the CNS was an immune-privileged site, separated from the immune system by
the blood-brain barrier. The discovery of microglia as the resident immune cells of the brain led to a
breakdown of this belief, and though it took several decades for a rebirth of research into the role of
inflammatory responses in neurodegenerative disease, microglia are now known to be key mediators
of these responses (reviewed in [104]).

In contrast to the essential response of acute inflammation, chronic inflammation is a long-lasting,
frequently self-perpetuating response. Rather than having a protective role by eliminating pathogens
or encouraging tissue repair, chronic inflammation is often detrimental and is associated with tissue
damage and blood-brain barrier breakdown. Inflammation in the CNS has hence been aptly described
as a double-edged sword [105]; while acute inflammatory reactions are beneficial and can limit damage
and promote tissue repair, chronic inflammation can severely damage brain tissue. Microglia are
rapidly activated following harmful stimulus exposure and will eliminate toxins and phagocytose
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dead or dying cells. Upon elimination of the stimulus, the microglia will gradually revert to their
surveying phenotype. However, if there is continuous exposure to a stimulus, then a self-sustaining
cycle of chronic inflammation can occur, which is detrimental to the neuronal population.

With age, there is a chronic progressive increase in the inflammatory status in a phenomenon
known as ‘inflammaging’ [106]. There are a large number of pathological conditions, which are affected
by the inflammatory status, including neurodegenerative diseases such as Alzheimer’s disease (AD)
and PD, which are both age-related disorders. This inflammation is low-grade, chronic, occurs in the
absence of infection, and is largely driven by endogenous signals. There is a new field of research
known as “‘geroscience’, which studies the link between aging and age-related chronic diseases [107],
and the underlying mechanisms, of which inflammation is a pivotal central aspect. This age-related
chronic inflammation is associated with an increased level of pro-inflammatory cytokines and a
decreased secretion of anti-inflammatory cytokines (reviewed in [108]).

The phenomenon of microglial priming also performs an influential role in neurodegenerative
disease. Microglial priming is a heightened microglial response (relative to naive cells) to a second
stimulus. Microglia can be primed by a variety of stimuli, such as chronic stress [109], a transient
peripheral infection [110], or chronic exposure to low levels of pathogens [111]. In animal models
of neurodegenerative disease, a systemic inflammatory challenge has been shown to produce an
exaggerated immune response in the CNS [112,113]. Olsen et al. [114] also demonstrated that
viral neuroinflammatory priming in the substantia nigra significantly exacerbated «-synuclein
aggregate-induced neuroinflammation and neurodegeneration. Another group likewise observed
an enhanced neurodegenerative effect by combination of the HIN1 influenza virus and MPTP [115].
However, it is not yet known how or if the response differs between different neurodegenerative
conditions or different priming agents.

Chronic neuroinflammation is now generally accepted to be an important component in the
progression of neurodegenerative diseases. Microglia are activated in these conditions, and their role
as scavengers to help clear the debris of the dying neurons is critical. However, when the microglia
are activated chronically, they can release an excess of cytotoxic factors, which can further contribute
to neuronal death, and thus a self-sustaining cycle of neuroinflammation and neurodegeneration is
initiated [116]. The link between neuroinflammation, microglial activation, and neuronal death has
been examined in numerous neurodegenerative diseases. AD is the most common neurodegenerative
disease and is associated with progressive cognitive decline and memory loss. Pathologically, a
major hallmark of this disease is the presence of extracellular plaque deposits of the 3-amyloid (Af3)
peptide [117]. This peptide is implicated in the pathology of AD, both through direct toxicity to neurons
but also through the recruitment and activation of microglia [118,119], indicating an important role
for microglia in this disease. In fact, in one study carried out in the post-mortem brains of patients,
microglial activation was seen to be correlated with disease progression [120]. Huntington’s disease
is an autosomal dominant inherited neurodegenerative disorder, characterized by motor, cognitive,
and mental impairments, and is caused by the expansion of a CAG trinucleotide repeat in the gene
that encodes the huntingtin protein [121]. This causes a preferential loss of medium spiny neurons
in the striatum [122]. Marked microgliosis has been seen in the post-mortem Huntington disease
brain [123,124], as well as in mutant gene carriers even before symptoms present [125], indicating that
persistent activation of these cells may be involved in this disease. Microglia and chronic inflammation
are also implicated in the progression of PD, which is discussed extensively in the next section.

2.5. Role of Microglia in Parkinson’s Disease Pathology

PD is a chronic, progressive neurodegenerative disease and is the second most common
neurodegenerative disorder. It was first observed by James Parkinson in 1817, who described
tremors, postural instability, altered gait, and falls in what he called the ‘shaking palsy’ [126]. However,
it was not until the 1860s when Charcot and Vulpian noted the presence of bradykinesia that it
was distinguishable from other neurological conditions [127]. Today, it is recognized clinically by
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tremor at rest, bradykinesia, muscle rigidity, and postural instability, although a variety of non-motor
symptoms may also be present, including depression and anxiety, constipation, dementia, and sleep
disturbances [128]. The exact cause of this disease has yet to be fully elucidated, but it is thought that
both genetic and environmental factors play a role. Various genes that cause a familial inherited form
of the disease have been identified, for example, mutations in the a-synuclein gene [129] or the leucine
rich repeated kinase 2 (LRRK2) gene [130], as they have several environmental entities that increase the
risk of disease such as the pesticide rotenone and the herbicide paraquat [131]. The incidence of the
disease is also known to be age-associated, affecting about 1% of people over 60 years of age [132].

Pathologically, the most prominent characteristic of PD is the slow and progressive degeneration
of dopamine neurons in the substantia nigra. By the time the motor symptoms appear, up to 80% of
striatal dopamine and 50% of the nigral neurons have already been lost [133,134]. Another defining
pathological feature of PD is the presence of the proteinaceous inclusions known as Lewy bodies,
first described by Friedrich Heinrich Lewy in 1912 [135]. «-synuclein, a filamentous protein, is the main
component of these aggregates [136]. The role of these inclusions in PD is still not fully understood
despite intensive research. However, various cellular mechanisms have been identified that are thought
to contribute to the neuronal degeneration such as oxidative stress, excitotoxicity, mitochondrial
dysfunction, abnormal protein handling, and neuroinflammation (reviewed in [137]).

The presence of inflammatory processes in post-mortem PD patients has been verified through
the analysis of levels of pro-inflammatory mediators. The cytokine TNF-a has been seen to be
increased in both the substantia nigra and the striatum post-mortem [138,139], which is also the case
with interleukin-1p [140,141] and interferon-y [142]. Enzymes associated with inflammation that are
expressed by microglia were also elevated in the substantia nigra, such as the enzymes inducible
nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) [143], providing further evidence of
neuroinflammation playing a role in PD.

