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ion of a gold nanoparticle sensor
for detection of Fe3+ ions using a smartphone and
machine learning†

Kim-Phuong T. Dang,‡a T. Thanh-Giang Nguyen,‡a Tien-Dung Cao,*b

Van-Dung Le,ac Chi-Hien Dang,ac Nguyen Phuc Hoang Duy,a

Pham Thi Thuy Phuong,ac Do Manh Huy,a Tran Thi Kim Chid

and Thanh-Danh Nguyen *ac

In recent years, smartphones have been integrated into rapid colorimetric sensors for heavy metal ions, but

challenges persist in accuracy and efficiency. Our study introduces a novel approach to utilize biogenic gold

nanoparticle (AuNP) sensors in conjunction with designing a lightbox with a color reference and machine

learning for detection of Fe3+ ions in water. AuNPs were synthesized using the aqueous extract of

Eleutherine bulbosa leaf as reductants and stabilizing agents. Physicochemical analyses revealed diverse

AuNP shapes and sizes with an average size of 19.8 nm, with a crystalline structure confirmed via SAED

and XRD techniques. AuNPs exhibited high sensitivity and selectivity in detection of Fe3+ ions through

UV-vis spectroscopy and smartphones, relying on nanoparticle aggregation. To enhance image quality,

we developed a lightbox and implemented a reference color value for standardization, significantly

improving performance of machine learning algorithms. Our method achieved approximately 6.7%

higher evaluation metrics (R2 = 0.8780) compared to non-normalized approaches (R2 = 0.8207). This

work presented a promising tool for quantitative Fe3+ ion analysis in water.
1 Introduction

Iron, abundant among transition metal ions of Earth, is
predominantly found in its Fe3+ state in rust.1–3 Iron ions (Fe2+

and Fe3+) play vital roles in various metabolic and intracellular
activities, serving as cofactors for enzymes and proteins
involved in oxygen and electron transport, DNA synthesis, and
catalyzing oxido-reductase processes.4–9 While integral to bio-
logical functions, iron distribution requires careful regulation
due to its potential for harm,10–12 implicated in conditions such
as encephalopathy, Parkinson's, Alzheimer's, and Huntington's
diseases.13,14 Wastewater discharged from iron and steel
industries contributes signicantly to water contamination,
posing serious health risks to organisms, causing damage at
cellular, tissue, and organ levels.15,16
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Various analytical methods have been developed for
detecting iron ions, including spectrophotometry, stripping
voltammetry, uorescent probes, atomic absorption spec-
troscopy, and luminol ow injection analysis.17–19 Particularly,
optical sensors stand out for their cost-effectiveness. However,
traditional optical sensors necessitate a well-equipped labo-
ratory with expensive instruments like UV-vis and photo-
luminescence spectroscopy, as well as skilled personnel,
resulting in high costs and time consumption. Consequently,
there's a growing interest in easy-to-use, portable optical
sensors that can swily analyze substances in the eld without
expert intervention.20–22 The integration of smartphones and
new technologies such as Articial Intelligence, Internet of
Things, Big data, holds immense potential for revolutionizing
optical analysis, reducing costs, enhancing economic value,
and improving quality of life.23 Optical sensors, when coupled
with image analysis employing machine learning, have
garnered signicant attention in research circles world-
wide.24,25 This approach leverages smartphone cameras for
image analysis to track changes in analyte concentrations
interacting with optical sensors.26–28 Moreover, employing
machine learning algorithms to process these images
enhances the accuracy of analytical methods, promising
precise on-site analysis of hazardous chemicals. However,
challenges persist in utilizing smartphone cameras,
© 2024 The Author(s). Published by the Royal Society of Chemistry
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inuenced by external factors. These factors can lead to erro-
neous predictions by machine learning algorithms.29,30

Gold nanoparticles (AuNPs) have seen extensive research
and utilization in various applications, including sensing,
imaging, therapeutics, diagnostics, drug delivery, catalysis, and
surface-enhanced Raman spectroscopy.31–33 Their unique phys-
ical and chemical properties, such as morphology-dependent
electronics, surface chemistry, and compatibility with surface
functionalization, have garnered signicant attention.2,34

Morphology-dependent Surface Plasmon Resonance (SPR)
absorption of AuNPs has been widely harnessed as an analytical
tool for colorimetric sensing across biotechnological and
chemical systems, detecting ions, anions, nucleic acids,
proteins, and peptides.35–37 In particular, colorimetric sensing of
metal ions using AuNPs-based chemosensors shows promise,
with numerous studies focusing on designing AuNPs as probes
for detecting various compounds and metal ions in environ-
mental samples.38,39 Several studies have explored the use of
different AuNPs for colorimetric detection of Fe3+ ions.40–42