There is extensive evidence for microglial activation in PD, and in PD models, and it is now widely
accepted that this microglial activation contributes to neuronal death in a self-perpetuating manner.
The first evidence of microgliosis in PD came from McGeer and colleagues in 1988 who reported the
existence of reactive microglial cells in the substantia nigra of PD patients post-mortem [144]. These
were identified as microglia due to the presence of HLA-DR on the surface of the cells, which is a
receptor belonging to the class major histocompatibility complex II (MHC class II). This was later
confirmed by other groups using different microglial markers such as ICAM-1 or CD68 [145,146].
This microgliosis was also seen in patients that developed rapid-onset severe parkinsonism after
intra-venous injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) [147]. MPTP is a
by-product in the synthesis of 1-methyl-4-phenyl-4-propionoxy-piperidine (MPPP), which is an analog
of the opioid meperidine. MPTP is transformed to the toxic metabolite MPP+ by monoamine oxidase
B in the brain and can interfere with complex I of mitochondria, affecting the electron transport chain.
It is taken up by the dopamine uptake site, becoming concentrated in dopamine neurons and resulting
in their degeneration, hence the extreme parkinsonian bradykinesia [148]. The microglia of these
patients also contained the dark pigment neuromelanin, which is expressed in large quantities in the
dopaminergic cells in the substantia nigra, providing evidence that the amoeboid microglia are clearing
the dead and dying neurons. Although this research has contributed much to our knowledge of PD, the
fact that these studies were all carried out post-mortem is a limitation, as therefore the role of microglia
in the progression of the disease cannot be simply elucidated from these observations. However, a
large scale genome-wide association study (GWAS) of patients with late-onset sporadic PD carried
out by Hamza and colleagues identified a single nucleotide polymorphism (SNP) in the HLA-DR
gene expressed on microglia, which was a genetic risk factor for the disease [149], providing evidence
in living patients that microglia may contribute to the advancement of the disease. Under certain
conditions, this mutation also has been associated with a shift towards a CD4* pro-inflammatory T
cell response, suggesting that T cells are involved in PD [150]. Since the discovery of this SNP by this
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research team in 2010, several other common genetic variants associated with an increased risk of PD
have been identified in the HLAs corresponding to MHC class II [151-153].

The protein «-synuclein plays a crucial role in the pathogenesis of PD, with mutations or
triplications in this gene shown to cause familial forms of the disease [129,154]. In PD, a-synuclein is
overexpressed and is present in various formations, and accumulates in the form of amyloid fibrils into
Lewy bodies [136,155]. Microglia should be the main cell clearing this toxic protein, but «-synuclein
has been shown to alter microglial activity. Research regarding altering of microglial phagocytosis
by a-synuclein includes some contradictory results, depending on the type of a-synuclein used
and the cell model. «-synuclein with the A53T mutation was seen to promote a pro-inflammatory
profile and impaired phagocytosis in BV2 microglia [156], while Roodveldt et al. saw increased
phagocytosis with this variant, but impaired phagocytosis with the A30P and E46K forms in primary
microglial cultures [157]. A study using «-synuclein knock-out mice showed microglia with a basally
increased reactive phenotype, and an impaired phagocytic ability, suggesting that non-pathological
levels of a-synuclein are important in preventing inflammation and promoting phagocytosis [158].
Furthermore, research has shown the disparate conformations of x-synuclein differentially impact
microglial phagocytosis, with monomeric forms promoting phagocytosis and oligomeric forms
inhibiting it [159]. Age is also an important element in the ability of microglia to phagocytose
a-synuclein, with older cells being less efficient at clearing the toxin [160].

The first report of the ability of x-synuclein to alter the microglial inflammatory profile came in 2005
by Zhang and coworkers [161], who showed that microglia phagocytose oligomeric a-synuclein, which
then leads to shifting of the microglia to a pro-inflammatory phenotype, with increased prostaglandin
E2 and increased ROS production, leading to enhanced dopaminergic neuron toxicity. There are now
numerous studies showing that «-synuclein can spur microglia towards a cytotoxic, pro-inflammatory
phenotype, with increased production of cytokines such as TNF-«, IL-1$3, and IL-6 [162-164], and
increased levels of the enzymes COX-2 and iNOS [163,165]. Similarly with the phagocytic ability, there
is contrasting evidence with regards to the different a-synuclein disease-related mutations and their
effect on the release of pro-inflammatory cytokines. One study reported almost no pro-inflammatory
effect for the A53T x-synuclein and a high effect for the A30P [157,166], while another found that the
A53T form had the highest pro-inflammatory effect on microglia, followed by A30P [166].

In addition to the effect that different mutations in the «-synuclein gene have on microglial
phenotypes, other genes associated with an increased risk of PD are also thought to contribute to
the regulation of microglial function, such as LRRK2. This gene encodes for a kinase that interacts
with actin-regulating proteins and regulates actin dynamics, which is important for the moving of the
processes of surveilling microglial cells. LRRK2-knockdown BV2 microglial cells have been reported
to be highly motile compared to control cells [167], and to have an altered morphology compared to
controls after challenge with lipopolysaccharide (LPS) [168]. LRRK2 alters microglial motility through
its effect on focal adhesive kinase (FAK), a key regulator in cell movement [167].

In all classical animal models of PD, some type of microgliosis is present. This includes
toxic models such as 6-hydroxydopamine (6-OHDA) [169], rotenone [170,171], and MPTP [172,173],
and also non-toxic models like the axotomized models [174]. There are also PD models that work
by causing over-activation of the immune system in the brain, such as the LPS model and the poly
I:C (polyinosinic:polycytidylic acid) model [175-177], highlighting the relevance microgliosis has
on neuronal survival. However, neuronal death is not strictly necessary for microglial activation.
In transgenic mice overexpressing o-synuclein with the double mutation of A53T and A30P under the
TH promotor, microgliosis occurred very early, long preceding cell death [165].

It is now clear that microglia and inflammation are important to the progression of PD. However,
still relatively little is known about the microglial phenotypes with relation to each stage of the
disease progression, thereby hindering the development of therapies to shift microglial activation
states. Further studies of PD pathology are required to allow advantageous manipulation of microglial
phenotypes, depending on how far the disease has advanced in each individual patient.
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3. The Cannabinoid System

The endocannabinoid system is a relatively newly discovered system in neuropharmacology.
However, research into this field has grown exponentially in recent decades and it is now recognized that
the endocannabinoid system plays important physiological and pathological roles in neuroinflammation
and neurodegeneration, alongside numerous other functions such as in pain, mood, and appetite.

3.1. Overview of the Endocannabinoid System

The term ‘cannabinoid’ refers to any compound whose effects are mediated through modulation
of components of the endocannabinoid system, such as modulation of the endocannabinoid receptors,
enzymes, or transport proteins. This term includes molecules found in the two main plant subspecies,
Cannabis sativa and Cannabis indica, as well as endogenous and synthetic compounds. The potential
of cannabinoids as therapeutic agents has been acknowledged from as early as the third millennium
B.C. in China, where texts have been discovered that observe the beneficial effects of cannabinoids or
cannabis in relief of rheumatic pain [178]. During the course of the subsequent millennia, cannabinoids
remained in use both medicinally and recreationally. To date, there are over 100 cannabinoids that
have been isolated from cannabis, including cannabidiol (CBD) identified in 1963 [179] and the main
psychoactive component, A9-tetrahydrocannabinol (THC) identified in 1965 by Mechoulam and Gaoni,
which constituted the first major breakthroughs in modern times [180]. It would be over two decades
before the first THC binding site was discovered [181], but since then research into this field has
grown expeditiously.

The effects of cannabinoids are primarily mediated through two major receptors type 1 and type
2, CBy and CB,, respectively. The receptor now known as the CB; receptor was first identified in
1990 [181] and in recent years the structure has been further elucidated [182,183]. This receptor is
widely distributed in the central nervous system, particularly in the cerebellum, cortex, basal ganglia,
and hippocampus [184,185]. In the CNS, it has been shown to be predominantly expressed on axons
and terminals of neurons. CB; receptors are also present at lower but still functionally relevant levels
in many peripheral tissues and organs, including adipose tissue [186], liver [187], pancreas [188],
and skeletal muscle [189].

Cloning of the CB, receptor came in 1993, three years following the identification of the CB;
receptor [190] and the crystal structure of the receptor has subsequently been reported at a high
resolution [191]. Originally, CB, was informally referred to as the “peripheral receptor” as it was
found largely in immune tissues with highest mRNA levels in the tonsils and spleen and in peripheral
immune cells and it did not appear to be present in the brain [192]. However, it is now widely
accepted that this receptor upregulates its expression on activated microglia in the central nervous
system [193,194]. The presence of the CB, receptor on neurons in the CNS remained a debate for years
with much contrasting evidence being published. It is now thought that the receptor is expressed on
particular subsets of neurons at functionally relevant levels, although the different techniques used
to identify CB, expression can show varying results (reviewed in [195]). The human, mouse, and rat
protein sequences of the CB, receptor have been found to differ quite substantially in the C-terminus,
with the mouse sequence being 13 amino acids shorter and the rat sequence 50 amino acids longer
compared to the human protein [196]. Therefore, caution must be taken in extrapolating the results
from non-human models to the effects of CB, activation in humans. Furthermore, one of the greatest
challenges currently in the field is the lack of reliable and specific antibodies against CBy, which has
contributed to the conflicting reports on CB; receptor distribution.

Both CBy and CB, receptors belong to the G;/, family of seven transmembrane G protein-coupled
receptors, although the identity between the two receptors in humans is remarkably low, with only
44% homology overall and 68% in the transmembrane helices, which contain the putative binding
sites for cannabinoids [197]. Both receptors inhibit the enzyme adenylyl cyclase, resulting in a reduced
synthesis of cyclic AMP, and activate the mitogen-activated protein kinase pathway by signaling
through G;,, proteins. Furthermore, CB; activation can modulate certain voltage-gated calcium
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channels and inwardly rectifying potassium currents [198]. The CB; receptor also affects additional
pathways, such as activation of phospholipase C, leading to calcium release [199], and activation of the
phosphatidylinositol 3-kinase pathway [200].

Equipped with the rationale that receptors would not be present in the body without the existence
of an endogenous ligand, following the discovery of the cannabinoid receptors researchers began the
search for these ‘endocannabinoids’. The two best characterized are arachidonoyl ethanolamide (usually
referred to as anandamide or AEA) and 2-arachidonoyl glycerol (2-AG), although other endogenous
molecules have also been discovered that either interact in some way with the endocannabinoid
system (e.g., 2-arachidonyl glyceryl ether (noladin ether) [201]), or endocannabinoid-like lipids that
do not act via cannabinoid receptors (e.g., palmitoylethanolamide (PEA) and oleoylethanolamide
(OEA) [202,203]). Unlike most classical neurotransmitters, anandamide and 2-AG are not stored in
vesicles, but are synthesized ‘on demand’ (usually by membrane depolarization or activation of certain
G-protein coupled receptors) from their lipid membrane precursors. Upon their postsynaptic release
they act as retrograde messengers, suppressing transmitter release from neurons in either a transient
or long-term manner, roles that have been well established [204-206]. These two endocannabinoids
possess distinct properties with regards to their interactions with the cannabinoid receptors. 2-AG
works as a full agonist at both receptors with low-to-moderate affinity. Anandamide, on the other hand,
has very low activity at the CB, receptor but is a high-affinity, partial agonist at the CB; receptor [207].
Anandamide also has affinity at transient receptor potential vanilloid type 1 (TPRV1) channels [208],
although the strength of its agonism seems to be strongly dependent on the level of receptor reserve in
the tissue [209,210]. Besides the aforementioned receptors, endocannabinoids and phytocannabinoids
also interact with the orphan receptor G protein-coupled receptor 55 (GPR55) [211] and peroxisome
proliferator-activated receptors (PPARs) [212,213].

As well as having disparate intrinsic efficacies, anandamide and 2-AG also have distinct
biosynthesis and metabolism pathways. Anandamide is primarily formed through cleavage of the
phospholipid N-arachidonoyl-phosphatidylethanolamine (NAPE) [214] by a specific phosphodiesterase
enzyme known as N-acyl phosphatidylethanolamine-specific phospholipase D or NAPE-PLD [215].
Ultimately, the inactivation of anandamide is carried out by an enzyme named fatty acid amide
hydrolase (FAAH) through hydrolysis of the amide bond to form ethanolamine and arachidonic
acid [214]. 2-AG is a monoacylglycerol and is formed through the hydrolysis of diacylglycerols
(DAGsS) by diacylglycerol lipases (DAGLs) « and {3, with the two isoforms differentially expressed in
developing and adult nervous tissue [216]. 2-AG can be metabolized by several different chemical
reactions. It is mainly degraded by monoacylglycerol lipase (MAGL) to arachidonate and glycerol,
although the af3-hydrolases ABHD6 and ABHD12 can also catalyze its hydrolysis [217].

Many synthetic cannabinoid compounds have now been developed, including specific agonists,
antagonists, and inverse agonists, which have different affinities and efficacies at the cannabinoid
receptors. Molecules that act on enzymes or transporter proteins involved in the cannabinoid system
have also been generated. The creation of these molecules and the isolation of the vast array of
cannabinoid compounds found naturally in the Cannabis plants, allows researchers to better investigate
the physiological functions of the cannabinoid system, and thus advance potential therapies for
neurological disorders. For the structures and pharmacological profiles of the cannabinoids mentioned
throughout the review, see the comprehensive review by Pertwee and colleagues [212].

3.2. The Cannabinoid System in Inflammation and Immune Modulation

Mounting evidence indicates that the cannabinoid system has a major function in the modulation
of the immune response and inflammation, both centrally and peripherally. Therefore, this system
has the potential to be manipulated in order to provide therapeutic effects in diseases with an
inflammatory component.

The presence of both the CB; receptor and the CB; receptor on immune cells was one of the
first pieces of evidence to indicate that the endocannabinoid system might play a role in the immune
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response [192]. Results from subsequent in vitro and in vivo studies suggest that cannabinoids execute
their immunomodulatory effects in numerous ways: by induction of apoptosis, by suppression
of cell proliferation, by modulation of immune cell migration, by increased anti-inflammatory
cytokine production and inhibited production of pro-inflammatory cytokines and chemokines, and by
modulation of the expansion of regulatory T cells [218,219]. Cannabinoid compounds have been seen
to cause alterations in immune function from as early as the 1980s, a decade before the cannabinoid
receptors were even characterized. Tindall et al. [220] detected a more rapid progression from HIV
infection to AIDS in marijuana smokers compared to those who did not use the drug. HIV-positive
individuals who use marijuana also had an increased risk of bacterial pneumonia, opportunistic
infections, and Kaposi’s sarcoma [221,222]. Alveolar macrophages obtained from the lungs of habitual
marijuana smokers who were otherwise healthy individuals showed a decreased phagocytic ability,
decreased cytotoxicity, and decreased cytokine production [223]. Clearly, exogenous cannabinoids
affect the immune system and if this effect could be manipulated, it could be beneficial in the treatment
of a vast number of conditions.

As stated in the previous section, in the brain, CB; receptors are predominantly found on the
terminals of neurons, where they play a role in neurotransmitter release. However, as they are
also present on immune cells, albeit in relatively low quantities, ergo they can have an effect on
immune modulation. mRNA analysis showed that with regards to human peripheral immune cells,
the highest levels of CB; expression were seen in B cells, followed by natural killer cells, and with
varying expression in several other blood cell types including monocytes and lymphocytes [192].
Multiple sources of evidence suggest that the CB; receptor on immune cells could be a potential
target for the regulation of inflammation. Much evidence exists for a role of the CB; receptor in
the chronic demyelinating disease multiple sclerosis (MS), which is an immune-mediated disease
involving the demyelination of neurons by CD4* T cells. In post-mortem brain tissue from MS
patients, CB; staining co-localized with CD68" macrophages and CD3" T cells in areas of active
lesions (i.e., areas with activated microglia) [224]. As expected, this study also reported CB; staining in
MAP2* neurons and MBP™ oligodendrocyte cells. Animal models of MS such as the experimental
autoimmune encephalomyelitis (EAE) model found immune modulation or disease amelioration
through CB; receptor agonism [225-228]. Furthermore, anandamide, through a CB;-dependent
mechanism, inhibited Theiler’s virus-induced vascular cell adhesion molecule-1 (VCAM-1) expression
in mice, a receptor that is involved in leukocyte transmigration across the blood-brain barrier, which
contributes to the pathology in MS [229].