However, traditional methods for producing UV-based AuNPs
chemosensors oen rely on costly and toxic reducing and
stabilizing agents. Recently, there has been a growing interest in
green synthesis methods for AuNPs in sensing applications.
These methods are environmentally friendly, cost-effective, and
avoid the use of toxic chemical agents. While some studies have
successfully utilized plant extracts for AuNPs synthesis, the
application of green-synthesized AuNPs for colorimetric detec-
tion of transition metal ions remains underexplored.43,44

Eleutherine bulbosa (EB), a herbaceous plant belonging to
the Iridaceae family, is widely cultivated across South America,
Africa, and Southeast Asia. Compounds extracted from E.
bulbosa include xanthones, fatty acid esters, naphthalenes,
phenolics, avonoids, isoquinolines, anthraquinone, naph-
thoquinone, tannins, saponins, quinones, steroids, and
triterpenoids.45–47 These compounds serve as both reducing
and stabilizing agents in the synthesis of metallic
nanoparticles.48–50

In this study, we utilized an aqueous extract of E. bulbosa
leaves for the green synthesis of AuNPs. These synthesized
AuNPs were then used to detect Fe3+ ions through UV-vis
spectroscopy and smartphone-based analysis as follows: (i)
Fe3+ ions interact with the surface of AuNPs, inducing nano-
particle aggregation and altering their SPR bands and color
intensity, which correlate with the Fe3+ ion concentration; (ii)
images of the solution cuvette are captured using a smartphone
camera; (iii) these images are analyzed to extract color values for
a machine learning model; (iv) a linear regression model is
employed to correlate these color values with Fe3+ ion concen-
trations. The method performance is signicantly inuenced by
image quality, affected by factors such as lighting conditions,
smartphone camera quality, and user experience. To mitigate
these variables, a lightbox with a reference color was designed.
Each image is normalized using this reference color, adjusting
brightness to standardize color values under experimental
conditions. This approach improves the performance of the
machine learning algorithm compared to non-normalized
methods.
© 2024 The Author(s). Published by the Royal Society of Chemistry
2 Materials and methods
2.1. Materials

All reagents and materials were employed without additional
purication. Hydrogen tetrachloroaurate(III) hydrate (HAuCl4-
$3H2O) were purchased from Acros (Belgium). E. bulbosa leaves
were collected in the Thien Cam Son Mountain area, An Giang
Province, Vietnam during May–August, 2022. Distilled water
was used throughout.
2.2. Plant extract preparation

The E. bulbosa leaves were dried in a drying oven for 24 h and
nely ground by an electronic blender. The resultant powder (20
g) was reuxed with water (200 mL) for 1.5 h. The mixture was
ltered via a whatman paper and the dark green ltrate was
storable in the refrigerator at 4 °C for further studies.
2.3. Biosynthesis of gold nanoparticles

The E. bulbosa extract was stirred in Au3+ ion solution for 30min
at 1200 rpm in a dark condition. The formation of gold nano-
particles was visible due to color changes. UV-vis spectra in
range from 200 to 800 nm was used to investigate the optimi-
zation of reaction parameters including metallic ion concen-
tration (0.0, 0.2, 0.4, 0.5 and 0.6 mM), reaction temperature (in
the range of 30–60 °C), and reaction time (10, 20, 30, 40, 50
min). The reduction of Au3+ ions by the plant extract resulted in
an increase in absorbance at around 537 nm. The AuNPs
synthesized by E. bulbosa extract (EB-AuNPs) in the optimal
circumstances were used for further studies. The crystalline EB-
AuNPs were obtained by centrifugation at 8500 rpm for 30 min
and then washed twice with water to eliminate the impurities.
Finally, the powder of EB-AuNPs was obtained aer spreading
and drying in the Petri dish under the fume hood for 1.5 h.
2.4. Physicochemical characterizations of gold
nanoparticles

The optimized samples were employed for exploring the phys-
icochemical characterization and its various applications. UV-
vis spectra were measured on a JASCO V-630 spectrophotom-
eter (USA) The Fourier-transform infrared (FTIR) spectra of
solid E. bulbosa extract and synthesized AuNPs were captured by
FT-IR spectrometer, PerkinElmer, UK at wavelengths spanning
from 400 to 4000 cm−1. Chemical elements of the solid AuNPs
sample were analyzed by energy-dispersive X-ray (EDX) spec-
troscopy on JEOL JEM2100. Crystalline characterization was
conducted using XRD patterns (Model-D8 Advance, Bruker,
Germany) measuring directly powder EB-AuNPs. To examine
the morphology of the obtained AuNPs, eld emission scanning
electron microscopy (FESEM) was utilized, using the HITACHI
S-4800 (Japan). The investigation of nano size, crystalline and
elemental distribution was conducted using advanced tech-
niques including high-resolution transmission electron
microscopy (HRTEM), selected area electron diffraction (SAED),
and scanning transmission electron microscopy mapping
(STEM-mapping) with the JJEOL JEM2100 instrument.
RSC Adv., 2024, 14, 20466–20478 | 20467
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NanoPartica Horiba SZ-100 (Japan), which determined electrical
potential at the slipping plane and particle size distribution,
was utilized to assess zeta potential and dynamic light scat-
tering (DLS) using gel solutions (1.0 mg mL−1).