Apart from these immunomodulatory effects, CB; can also have beneficial roles in neuroprotection
by the inhibition of excitotoxicity. A number of observations suggest that excitotoxicity contributes to the
pathology of MS [230-232]. The CB; receptor can be found presynaptically and can modulate glutamate
release [233], and thus has a critical role for excitotoxicity control in neurological conditions. However,
despite the immunomodulatory and anti-excitotoxic effects associated with targeting the CB; receptor,
research has largely focused on the CB, receptor as a potential target in the endocannabinoid system
to modulate the immune response and inflammation. This is based on the undesired psychoactive
effects of CB; activation, and the associated safety concerns. In addition, the therapeutic window to
target the CB; receptor following acute injury is likely to be relatively short, as most neuroprotective
drugs in response to acute brain injury need to be administered within 6 h of injury onset [234]. As the
CB; receptor is thought to be devoid of psychoactivity due to its restricted presence on CNS neurons,
and as it is expressed at vastly greater numbers on immune cells and tissues than the CB; receptor,
the CB; receptor has been the focus of much research investigating its potential as a therapeutic
immunomodulatory or anti-inflammatory target.

CB, receptors are expressed in high levels in peripheral immune tissues, such as the spleen and
the tonsils, and at levels in immune cells, which are 10-100 times the levels of expression of the CB;
receptor. The immune cells express the CB, receptor to different extents, with the rank order being B
cells > natural killer cells > monocytes > neutrophils > CD8 lymphocytes > CD4 lymphocytes [192].
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Dendritic cells have also been shown to express CB; receptors [235]. However, the level of expression of
this receptor on immune cells is dependent on both the activation state of the cell and the nature of the
activating stimulus. Lee et al. [236] found that stimulation with LPS substantially downregulated CB,
mRNA expression in splenocyte cultures in a dose-dependent manner. Contrastingly, stimulation with
antibodies against cluster of differentiation 40 (CD40), which is a costimulatory molecule expressed by
antigen-presenting cells, upregulated CB; expression. This CD40-mediated upregulation was also seen
in peripheral blood and tonsillar B cells [237]. CB, upregulation has also been reported in response to
IFN-y in both microglia and macrophages [193].

As previously mentioned, one way cannabinoids execute their immunomodulatory role is by
affecting the apoptosis of immune cells. As early as 1994 Schwarz and colleagues [238] demonstrated
that high concentrations of THC or anandamide could induce apoptosis of B and T lymphocytes.
Zhu et al. [239] later demonstrated that THC induced apoptosis in both lymphocytes and macrophages,
and that Bcl-2 and caspase-1 were involved. It was noted that fragmentation preceded membrane
damage, suggesting that THC was inducing apoptosis rather than necrosis of cells. This THC-induced
immune suppression via T cell apoptosis was later exhibited in vivo in C57BL/6 mice [240]. Use of CBy
antagonists, but not CB; antagonists, blocked apoptosis in these cells, indicating that THC induced
apoptosis in a CB; receptor-dependent manner. This suggests that targeting the CB, receptor may
be a promising approach to treating inflammatory and autoimmune diseases. Evidence to confirm
this included the use of the synthetic CB; agonist, IWHO015, which in a dose-dependent manner both
inhibited proliferation and induced apoptosis of splenocytes and thymocytes [241]. Cannabinoids are
also seen to induce the apoptosis of malignant immune cells [242-244], insinuating that CB; receptor
activation could also be a novel therapeutic modality against immune system malignancies such as
lymphomas and leukemias.

In addition to affecting apoptosis, cannabinoids also affect the proliferation of immune cells.
Anandamide has been seen to inhibit mitogen-induced proliferation of B and T lymphocytes,
at concentrations relevant to the regulation of neuronal responses. A8-tetrahydrocannabinol and the
non-selective cannabinoid agonist CP55,940 also inhibited lymphocyte proliferation, but to a lesser
extent [238]. 2-AG was observed to have an effect on the proliferation of mouse splenocytes in culture,
an effect that seems to be dependent in part on cell density [245]. Cannabinoids have been seen to
have a biphasic role with regards to both B cells and T cells. In B cells, increased proliferation was
demonstrated in response to THC at low nanomolar concentrations [246], whereas another study
showed that THC caused a reduction in LPS-induced proliferation of B cells [247]. A similar effect
was seen in T cells, with high doses of THC being inhibitory and low doses being stimulatory [248].
This biphasic response should be taken into consideration when examining the effects of cannabinoids
on immune cell proliferation.

Cannabinoid receptor activation has been shown to modulate the migration of both central and
peripheral immune cells, which is an important element to acknowledge when studying diseases with
an inflammatory component. The synthetic cannabinoid CP55,940 decreased the in vitro migration of
rat macrophages, an effect that was attributed to both cannabinoid receptors, although CB; had a more
substantial effect [249]. In addition to affecting macrophage migration, the CB, receptor also regulates
the migration of neutrophils, NK cells, T cells, and B cells, with different agonists seen to cause varying
effects. Endocannabinoids, phytocannabinoids, and synthetic cannabinoids can differentially modulate
second messenger pathways in a phenomenon known as ‘agonist trafficking’ [250]. This phenomenon
is thought to be relevant for CBp-induced cell migration. To use the case of T lymphocytes as an
example, several laboratories have found that activation of CB; receptors inhibits T cell migration in
response to the chemokine CXCL12, with different ligands inhibiting migration to different extents. One
group reported that anandamide and the CB, agonist JWH133 reduced the migration of T lymphocytes,
with the CB; agonist docosatetraenylethanolamide (DEA) having no effect [251]. Another study
reported that the non-selective agonists WIN55,212-2 and CP55,940 inhibited the chemotaxis of both
CD4* and CD8* primary T-lymphocytes, as well as Jurkat cells. The CB, agonist JWHO015 also elicited
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this response, but high concentrations were required (10-40 um) and the CB; inverse agonist AM630
only partially reserved this effect, suggesting that other receptors are involved [252]. Clearly, activation
of the CB; receptor has a role in the modulation of immune cells but undoubtedly further studies are
required in order to make targeting this process a feasible therapeutic approach (reviewed in [253]).

T helper cells are important enforcers of cell-mediated (Th1) and humoral (Th2) adaptive immunity.
Cannabinoids have been demonstrated to regulate the balance of T helper 1 (Th1) and T helper 2
(Th2) cytokines in murine studies, with a downregulation of Thl-associated cytokines such as
IFN-y, IL-2, and IL-12, and an increase in levels of Th2-associated cytokines such as IL-4, IL-10, and
TGF-p [254-257]. These effects are thought to be modulated to a considerable extent by the CB,
receptor, as evidenced by blockade of the majority of these effects by the CB, receptor antagonist,
SR144528 [254,258]. Th1 cytokines have been implicated in the pathogenesis in a number of conditions,
including MS [259], rheumatoid arthritis [260], and primary sclerosing cholangitis [261]. Suppression
of Thl responses has been effective in inhibition in animal models of inflammatory disease such
as theumatoid arthritis [262,263] and EAE [264,265], suggesting cannabinoid manipulation of this
response could be a helpful therapeutic agent for inflammatory disease.

Cannabinoids are well established as modulators of the immune system, affecting a variety of
immune functions in humans and animals. With further research, this might be exploited in future
therapies for numerous disorders, such as rheumatic disease, atherosclerosis, allergic asthma, and
neurodegenerative diseases.

3.3. The Cannabinoid System, Microglia, and Microglia Phenotypes

As is the case with immune cells in the periphery, the activity of microglia can be modified
by cannabinoids. There is evidence that microglia possess a complete endocannabinoid system,
and that the expression or production of some of the components of this system are altered in
neuropathological states.

In the CNS, endocannabinoids are produced by both neurons and glial cells such as
microglia [204,266]. Microglial cells in culture produce both 2-AG and anandamide, with
calcium ionophores and ATP selectively and substantially increasing 2-AG production [267,268].
This ATP-induced increase in 2-AG production has been shown to be due to the activation of P2X
purinoceptor 7 (P2X7) ionotropic receptors, which are highly permeable to calcium. The subsequent
sustained increase in intracellular calcium induced by the activation of these receptors increases
DAGL activity, the enzyme that produces 2-AG, while inhibiting MAGL activity, the enzyme that
degrades 2-AG [269]. It is suggested that microglia may be the main producers of endocannabinoids
under neuroinflammatory conditions. This is supported by studies that show that microglia produce
approximately 20-fold more endocannabinoids than neurons and astrocytes in culture [268,270].
In addition, 2-AG production is significantly diminished in P2X7 knockout mice in an EAE model [271].
As this receptor is only expressed by activated microglia, this supports the hypothesis that the
synthesis of endocannabinoids is closely linked with the microglial activation state. Mecha et al. [272]
found that the different in vitro microglial phenotypes were associated with an altered synthesis of
endocannabinoids, with IL-4 and IL-13-stimulated microglia (the regeneration and repair subtype)
selectively producing 2-AG, and TGF-f-stimulated microglia (the acquired-deactivation subtype)
producing AEA.

Microglia in culture also express enzymes of endocannabinoid biosynthesis and degradation such
as FAAH and MAGL, which can similarly be manipulated by microglial activation states [269,273].
Primary microglia stimulated with IL-4 and IL-13 were shown to induce a time-dependent rise in DAGL«
gene expression while TGF-f stimulation induced the accumulation of NAPE-PLD and a reduction
in FAAH mRNA, consequently activating anandamide and 2-AG, respectively. The activity of the
serine hydrolase ABHDS is also important for the regulation or inactivation of cannabinoids in the BV2
microglial cell line [217,274]. The existence of this novel enzyme expressed by microglia is promising
with regard to a means of enhancement of endocannabinoid signaling, and selective inhibition
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of cannabinoid-degrading enzymes could be used as a potential therapy in neuroinflammation.
Recognizing that microglial activation states are more complex in vivo, it is clear more studies are
necessary to understand the role of endocannabinoids in microglial function.

In addition to producing endocannabinoids, microglia also express functional cannabinoid
receptors. As is the case for macrophages and other peripheral immune cells, the expression of the
cannabinoid receptors is related to their activation state. It is thought that in the healthy brain, resting
microglia do not express the CB, receptor, as the mRNA encoding for these receptors is undetectable or
only detectable in trace amounts [190,275,276]. This is contrary to microglial cells in primary culture,
which seem to be intrinsically ‘primed’, probably because of the methods used to transfer them into
culture [277]. Numerous laboratories have shown that these ‘primed” microglia prepared from murine
or human tissue express CB, receptors [193,278,279]. The expression levels of the receptors seem to
vary depending on stimulus exposure, with LPS inducing a downregulation in both the CB; and
CB, receptor on microglia, and with IL-4 and IL-13 or TGF-§ inducing an upregulation in the two
receptors [272]. However, it is generally accepted that a massive upregulation of the CB; receptor on
microglia occurs in response to inflammation or injury, as evidenced by animal models of a variety
of diseases and species, from simian immunodeficiency virus-induced encephalitis in macaques,
to stroke in mice, and paclitaxel-induced neuropathy in rats [194,280-283]. In vivo, the phenotype
of the microglia and the upregulation of CB; receptors have been shown to vary depending on the
neuropathology or type of insult. For example, an increase in CB; receptor expression and microglial
activation was seen in the rat spinal cord in a chronic model of neuropathic pain, but not a peripheral
inflammatory pain model [284].

The CB; receptor is controversial with regard to the effect of its activation on microglia.
This receptor has been reported in microglial cultures from mice, rats, and mollusks, but not humans.
Different consequences have been seen after CB; activation in different species, with increased nitric
oxide production seen in mollusks but decreased production in rats [285,286]. Therefore, the CB;
receptor is not a major focus of interest for researchers examining the potential of cannabinoids on
microglial modulation.

Multiple lines of evidence demonstrate the role of cannabinoids to regulate microglial cytokine
production (Table 1). Early reports that involved antagonism of the CB; receptors on microglia in
culture were shown to increase the mRNA levels of pro-inflammatory cytokines such as IL-1c, IL-6,
and TNF-«, suggesting that agonism of these receptors would induce a reduction in pro-inflammatory
cytokines [287]. Follow-up studies confirmed that either the non-selective CB receptor agonist,
CP55,940, or the CB; selective agonist JWHO15, lead to a dose-dependent reduction in LPS-induced
production of TNF from rat primary cortical microglia [288,289]. Similar blockade of microglial
TNF production following fibrillar A3 incubation was shown after treatment with non-selective CB
receptor agonist HU-210 or WIN55,212-2 and with CB, selective agonist JWH133 [290]. More recently,
reports have highlighted the benefit of cannabinoid signaling to increase microglia anti-inflammatory
cytokine signaling. Correa et al. demonstrated that microglia isolated from the forebrain of neonate
mice and treated with either JWH133, a CB, receptor selective agonist, or AEA, further enhanced
the LPS/IFNy-induced expression of IL-10 [291]. Similarly, 2-AG and AEA increased primary rat
microglia expression of Arg-1 towards an in vitro protective phenotype, suggesting endocannabinoids
can regulate microglia by amplifying the wound healing profile and restraining the pro-inflammatory
effects of microglia [272]. The anti-inflammatory response of Argl was shown to be mediated by
CB, receptors as demonstrated by reduced Argl expression in IL-4 and IL-13-stimulated microglia
from CB; receptor deficient mice. Interestingly another class of drugs known as CB; receptor inverse
agonists, such as SMM-189, have demonstrated similar reductions in pro-inflammatory cytokines
from stimulated human microglia as seen from CB; agonists [292]. The increased phosphorylation
and translocation of CREB have been proposed as the cellular pathways that promote the CB, inverse
agonist anti-inflammatory effects, suggesting another avenue for the use of cannabinoids to regulate
microglial inflammation.
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Cannabinoids signaling also has shown a role in the functional behavior of microglia including
both their phagocytic and migratory activity (Table 1). Primary microglia deficient in CB; receptor
expression engulfed significantly fewer fluorescent microspheres than the wild-type microglia following
IL-4 and IL-13 stimulation, suggesting the impact of CB, receptors on the phagocytic function of
microglia [272]. As well as affecting chemotaxis of peripheral immune cells, cannabinoid receptors
have also been reported to modulate microglial migration. 2-AG was found to be a very efficacious
ligand regarding this response on the BV2 mouse microglial cell line, an effect that was prevented by
cannabinol and cannabidiol, by blocking CB, and cannabidiol-sensitive receptors respectively [268].
Another study corroborated that 2-AG-induced BV2 migration relies on CB, receptors as demonstrated
by the blockade of microglia recruitment after treatment with the CB, inverse agonist SR144528 [293].
Anandamide increased BV2 cell migration in a concentration-dependent manner, as did the two
putative endocannabinoids homo-y-linolenylethanolamide (HEA) and docosatetraenylethanolamide
(DEA), whereas another putative endocannabinoid, palmitoylethanolamide (PEA), which does not act
on CB; or CB, receptors, had no effect [268]. However, immortalized BV2 cells have shown to produce
different migration and cytokine responses than primary microglia, including higher migratory rates in
immortalized microglia cell lines compared to primary cells [294]. To that point, rat primary microglia
treated with a CB, receptor agonist, JWHO015, decreased LPS-induced chemotaxis, which is incongruent
with cell line data given the same reduced migratory response was found from BV2 cells when CB,
receptors were blocked instead of activated [289].