2.5. Colorimetric detection of Fe3+ ion

The colorimetric detection was performed with as-prepared
AuNPs solution (1 mL). To evaluate selectivity, the colori-
metric sensing ability of EB-AuNPs was individually examined
for a range of environmentally signicant metal ions. The
metallic ions including Ba2+, Ca2+, Ni2+, Al3+, Zn2+, Fe2+, Fe3+,
Pb2+, Mn2+, Cd2+ and Cr2+ were carried out at a consistent
concentration of 10 ppm. For UV-vis sensor, AuNPs solution
mixed with various concentrations of Fe3+ ion (0.3–30.0 ppm)
were measured by UV-vis spectroscopy. The absorption
intensity of peaks versus the concentration of Fe3+ ions were
plotted.

2.6. Smartphone-based sensor

The red – green – blue (RGB) colorimetry method for solution
concentrations using smartphones oen faces challenges from
external factors like varying light intensity, camera resolution,
and internal color adjustments. To overcome these obstacles,
a novel approach was developed to detect the region of interest
(ROI). This involved designing a lightbox as a closed system,
incorporating an LED light system within a metal frame, as
depicted in Fig. 1. The smartphone and cuvette were positioned
at a xed distance of 6 cm and held in specic orientations. A
small green square frame, serving as a reference color value, was
placed in front of the cuvette. The region inside this frame,
known as the ROI, was identied based on the presence of the
green border.

Fig. 1 provides an overview of our proposed solution,
wherein users were prompted to retake the image if the variance
Fig. 1 Light box – a closed system for measuring RGB value to extract

20468 | RSC Adv., 2024, 14, 20466–20478
of ROI exceeded a predetermined threshold. Despite the
apparent closure of the lightbox system for smartphone image
capture, the RGB values of the ROI exhibited inconsistency
when multiple images of a solution with identical concentra-
tions were taken using the same smartphone. To rectify this
inconsistency, we utilized the reference value of the green
squared frame to adjust the overall color of the image. Two
normalization methods were devised:

(1) Delta method involved adjusting the mean RGB values
of the ROI by adding the difference between the color value of
the green squared frame and the RGB reference values (e.g., R
= 40, G= 150, B= 90) to the measured mean RGB values in the
region of color adjustment. The formula is expressed as eqn
(1).

Mean_RGB_ROI = mean_RGB_ROI + (mean_-

RGB_squared_frame − RGB_predefined) (1)

(2) Ratio method: the mean RGB values of the ROI under-
went adjustment by multiplying the ratio between the color
value of the green squared frame and the RGB reference values
(e.g., R= 40, G= 150, B= 90) by the mean RGB values measured
in the region of color adjustment. The formula is expressed as
eqn (2)

Mean_RGB_ROI = mean_RGB_ROI × (mean_-

RGB_squared_frame/RGB_predefined) (2)

Finally, six features were extracted from the ROI corre-
sponding to mean and mode of RGB, then use a regression
algorithm to learn the correlation between RGB value of images
and concentration. The completed solution, i.e., data process-
ing, normalization, visualization, machine learning model, was
implemented by Python and its libraries: OpenCV2,51 Seaborn,52

Scikit-learn.53
the features from the raw image taken by smartphone.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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3 Results and discussion
3.1. Biosynthesis of gold nanoparticles

The study methodology of our work is illustrated in Fig. 2A.
Initially, dried E. bulbosa leaves were reuxed with water for 1.5
hours, resulting in a dark green solution post-ltration. To
determine the optimal synthetic conditions, various reaction
parameters such as metallic ion concentration, reaction
temperature, and reaction time were systematically altered to
enhance the stability of EB-AuNPs synthesis. Color changes in
the colloidal solution, along with UV-vis measurements,
conrmed the formation of EB-AuNPs.

UV-vis spectra revealed an intense peak at 330–400 nm,
indicative of aromatic chemical transitions of polyphenols,
including p/ p* and p/ n* (Fig. 2B). This peak signies the
presence of polyphenols, such as avonoids, responsible for
reducing gold ions into nanoparticles. The colloidal solutions of
EB-AuNPs exhibited the SPR bands around 537 nm. Interest-
ingly, the disappearance of aromatic chemical transitions in the
EB-AuNPs spectrum suggests the conversion of polyphenols
and gold ions into AuNPs. Following synthesis, the EB-AuNPs
underwent washing and collection via centrifugation. Subse-
quently, physicochemical analytical techniques were employed
to characterize the synthesized nanoparticles and facilitate
colorimetric detection of Fe3+ ions in water using UV-vis spec-
troscopy and smartphone cameras combined with machine
learning.

The transformation of metallic ions into nanoparticles exerts
a profound inuence on the size and morphology of AuNPs
stabilized by plant extract. In this study, we delved into opti-
mizing three key parameters including the concentration of
Fig. 2 Schematic illustration of the study strategy (A) and UV-vis spectr

© 2024 The Author(s). Published by the Royal Society of Chemistry
gold ions, reaction temperature, and reaction time, to achieve
the most effective synthesis of EB-AuNPs, leveraging absorption
spectra analysis. Alterations in absorbance intensity and surface
plasmon resonance (SPR) peaks serve as valuable indicators of
physicochemical changes.54

Fig. 3 illustrates UV-vis spectra and plots depicting absor-
bance and lmax values against the varied parameters. Our
ndings underscore the pivotal role of gold ion concentrations
in AuNP production. Despite uctuations in salt concentrations
from 0 to 0.6 mM, the maximum absorption values of the SPR
band consistently hovered around 545 nm, suggesting negli-
gible inuence on the size and morphology of the resultant EB-
AuNPs (Fig. 3A and B). However, discernible shis in absor-
bance values within the SPR bands were apparent, particularly
with increasing salt concentrations. Notably, the peak absorp-
tion density peaked at a salt concentration of 0.5 mM, beyond
which AuNP agglomeration in the colloidal solution led to
decreased absorbance.

Further investigation into the effect of reaction temperature,
ranging from 30 to 60 °C, revealed intriguing trends (Fig. 3C and
D). At 30 °C, a pronounced absorption of SPR bands was
observed, indicative of abundant AuNPs in the colloid solution.
However, as the reaction temperature escalated, the absorption
intensity declined. Nonetheless, lmax values exhibited a slight
increment over the course of the investigation. The heightened
mobility of metallic molecules at elevated temperatures likely
induced an enlargement in size and alteration in morphology of
the formed AuNPs, contributing to their coagulation and
subsequent decrease in absorbance values.

UV-vis spectra were measured at 10 minutes intervals to
assess the impact of reaction time on EB-AuNP biosynthesis
a of the extract and EB-AuNPs (B).

RSC Adv., 2024, 14, 20466–20478 | 20469



Fig. 3 UV-vis spectra (left); photos of EB-AuNPs colloidal solutions (upper) and plots of parameters versus wavelength and absorbance values
(right): concentrations of Au3+ ions (A and B), reaction temperature (C and D), and reaction time (E and F).
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(Fig. 3E and F). Our ndings underscore the critical role of
reaction time in EB-AuNP formation. Initially, a distinct
absorption peak of AuNPs emerged within the rst 10 minutes,
followed by a gradual synthesis process. The highest absor-
bance value was attained aer 40 minutes of synthesis.
Remarkably, despite this temporal evolution, lmax values
remained largely constant, suggesting stable morphology of the
biosynthesized EB-AuNPs. Based on these observations, the
synthesis of EB-AuNPs for further physicochemical character-
izations and applications was conducted under optimal
20470 | RSC Adv., 2024, 14, 20466–20478
conditions including Au3+ ion concentration of 0.5 mM,
temperature of 30 °C, and reaction time of 40 minutes.
3.2. Physicochemical characterization

FTIR analysis of both E. bulbosa leaf extract and the synthesized
EB-AuNPs is used to determine the role of organic compounds
from the plant extract in nanoparticle synthesis, as depicted in
Fig. 4. The absorption bands of the leaf extract revealed peaks at
3409, 2943, 2702, 2128, 1606, 1411, 1328, 1286, 1077, 618, and
533 cm−1. In particular, the peaks at 3409 cm−1 and 1411 cm−1
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 4 (A) FTIR spectra of E. bulbosa leaf extract and EB-AuNPs; (B) XRD pattern of synthesized EB-AuNPs and (C) EDX pattern and elemental
percentage (inset) of EB-AuNPs.
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corresponded to the stretching and bending vibrations of
hydroxyl (OH) groups, respectively, characteristic of poly-
phenols.55 Additionally, peaks at 2943 cm−1 and 1077 cm−1 were
assigned to C–H and C–O–C stretching vibrations, while the
peak at 1606 cm−1 related to carboxyl group (COO−) stretching
vibration. Following the reduction of Au3+ ions into AuNPs,
these characteristic spectra manifested as new peaks at 3294,
2918, 2851, 2356, 1653, 1242, 1012, 720, and 511 cm−1. Notably,
the marked decrease in intensity at the peak of 3409 cm−1

suggested the involvement of polyphenol compounds in the
aqueous extract for the reduction of gold ions.56