Due to all the modulatory effects cannabinoids have on microglia, in addition to the massive
upregulation of the CB; receptor on microglia in neuroinflammatory states, there is an acute interest
in harnessing these immune-modulatory effects for therapy in neurodegenerative diseases. Yet, as
the varying responses and behaviors of the different microglia preparations (cell lines vs. primary)
questions their translation in vivo, more research is needed to understand cannabinoid specific
immune-related functions and how they act on neuroinflammation in model systems.

3.4. The Cannabinoid System in Neuroinflammation and Neurodegeneration

In 2003, one of the first pieces of evidence that alterations in the endocannabinoid system
relevant to neuroinflammation occur in neurodegenerative disease came from a study by Benito and
colleagues [295]. They found that in the hippocampus and entorhinal cortex of AD patients, there was
a substantial and specific overexpression of the CB, receptor on microglia in the neuritic plaques, while
CB; receptor expression was not altered. This upregulation of CB; on microglia surrounding senile
plaques has been confirmed with additional studies [296]. One study found a correlation between
expression levels of the CB, receptor and senile plaque score and A[3(42) levels, which are two major
pathological molecular markers of AD [296]. In addition to an upregulation in AD, a substantial
increase in CB, receptor expression has been found in human CNS tissue in a number of disorders
associated with neuroinflammation, including MS, Down syndrome, and amyotrophic lateral sclerosis
(ALS) [224,297,298]. It has been suggested that the upregulation and activation of the CB; receptor in
neurodegenerative disease may be part of a type of negative-feedback loop in response to physiological
stress, with the aim of limiting the inflammatory process (reviewed in [299]).

Alterations in expression levels of enzymes in the endocannabinoid system have also been observed
in neurodegenerative disease. In AD, increased expression of FAAH, the primary enzyme responsible
for the metabolism of anandamide, was noted in astrocytes associated with senile plaques [295].
Anandamide is converted to arachidonic acid by FAAH, and the abundance of this enzyme in
astrocytes in this disease suggests that astrocytes could be a major source of arachidonic acid and
related pro-inflammatory compounds in the vicinity of these plaques.

Activation of the CB, receptor has been shown to have anti-inflammatory effects in various animal
models of acute and chronic neuronal diseases in which inflammation is involved, including stroke,
traumatic brain injury, MS, and AD. In the case of stroke and traumatic brain injury, many different
categories of cannabinoids were demonstrated to have neuroprotective effects, including non-selective
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cannabinoids, CB;-selective compounds, and cannabinoids without activity at the classical cannabinoid
receptors [292,300-304]. However, some of the studies researching the potential of cannabinoid
compounds for acute brain injury have been conducted with administration of the cannabinoid before
injury, which is a scenario that is not possible for treatment of patients, and therefore the results of these
studies and their translatability to potential therapies should be approached with caution. The number
of clinical trials with cannabinoids in these diseases is limited, with one of the most relevant being a
multicenter placebo-controlled phase III trial investigating dexanabinol in traumatic brain injury [305].
Dexanabinol is a synthetic cannabinoid derivative that does not have cannabinoid activity but instead
acts as an NMDA antagonist. Despite its promising pre-clinical effects [300,301,306], the trial found it
was safe but not efficacious in traumatic brain injury.

Due to the slow progression of chronic neurodegenerative diseases, there is a greater opportunity
for therapeutic intervention with cannabinoids compared to acute brain injury conditions. With
regards to AD, cannabinoids, including the CB; selective agonist JWH133, were demonstrated to
block A peptide-induced activation of microglia in vitro, including a reduction in the release of the
pro-inflammatory cytokine TNF-«, which is associated with the cytotoxic microglial phenotype, and a
reduction in mitochondrial activity [290]. In co-cultures with neurons, the cannabinoids also prevented
microglial-mediated neurotoxicity after Ap exposure. In a transgenic Tg2576 mouse model of AD,
which overexpresses a mutant form of amyloid precursor protein (APP), WIN55,212-2 and JWH133
both reduced the increase in TNF-« and Af} levels. In addition, JWH133 reduced cognitive defects
as measured by the novel object recognition test, and decreased microglial cell density [307]. In the
Theiler’s murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) model of MS,
treatment with WIN 55,212-2, ACEA (a CB; agonist), or JWH-015 (a CB, agonist) showed a marked
reduction in microglial activation visible in their morphology, as well as functional recovery in the
rotarod test [227]. In the EAE model, administration of 2-AG ameliorated acute and chronic phases
of the disease, accompanied by a polarization of macrophages towards a non-cytotoxic, protective
phenotype [308]. These beneficial effects of CB, activation are due to their presence on microglia,
and are associated with suppression in microglial activation [234,309], and hence an inhibition of the
release of cytotoxic factors that cause neuronal damage.

The potential therapeutic effects of CB, specific agonism in neurodegenerative diseases are of
great interest, due to the considerable limitations of current treatments. Further research is required,
but in the future CB, agonists could be administered to reduce the pro-inflammatory cytotoxic effects
in diseases with a neuroinflammatory component for therapeutic gain.
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Table 1. Cannabinoid-mediated effects on immune cell function of primary microglial cell cultures. T, increase. |, decrease. LPS, lipopolysaccharide. CBjp
non-selective agonist: CP55, 940, WIN55,212-2, HU-210. CB; antagonist: AM251. CB; selective agonist: JWH133, JWHO015. CB, selective antagonist: AM630. CB,

inverse agonist: SMM-189, SR144528.

Species Inflammagen CB Treatment Microglial Effects Reference
IL-4 +IL-13 Argl in KO mi lia than WT mi li 272
CB, ™/~ mice (Deltagen, Jackson | Arglin ficrogiia than ficrogha [272]
Lab)—C57BL/6 L4 +IL-13 | Phagocytic activity in KO microglia measured by reduced engulfed
fluorescent microspheres
T Argl mRNA and protein
) B T Acute (6 hr) in mRNA of CB; and DAGL«
IL-4 +1L-13 | Prolonged (24 hr) mRNA in MAGL, FAAH, and T in CB; and CB;,, and [272]
NAPE-PLD
Rat (PO—P2)—Wistar IL-4 + IL-13 AM251 or AM630 | Cytokine-induced Argl mRNA and protein
T Acute (6 hr) in mRNA of CBy, CBp, NAPE-PLD, DAGL, and MAGL and |
TGF-p FAAH
Prolonged (24 hr) mRNA | in NAPE-PLD, MAGL, and FAAH
LPS Acute (6 hr) | in CBy, CB,, FAAH, NAPE-PLD, and MAGL with prolonged (24
hr) | in FAAH and MAGL
LPS AEA | LPS-induced microglia cytokine mRNA of IL-1& and TNF [287]
Rat (P1-P2)—Sprague Dawley LPS SR144 528 T Microglia cytokine mRNA in dose-dependent manner (IL-1«, IL-13, IL-6,
’ TNF)
Rat cortical (neonate)—Sprague LPS CP55,940 | LPS-induced production of TNF« [288]
Dawley LPS AEA or 2-AG | LPS-induced production of TNFo
| LPS-induced TNF protein expression
LPS JWHO015 | LPS-stimulated microglia chemotaxis measured by # of cells that migrated [289]
Rat cortical (P2-P3)—Sprague toward the chemoattractant ADP
Dawley - . -
LPS JWHO15 + AM630 JWHO015 effect on che‘mota.x1s blocked by AM630, demonstrating CB,-specific
effect on microglia migration
LPS and IFNYy Anandamide T Further the LPS/IFNy-induced expression of IL-10 [291]
Mouse forebrain 1 Further the LPS/IFNy-induced expression of IL-10 that is | with SR144528
(newborn)—Balb/c LPS and IFNy JWH133 (CB, inverse agonist) and not by SR141716A (CB; antagonist), suggesting
CB,-mediated mechanism
Rat cortical (neonate) Fibrillar B A5 35 HU-210, WIN55,212-2, | Fibrillar pA-induced TNF microglial release [290]
or JWH133
Human LPS SMML-189 | IFN-y, IL-6, IL-12p70, and chemokines IL-8, MCP-1, CCL17 (TARC), [292]

macrophage derived-chemokine (MDC), and eotaxin-3
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4. Cannabinoids in Parkinson’s Disease: Therapeutic Implications of Targeting Microglia

As previously stated, in recent years it has become apparent that in neurodegenerative disease
there is a self-sustaining cycle of neuroinflammation and neuronal death, with dying neurons activating
microglia, which then can release factors that cause further neuronal death (reviewed in [310,311]).
The concept of pharmacologically targeting the cannabinoid system in PD is based on the upregulation
of cannabinoid receptors in PD patients identified in both the substantia nigra and the hippocampus,
providing a neuroanatomical basis [312,313]. The in vitro evidence supporting the anti-inflammatory
regulation of cannabinoid receptors on microglia suggests that cannabinoids may have the potential to
benefit microglia dysfunction in PD, and thus slow or even prevent the dopaminergic degeneration.