Powder XRD analysis was employed to assess the crystallinity
of the synthesized AuNPs. Fig. 4B illustrates the XRD pattern of
EB-AuNPs, revealing distinct diffraction peaks at 38.18°, 44.26°,
64.66°, and 77.54°, corresponding to the face-centered cubic
(fcc) crystal planes of (1 1 1), (2 0 0), (2 2 0), and (3 1 1),
respectively. These peaks conrmed the crystalline nature of
EB-AuNPs, with the most intense signal indicating preferential
growth in the (1 1 1) direction.57 The average crystalline size ‘D’
of the AuNPs crystal was calculated from the XRD pattern using
the Debye–Scherrer equation: D= 0.9l/b cos q. In this formula, l
represents the wavelength of the X-rays employed for diffrac-
tion, and b denotes the full width at half maximum (FWHM) of
the diffraction peak. XRD data yielded a calculated crystal size
of 6.4 nm and an estimated cell volume of approximately 68.0
Å3, further affirming the presence of AuNPs in the samples
(Fig. S1†).58

EDX analysis of the EB-AuNPs revealed a prominent peak of
Au near 2.2 keV,59 conrming the characteristic spectrum of
AuNPs (Fig. 4C). Signals from C, O, and N elements corrobo-
rated the presence of stabilizing organic components around
the AuNPs surface, such as polysaccharides and proteins. The
mean content of C, Au, O, and N elements was estimated to be
60.47 ± 2.87, 30.69 ± 2.88, 8.63 ± 1.53, and 0.20 ± 0.08%,
respectively. The presence of these organic components along-
side a signicant AuNPs content in the samples suggests
promising potential for sensing applications in the detection of
heavy metallic ions.
© 2024 The Author(s). Published by the Royal Society of Chemistry
The morphological characteristics of AuNPs are thoroughly
examined through various microscopic techniques, including
FESEM, HRTEM, and STEM-mapping, as illustrated in Fig. 5.
The FESEM image depicts densely packed AuNPs with esti-
mated diameters below 50 nm, indicative of their compact
nature (Fig. 5A). Meanwhile, the TEM image reveals a diverse
array of morphologies, ranging from spherical to triangular and
octagonal shapes, within a size range of 5.4–37.8 nm, with an
average size of 19.8 nm (Fig. 5B). Discrepancies in reduction
potentials and phytochemical compositions among different
stabilizing agents of nanoparticles may account for the
observed variations in size and shape of AuNPs.60

The crystalline structure of the biosynthesized AuNPs was
further elucidated through SAED pattern analysis. HRTEM
imaging unveils a well-dened crystal lattice, with the SAED
image exhibiting bright cycles indicative of the crystalline
nature of AuNPs, with preferential crystal growth occurring
along the (111) plane (Fig. 5C). The observed rings correspond
to reections from planes (111), (200), (220), and (311), affirm-
ing the face-centered cubic structure inherent in the gold
crystal.61

STEM-mapping images of the synthesized EB-AuNPs are
presented in Fig. 5D–I, revealing the presence of elemental
constituents such as Au, C, N, and O. The black particles signify
gold elements, thus conrming the presence of AuNPs in the
samples (Fig. 5G). Notably, the overlapping distribution of N
and O elements with AuNPs suggests the presence of organic
components with high solubility in aqueous medium such as
proteins and polysaccharides, binding to the surface of AuNPs,
serving as capping and stabilizing agents.62,63
3.3. Detection of Fe3+ ions using UV-vis spectroscopy

The selectivity of the EB-AuNPs probe was thoroughly investi-
gated by examining their interactions with several environ-
mentally relevant metallic ions, including Ba2+, Ca2+, Ni2+, Al3+,
Zn2+, Fe2+, Fe3+, Pb2+, Mn2+, Cd2+, and Cr2+, each at a concen-
tration of 10 ppm, as depicted in Fig. 6. Upon the addition of
metallic ions such as Ba2+, Ca2+, Ni2+, Zn2+, Mn2+, Cd2+, and Cr2+
RSC Adv., 2024, 14, 20466–20478 | 20471



Fig. 5 FESEM image (A); TEM image of 100 nm magnification (B) and particle size distribution (inset); HRTEM image of 20 nm magnification (C)
and SAED pattern (inset); STEM mapping (D–I) of the biosynthesized EB-AuNPs.
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the colloidal solution exhibited minimal discoloration, with
insignicant changes observed in the intensity of the SPR peak
of AuNPs. However, with the introduction of Fe2+, Pb2+ and Fe3+