Although this review is focused on the role of cannabinoids in neuroinflammation, when discussing
the cannabinoid system in the context of PD, it is important to note that the CB; receptor is highly
expressed in the basal ganglia [314,315], indicating they may have a role in motor control. Although
density is highest in the substantia nigra, it is not the dopaminergic nigrostriatal neurons that express
the receptor. Instead, it is the medium spiny y-aminobutyric acid (GABAergic) neurons that project
to the substantia nigra from the striatum that are responsible for this high expression [316]. These
neurons co-express the dopaminergic D; and D; receptors with CB; receptors in the striatum [317].
CB; knockout mice have more severe motor deterioration and neurodegeneration, as well as a reduced
severity of L-DOPA-induced dyskinesias [318], highlighting the importance this receptor has in motor
control and its link to the dopaminergic system. Researchers are investigating the potential use of
cannabinoids for therapy in PD from a number of aspects: for alleviation of motor symptoms, alleviation
of drug-induced side effects, and disease-modifying effects such as effects on x-synucleinopathy and
through direct neuroprotection. Indeed, a number of clinical trials have been carried out examining the
therapeutic potential of cannabinoids with regards to these aspects of PD (reviewed in [319]). However,
these facets are outside the scope of this review.

The first indication that the endocannabinoid system may have a role in neuroinflammation in
PD came in 2005 when Lastres-Becker and coworkers [320] exposed the cannabinoid agonist, HU-210
to a cerebrallar granule cell culture, which was treated with 6-OHDA (Table 2). HU-210 increased
cell survival when the cells were directly exposed, even more so when the neuronal cultures were
exposed to conditioned media from mixed glial cell cultures that had been treated with HU-210.
This suggests that the drug exerted its neuroprotective effect largely by regulating the glial influence
on neurons. Of note, the mixed glia cultures were comprised of 70% astrocytes and 30% microglia,
yet highlighting the desirable effects of cannabinoids on glia in general. Further studies by another
group using the non-selective agonists WIN55,212-2 and HU-210 in the MPTP mouse and the LPS rat,
demonstrated profound anti-inflammatory effects, with reduced CD11b* microglial activation and
reduced expression of pro-inflammatory cytokines, which was also associated with neuroprotective
effects [321,322]. The inhibition of microglial activation and the observed neuroprotection were
reserved upon treatment with CB; selective antagonists, suggesting that the CB; receptor is involved.
Although several studies do suggest the anti-inflammatory potential of the CB; receptor, the majority of
research is now focused on the CB; receptor in PD. This is due both to the profound upregulation of the
CB; receptor on activated microglia, and the results from numerous in vitro studies that demonstrate
that activation of the microglial CB, receptor changes the activation state of the microglia, reducing
their release of pro-inflammatory cytokines and increasing the release of anti-inflammatory cytokines
(reviewed in [323]).
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Table 2. Cannabinoid-mediated effects on microglia/inflammation and neuroprotection in models of Parkinson’s disease.
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T, increase. |, decrease. ICV,

intracerebroventricular. 8-OHdG, 8-hydroxy-2- deoxyguanosine. LPS, lipopolysaccharide. MFB, medial forebrain bundle. CB;/, non-selective agonist: WIN55,212-2,
HU-210. CB; antagonist: AM251, SR141716A. CB; selective agonist: HU-308, JWHO015. CB, selective antagonist: JTE907, AM630. CB, inverse agonist:
SMM-189, SR144528.

Cannabinoid

Species Inflammagen Treatment Treatment Timeline Microglia/Inflammation Effects Neuroprotective Effect Reference
| MPTP-induced nigral Macl (CD11b) activation and
a2a(iinbf ;0}::51\:1}:;1)1\2;%3 production of O2—(ethidium accumulation) T MPTP-induced TH+ stereological
. MPTP (4 x 20 mg/kg HU-210 or & . | MPTP-induced 8-OHdG suggesting reduced protein  nigral cell count
C57BL/6 mice and continue for 3 d [322]
every 2 hrs) WINS55,212-2 (microglia analysis) and oxidative damage T MPTP-induced rotarod latency to fall .
74 (ngeuron azal sis) | MPTP-induced nigral TNF, IL-1$3, and iNOS gene and striatal dopamine content
Y expression and TNF and IL-1§3 protein expression
1 Agonist-induced TH+ stereological
T Agonist-induced nigral Mac1 (CD11b) activation and  nigral cell count (no difference with
. . production of O,~ (ethidium accumulation) MPTP alone group) when treated with
+AM251 (microglia/ 30 min prior to T Agonist-induced 8-OHdG suggesting oxidative CB; antagonists
neuron) or P & 88 & &
non-selective agonists ~ damage 1 Agonist-induced rotarod latency to fall
SR141716A (neuron) & g g y
T Agonist-induced nigral TNF, IL-1f3, and iNOS gene and striatal dopamine content (no
expression and TNF and IL-1§3 protein expression difference with MPTP alone group)
when treated with AM251
CB, ™/~ (C57BL/6 . T CD68-immunoreactivity in the nigra of KO mice
background) Intrastriatal LPS compared to WT Not evaluated [313]
Daily injections for 2 . . . .. . .
C57BL/6 mice Intrastriatal LPS HU-308 weeks starting 16 hr 4 LPS-}r\duced n1gral C‘D68-1mmunoreact}v1ty T LP.S-mduced rugrtal
after LPS | LPS-induced striatal iNOS gene expression TH-immunoreactivity
Neurons +/— T cerebellar granule cell survival with
C57BL/6 P1 glia and HU-210 directly to conditioned media Not directly evaluated but neuroprotective effects from  direct HU-210 to neurons and greater
cerebellar neural 6-OHDA cultures y from elia culture 24 hrs glia conditioned media suggest CB; and CB;-mediated protection when neurons treated with [320]
cultures agfter HU-210 glial effects glia conditioned media treated with
HU-210
| LPS-induced nigral CD11b activation and production
of Oy~ (ethidium accumulation)
| TNF and IL-1 after WIN55,212-2 and
. . X L IL-1B after HU-210 24 hrs after LPS as measured by
Sprague Dawley rats Intranigral LPS WI_IIESZ;%(;Z ey m]ectt(l)oillisl hr prior ELISA T TH+ stereological nigral cell count [321]