ions, a noticeable decrease in the absorbance value of the SPR
band was observed. Of particular interest, the absorbance value
of AuNPs in the presence of Fe3+ ions exhibited a ve-fold and
nine-fold decrease compared to that observed with Fe2+ and
Pb2+ ions, respectively. This phenomenon can be attributed to
the high chelating ability of Fe3+ ions with EB-AuNPs compared
to other ions, thereby indicating the superior selectivity of EB-
AuNPs towards Fe3+ ions in an aqueous medium.
20472 | RSC Adv., 2024, 14, 20466–20478
Changes in the intensity of the SPR peak and the color of the
AuNPs solution in response to the target analyte are proposed to
occur via a mechanism involving nanoparticle aggregation/
agglomeration. Understanding the morphology of the samples
is crucial for studying the detection mechanism of heavy
metallic ions. In this study, we conducted analysis of DLS size
distribution and TEM images for EB-AuNPs before and aer the
addition of Fe3+ ions, as illustrated in Fig. 7. DLS measurements
revealed that the particle size distribution of EB-AuNPs exhibi-
ted a monodispersity index in both the samples, with the
particle size signicantly increasing (500–1000 nm) aer the
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 6 The influence of diverse metal ions on alterations in color and absorption spectra of the AuNPs test solution (A) and the colorimetric
detection of AuNPs toward a range of metal ions (B).

Paper RSC Advances
addition of the analyte compared to the EB-AuNP sample before
analyte addition (120–400 nm). In particular, the analysis of
TEM images before the addition of Fe3+ ions showed individual
separated particles, whereas agglomeration of the synthesized
nanoparticles was clearly observed aer treatment with Fe3+

ions. Thus, the mechanism for detecting Fe3+ ions can be
proposed to involve chelating interactions between Fe3+ ions
and capping functional groups such as NH2 and COO− attached
to the surface of AuNPs. The enhanced attraction between the
nanoparticles results in their subsequent agglomeration,
thereby reducing the distance between the AuNPs. Additionally,
TEM images reveal a decrease in the size of individual particles,
which can be attributed to the oxidation of Au(0) atoms by Fe3+

ions.64 Based on the experimental data from this study, a plau-
sible mechanism for colorimetric sensing of Fe3+ ions using EB-
AuNPs is proposed in Fig. 7E.

The colorimetric analysis aimed at detecting Fe3+ ions was
conducted under ambient air conditions at room temperature.
The ndings of this investigation are depicted in Fig. 8. As the
concentration of Fe3+ ions increases, the purple color of the EB-
AuNPs solution diminishes, transforming the dispersion solu-
tion to a white appearance, indicative of gradual nano-
composite aggregation. This observed color change correlates
with a progressive decrease in absorbance of AuNPs, as revealed
by UV-vis spectra analysis. Ratios of absorption intensity rise
with increase of different Fe3+ ion concentrations in range of
0.3–30 ppm. Across the range of measured Fe3+ ion concentra-
tions, the absorption intensity demonstrates a linear trend in
a narrow range of 0.3–3.0 ppm, as determined by the regression
equation (A0 − A)/A0 = 0.00226CFe + 0.011 with an R2 value of
0.99 (Fig. 7C). The limit of detection (LOD) was determined
using the equation LOD= 3s/s, where s represents the standard
deviation of the blank signal and s denotes the slope of the
regression equation. The computed LOD value is established to
be 0.118 ppm. The LOD value of EB-AuNPs is relatively lower
© 2024 The Author(s). Published by the Royal Society of Chemistry
than the US National Secondary Drinking Water Regulations for
iron (0.3 ppm) as well as previous reports as predicted in Table
1. The results demonstrated that EB-AuNPs are an effective
probe for detection of Fe3+ ion.
3.4. Detection of Fe3+ ions using smartphone images

3.4.1 Data preparation and the study of the effect of data
normalization. In this investigation, we delved into the utiliza-
tion of CuSO4 solutions within the concentration range of 0.25–
2.00 M (moving step 0.25) and the detection of Fe3+ ions across
varying concentrations in range of 0.3–30.0 ppm (0.3, 0.6, 1.2,
1.6, 3.0, 5.0, 6.0, 9.0, 12.0, 15.0, 19.0, 25.0 and 30.0 ppm). CuSO4

solutions were used due to their stable characteristics, less
prone to uctuations from environmental conditions,
compared to the detection of Fe3+ ions.

In the experiment involving CuSO4 solutions, we conducted
ve separate trials, capturing ten images at each concentration
range using two distinct techniques (Table 2): (1) for experi-
ments 1–3, the technician utilized the focus button on the
camera to focus on the Region of Interest (ROI); (2) for experi-
ments 4 and 5, the technician refrained from using the focus
button. Following the extraction of the ROI from each image, we
applied a variance threshold to lter out images exhibiting high
discrepancies in pixel values within the ROI. However, all
images captured in the laboratory under the supervision of
a single technician, aided by our lightbox, were deemed
acceptable. Table 2 provides an overview of our dataset, high-
lighting that all experiments and image acquisitions were con-
ducted under consistent conditions by the same technician.

Our study aims to investigate the inuence of environmental
factors on predicting the outcomes of a machine learning
method by employing our proposed normalization techniques
on the dataset, comparing the results with those obtained from
the raw data without normalization. For each approach, we
randomly split the dataset into two subsets: a training set and
RSC Adv., 2024, 14, 20466–20478 | 20473



Fig. 7 DLS spectra (left) and TEM images (right) of EB-AuNPs before (A and B) and after (C and D) adding Fe3+ ion and (E) proposed mechanism
for colorimetric detection of Fe3+ ion in aqueous ion.
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a test set, maintaining a ratio of 70 : 30 and then utilize linear
regression to construct the machine learning models. Table 3
presents the average and standard deviation of prediction
results on the test data aer conducting ve iterations.

The results indicate that while both normalization
approaches (delta and ratio) enhanced the performance of the
machine learning model, the improvements were modest,
amounting to only 0.8% for the R2 metric (delta) and 0.28% for
the ratio when compared to using raw data. This can be
attributed to the stability of CuSO4 characteristics over time and
the controlled conditions of our designed lightbox, which
mitigates environmental inuences during image capture.
20474 | RSC Adv., 2024, 14, 20466–20478
However, real-world applications present numerous variables
affecting prediction accuracy, including evolving characteristics
of iron and variations in smartphone camera quality among end
users. In our subsequent experiment, we focus on Fe3+ ion to
demonstrate the efficacy of the normalization approaches in
enhancing prediction outcomes.

In detection of Fe3+ ions, we conducted trials across three
distinct instances within the concentration range of 0.3 to
30 ppm, as detailed previously. Each concentration was
accompanied by the capture of 10 images, with no specic focus
on the ROI. Consequently, our dataset for Fe3+ ions comprises
390 images, calculated from 13 concentrations, each with 10
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 8 The UV-vis spectra (A), and the linearity of absorption intensity (B) vs. various Fe(III) concentrations (0–30 ppm). The difference in
absorbance between intensity value at zero concentration and the corresponding concentration is plotted against concentration of Fe(III). The
linear region is determined in the range of 0–3 ppm.

Table 1 Summary of detection performances of different colorimetric sensors for Fe3+ detection

Probes Detection mechanism Linear range (ppm) LOD (ppm) References

Kojate motifs Coordination — 2.01 65
AgNPs@N-acetyl-L-cysteine Reduction 0.005–4.48 0.05 ppm 66
AuNPs@ pyrophosphate Aggregation 0.56–3.36 0.314 67
GQD Coordination 0–4.48 0.404 68
Green tea extract Coordination 2.5–17.5 0.90 69
AuNCs@L-DOPA Aggregation 0.28–71.7 0.196 70
EB-AuNPs Aggregation 0.3–3.0 0.118 This work

Table 2 Data description of the CuSO4 experiment

Exp no. Range Focus on the ROI
No of images/
concentration Total images

1 0.25–2 M Y 10 80 (10 × 8)
2 0.25–2 M Y 10 80 (10 × 8)
3 0.25–2 M Y 10 80 (10 × 8)
4 0.25–2 M N 10 80 (10 × 8)
5 0.25–2 M N 10 80 (10 × 8)
Total 400

Table 3 The performance of machine learning approach on the
CuSO4 experiment of test dataset

Normalization
approach

Metrics

R2
Root mean squared
error

Raw 0.9716 � 0.0023 0.0965 � 0.0039
Delta 0.9724 � 0.0026 0.0950 � 0.0054
Ratio 0.9744 � 0.0031 0.0915 � 0.0048

Table 4 The performance of machine learning approach on the Fe3+

experiment of test dataset

Normalization
approach

Metrics

R2
Root mean squared
error

Raw 0.8207 � 0.0196 3.9872 � 0.2205
Delta 0.8780 � 0.0077 3.2913 � 0.1057
Ratio 0.8733 � 0.0068 3.3548 � 0.0902
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images, across the three experimental runs. Employing
a methodology akin to that of CuSO4, we partitioned the dataset
into training and testing sets using a 70 : 30 ratio, both with and
without applying normalization techniques. The performance
of our linear regression model on the test dataset, following ve
iterations, is presented in Table 4. The result showed that the
normalization approaches enhanced the R2 metrics (5.73% for
delta and 5.26% for ratio) compared to approach without
© 2024 The Author(s). Published by the Royal Society of Chemistry
normalization, i.e., they make the smaller errors. This result
indicated that normalization approaches are useful.