1 p67phox and p47phox subunits in cytosol and
membrane nigral fractions 12 hrs after LPS by western,
suggesting reduced translocation of NADPH oxidase
which was specific to CD11b* cells
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Table 2. Cont.
Species Inflammagen C,i.:::z:;’:d Treatment Timeline Microglia/Inflammation Effects Neuroprotective Effect Reference
: : +
JWHOI5 (microglia) el for 3d (microglia Lﬁﬂgﬁff x:ggrglngziluii
C57BL/6 mice MPTP (4 x 20 mg/kg or WIN55,212-2 analysw? or5 d-(neuron | MPTP-induced nigral Mac1 (CD11b) protein with (dose-dependent) [324]
every 2 hrs) . . analysis) starting 1d ~ WIN55,212-2 - . . .
(microglia/ neuron) fter MPTP T MPTP-induced midbrain dopamine
levels after WIN55,212-2 treatment
20 min before T Agonist-induced Macl (CD11b) when administered
WINS5,212-2 +JTES07 WIN55,212-2 alone or in conjunction with WIN55,212-2 agonist Not evaluated
. . . . . . .. T 6-OHDA-induced nigral
A9-THCV or enriched Daily for 14 d starting | 6-OHDA-induced nigral OX-42-immunoreactivity . .. .
Sprague Dawley rats ICV 6-OHDA CBD 16 hrs after 6-OHDA  with either A-THCV or enriched CBD TH-immunoreactivity when treated with [325]
CBD but not A9-THCV
Daily for 14 d startin, T LPS-induced nigral
C57BL/6 mice Intrastriatal LPS A9-THCV or HU-308 1}6] hrs after LPS & Not evaluated TH-immunoreactivity when treated with
s atie HU-308 or A9-THCV
. Daily for 2 weeks, T 6-OHDA induced striatal Cu,Zn-SOD gene
Unilateral MFB : . . .
Sprague Dawley rats . .~ . CBD starting 16 hr after expression suggesting a protection from endogenous Not evaluated [326]
injection of 6-OHDA s
6-OHDA oxidative stress
Daily for 2 weeks, Did not alter striatal TH activity by
HU-308 starting 16 hr after Not evaluated HPLC or nigral TH mRNA levels
6-OHDA compared to 6-OHDA+vehicle
| Rotenone-induced striatal Ibal+ activated microglia
with BCP and blocked by AM630
| Rotenone-induced striatal GFAP activated astrocytes
- Rotenone i.p. once Bcaryophyllene (BCP)  Daily for 4 weeks and with BCP an.d blocked Py AM630 . T Ro.tenone—mduc.egl strla.tal and nigral
Wistar rats dailv for 4 weeks + AM630 30 min prior to rotenone | Rotenone-induced midbrain pro-inflammatory TH-immunoreactivity with BCP and [327]
Y * P cytokines IL-1B, TNF, and IL-6 with BCP and blocked ~ blocked by AM630
by AM630
| Rotenone-induced striatal NF«xB p65, COX-2, iNOS
with BCP and blocked by AM630
| 6-OHDA-induced apomorphine
1 6-OHDA-induced striatal GFAP expression vs. WT rotations vs. WT
Overexpression of CB; altered striatal Ibal T 6-OHDA-induced time in open arms
CB2xP mice immunoreactivity, but not striatal levels of iNOS and of elevated plus maze suggesting CB,
(overexpression of Unilateral striatal ) 7 weeks COX2 vs. matched WT role in anxiety-like behavior vs. WT [328]
Vmoug e CBy) 6-OHDA | Striatal malonyldialdehyde (lipid peroxidation T 6-OHDA-induced memory g
2

product) vs. WT at basal and 6-OHDA conditions
1 6-OHDA induced striatal ratio of oxidized
GSSG:glutathione (oxidative stress marker) vs. WT

impairment in step-down inhibitory
avoidance task vs. WT

T 6-OHDA-induced striatal and nigral
TH immunostaining vs. WT
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The first study to provide solid evidence that the anti-inflammatory effects of cannabinoid drugs
were mediated by the CB; receptor was carried out in an MPTP model in mice. The non-selective
cannabinoid agonist WIN55,212-2 reduced MPTP-induced microglial CD11b marker upregulation in
the ventral midbrain, and this effect was blocked by the CB, antagonist JTE-907 [324]. In the decade
since the publication of this paper, several studies investigating CB, receptors in animal models of PD
have reported an anti-inflammatory effect. Garcia and colleagues found that chronic administration of
A9-THCV attenuated the loss of dopaminergic neurons in both the 6-OHDA and LPS model. This effect
was also elicited in the LPS model by the CB; selective agonist HU-308, suggesting that the effect
was CB, receptor-mediated [325]. However, HU-308 did not induce a significant neuroprotective
effect in 6-OHDA lesioned rats [326]. It is possible that the reason for this is the lower inflammatory
response induced by 6-OHDA, which is a direct neurotoxin, compared to LPS, an endotoxin expressed
in the outer membrane of gram-negative bacteria, which evokes an immune response. Treatment
with the naturally occurring CB; agonist 3-caryophyllene has also been demonstrated to reduce
rotenone-induced dopaminergic degeneration and microglial activation [327].

An exacerbation of MPTP-induced toxicity has been described in CB; knockout mice [324].
An aggravation of inflammation and neuronal death due to genetic inactivation of the CB, receptors
has also been reported in the LPS model, but not in the 6-OHDA model [313,325]. In contrast, mice
overexpressing CB, receptors present significantly less motor impairment compared to wild-type mice
following intra-caudate 6-OHDA administration, as well as reduced microgliosis and astrocytosis [328].

Alterations in CB; receptor expression have been seen in animal models of PD induced by a variety
of stimuli including 6-OHDA, rotenone, LPS, and poly I:C. All these neurotoxins caused a marked
upregulation in CB; receptor expression in the rat striatum, peaking two weeks post-lesion [171,175].
Interestingly, a more pronounced upregulation was observed in response to the bacterial and viral
inflammagens, LPS and poly I:C respectively, compared to the direct neurotoxins. In the 6-OHDA,
rotenone, and LPS models, CB; receptor expression correlated strongly with expression of the microglial
marker CD11b. Similar co-expression of CD11b (Macl) and CB, immunostaining was observed in the
ventral midbrain of mice three days after treatment with MPTP, a dopamine-selective neurotoxin [324].
An upregulation of CB, expression on microglia has also been confirmed to be present in post-mortem
PD brains [313]. However, it is not only on microglia that CB, expression is altered in PD. Tyrosine
hydroxylase (TH)-positive neurons in the substantia nigra have been demonstrated to express CB,
receptors, and in PD there is significantly reduced labeling of the receptor, in concordance with the loss
of these dopaminergic neurons in the disease, but also seemingly a reduced expression by surviving
cells [312].

The majority of the information presented in this review is pre-clinical, and the animal models
of PD used to evaluate neuroinflammation are limited to toxin models. Future studies are necessary
to extend evaluation of cannabinoids to other PD models that incorporate inflammation such as
those with an environmental and a genetic interaction. Additionally, with the growing interest in the
dysfunctional communication between the peripheral and central immune systems in disease, studies
should discern cannabinoid-mediated effects on the crosstalk and the infiltration of peripheral immune
cells. The number of clinical trials assessing cannabinoids and their effect on inflammation are limited,
and non-existent in the context of neuroinflammation in neurodegenerative disease. While pre-clinical
trials are necessary to answer a number of questions that remain regarding the molecular mechanisms
of cannabinoids in relation to microglial phenotypes and neuroinflammation, there is also a need for
clinical trials to assess the safety and efficacy of various cannabinoid compounds for PD.

5. Summary and Conclusions

Microglia play a crucial role in the uninjured brain, carrying out homeostatic maintenance
and constantly monitoring their local microenvironment for indications of danger. Their activation
and polarization in response to a harmful stimulus is essential in order to resolve an acute injury,
but the chronic overactivation and dysregulation of microglia can lead to a persistent cycle of
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neuroinflammation and neuronal death in neurodegenerative diseases such as PD. Cannabinoids have
the potential to modulate the activity of microglia, shifting them towards a less cytotoxic phenotype.
From a clinical perspective, this suggests that administration of exogenous cannabinoids or molecules
that increase endogenous cannabinoids could produce anti-inflammatory effects through cannabinoid
actions on microglia, and could thus decelerate the progression of PD.
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