3.4.2 Building and optimization of the machine learning
model. In construction of the machine learning model, we
employed the cross-validation technique in tandem with
a feature selection approach known as recursive feature elimi-
nation with cross-validation,53 aiming to optimize the regres-
sion model. The methodology encompassed linear regression,
RSC Adv., 2024, 14, 20466–20478 | 20475



Table 5 The parameters of the machine learning model for eqn (3)

Parameters CuSO4 Fe3+ ion

B −11.67194794 258.03961
A1 0.1749725058769363 18.918431692320038
A2 −0.8659853255560485 2.3887664791957213
A3 0.09558946035564549 3.018478950326897
A4 0.25728815135808075 −12.756884811298555
A5 0.14611200674974775 1.0676268307155141
A6 0.6633898919692821 −16.484926316415734
A7 −0.0029225413551885746 0.5362284337472314
A8 −0.02300907284385169 −1.8121682896367453
A9 0.023310157395674134 −1.625810063272214
A10 0.0044665653250014845 −1.050626267391651
A11 −0.022848946883847206 1.8510867458015794
A12 0.0223940371249181 1.4279649782837482
A13 0.01868896020592669 2.051594167885635
A14 −0.034996010159643945 −0.1163897021906569
A15 0.03250105403235272 1.9882705177771514
A16 0.03644820329411289 −0.9739092392704912
A17 −0.03845392009176146 −3.1062507819007705
A18 −0.10714238706694611 0.556601441321064
A19 −0.020293607203989122 1.9732038182084808
A20 0.21716408527928446 −0.9955983036842209
A21 0.03025398359255365 −0.24395525445843377
A22 −0.003966909407306939 0.6050224958128079
A23 0.018379714598367163 −2.284755734470818
A24 −0.03128443711780003 −1.678320747941534
A25 −0.10925068557748736 0.5307519637416704
A26 −0.03317336821218308 1.1676053587550543
A27 0.020511778996520742 1.2271310727686446
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polynomial regression with degrees 1 and 2, and a cross-
validation splitting strategy set to 5 folds. For the CuSO4

model, cross-validation yielded optimal parameters as follows:
an R2 score of 0.987678 and an RMSE of 0.06358. These results
were achieved using all features (meanR, meanG, meanB,
modeR, modeB, modeG), the delta normalization approach,
and polynomial regression of degree 2. Subsequently, we
trained the model with our dataset using these rened param-
eters, culminating in the derivation of generic equation form
(eqn (3)) with parameters described in Table 5, representing the
machine learning model tailored specically for CuSO4.

For detection of Fe3+ ions, the optimal parameters deter-
mined through cross-validation were as follows: an R2 score of
0.885621 and an RMSE of 3.189249. These results were achieved
by utilizing all features, employing the Delta normalization
approach, and employing polynomial regression of degree 2.
The resulting equation for the Fe3+ ion model, trained with
these rened parameters, is denoted as generic equation form
(eqn (3)) with parameters described in Table 5.

y = B + A1 × meanR + A2 × meanG + A3 × meanB + A4 ×

modeR + A5 × modeB + A6 × modeG + A7 × meanR2 + A8 ×

meanR × meanG + A9 × meanR × meanB + A10 × meanR ×

modeR + A11 × meanR × modeB + A12 × meanR × modeG +

A13 × meanG2 + A14 × meanG × meanB + A15 × meanG ×

modeR + A16 × meanG × modeB + A17 × meanG × modeG +

A18 × meanB2 + A19 × meanB × modeR + A20 × meanB ×

modeB + A21 × meanB × modeG + A22 × modeR2 + A23 ×
20476 | RSC Adv., 2024, 14, 20466–20478
modeR × modeB + A24 × modeR × modeG + A25 × modeB2 +

A26 × modeB × modeG + A27 × modeG2 (3)

Utilizing the two polynomial regression functions
mentioned above, we are able to accurately measure the
concentrations of CuSO4 and Fe3+ ions in water using a smart-
phone camera. Notably, employing machine learning tech-
niques allows for the determination of Fe3+ concentration over
a signicantly broader range (0–30 ppm) compared to UV-vis
spectroscopy. Despite employing hyper-parameter tuning in
this study to optimize model performance, our analysis was
restricted to the use of polynomial regression due to the limited
size of our experimental dataset. Moving forward, our research
would encompass a wider range of concentration levels and
ner increments to acquire more comprehensive datasets.
Furthermore, we plan to explore alternative machine learning
algorithms such as random forest, neural networks, and
ensemble methods to develop more robust models.

4 Conclusions

This study combined biogenic nanometals with machine
learning techniques to quantify Fe3+ ions in water. The aqueous
extract of E. bulbosa leaf proved highly effective as both
a reducing and stabilizing agent in synthesizing gold nano-
particles (AuNPs). By optimizing synthesis conditions, the
morphology of the AuNPs was optimized, and monitoring their
characteristics using various analytical techniques. The resul-
tant pure crystalline gold nanoparticles boasted an average
diameter of 19.8 nm. Furthermore, our investigation showcased
the potential of AuNPs as a colorimetric probe for detecting Fe3+

ions. Through a combination of UV-vis analysis and smart-
phone camera images, integrated with machine learning algo-
rithms, we devised an efficient method for analyzing Fe3+ ions.
Consequently, this study lays the groundwork for developing
novel colorimetric sensors capable of accurately and swily
detecting toxic contaminants in water.
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